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ABSTRACT
This paper proposes the incremental Bayesian optimization
algorithm (iBOA), which modifies standard BOA by remov-
ing the population of solutions and using incremental up-
dates of the Bayesian network. iBOA is shown to be able
to learn and exploit unrestricted Bayesian networks using
incremental techniques for updating both the structure as
well as the parameters of the probabilistic model. This rep-
resents an important step toward the design of competent
incremental estimation of distribution algorithms that can
solve difficult nearly decomposable problems scalably and
reliably.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and
Search; G.1.6 [Numerical Analysis]: Optimization

General Terms
Algorithms

1. INTRODUCTION
Estimation of distribution algorithms (EDAs) [2, 21, 18,

24, 19, 27] replace standard variation operators of genetic
and evolutionary algorithms by building and sampling prob-
abilistic models of promising candidate solutions. Already
some of the earliest estimation of distribution algorithms
(EDAs) have completely eliminated the need for maintain-
ing an explicit population of candidate solutions used in
most standard evolutionary algorithms, and they updated
the probabilistic model incrementally using only a few can-
didate solutions at a time [2, 13]. The main advantage of
such incremental EDAs is that memory complexity is greatly
reduced. One of the must successful results of this line of
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research was the application of the compact genetic algo-
rithm (cGA) [13] to a noisy problem with over one billion
bits [11, 31]. Nonetheless, all incremental EDAs proposed
in the past use either univariate models with no interactions
between the variables or probabilistic models in the form of
a tree.

This paper proposes an incremental version of the
Bayesian optimization algorithm (BOA), which uses
Bayesian networks to model promising solutions and sam-
ple the new ones. The proposed algorithm is called the in-
cremental BOA (iBOA). While many of the ideas can be
adopted from the work on other incremental EDAs, the de-
sign of iBOA poses one unique challenge—how to incremen-
tally update a multivariate probabilistic model without ei-
ther committing to a highly restricted set of structures at
the beginning of the run or having to maintain all possi-
ble multivariate statistics that can be useful throughout the
run? We propose one solution to this challenge and out-
line another possible approach to tackling this problem. We
then test iBOA on several decomposable problems to verify
its robustness and scalability on boundedly difficult decom-
posable problems. Finally, we outline interesting topics for
future work in this area.

The paper starts by discussing related work in section 2.
Section 3 outlines the standard population-based Bayesian
optimization algorithm (BOA). Section 4 describes the in-
cremental BOA (iBOA). Section 5 presents and discusses
experimental results. Finally, section 6 summarizes and con-
cludes the paper.

2. BACKGROUND
This section reviews some of the incremental estimation of

distribution algorithms. Throughout the section, we assume
that candidate solutions are represented by fixed-length bi-
nary strings, although most of the methods can be easily
defined for fixed-length strings over any finite alphabet.

2.1 Population-Based Incremental Learning
The population-based incremental learning (PBIL) algo-

rithm [2] was one of the first estimation of distribution algo-
rithms and was mainly inspired by the equilibrium genetic
algorithm (EGA) [17]. PBIL maintains a probabilistic model
of promising solutions in the form of a probability vector.
The probability vector considers only univariate probabili-
ties and for each string position it stores the probability of
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a 1 in that position. For an n-bit string, the probability
vector is thus a vector of n probabilities p = (p1, p2, . . . , pn)
where pi encodes the probability of a 1 in the i-th position.
Initially, all entries in the probability vector are set to 0.5,
encoding the uniform distribution.

In each iteration of PBIL, a fixed number N of binary
strings are first generated from the current probability vec-
tor; for each new string and each string position i, the bit
in the ith position is set to 1 with probability pi from the
current probability vector (otherwise the bit is set to 0).
The generated solutions are evaluated and Nbest best solu-
tions are then selected from the new solutions based on the
results of the evaluation where Nbest < N . The selected
best solutions are then used to update the probability vec-
tor. Specifically, for each selected solution (x1, x2, . . . , xn),
the probability vector p = (p1, p2, . . . , pn) is updated as
pi ← pi(1−λ)+xiλ for all i ∈ {1, . . . , n}, where λ ∈ (0, 1) is
the learning rate, typically set to some small value. If xi = 1,
then pi is increased; otherwise, pi is decreased. The rate of
increase or decrease depends on the learning rate λ and the
current value of the corresponding probability-vector entry.
In the original work on PBIL [2], N = 200, Nbest = 2, and
λ = 0.005.

Although PBIL does not maintain an explicit population
of candidate solutions, the learning rate λ can be used in
a similar manner as the population-size parameter of stan-
dard population-based genetic and evolutionary algorithms.
To simulate the effects of larger populations, λ should be
decreased; to simulate the effects of smaller populations, λ
should be increased.

2.2 Compact Genetic Algorithm (cGA)
The compact genetic algorithm (cGA) [13] also maintains

a probability vector instead of a population. Similarly as
in PBIL, the initial probability vector corresponds to the
uniform distribution over all n-bit binary strings and all its
entries are thus set to 0.5. In each iteration, cGA generates
two candidate solutions from the current probability vector.
Then, the two solutions are evaluated and a tournament
is executed between the two solutions. The winner w =
(w1, . . . , wn) and the loser l = (l1, . . . , ln) of this tournament
are then used to update the probability vector.

Before presenting the update rule used in cGA, let us dis-
cuss the effects of a steady-state update on the univariate
probabilities of the probability vector in a population of size
N where the winner replaces the loser. If for any position i
the winner contains a 1 in this position and the loser con-
tains a 0 in the same position, the probability pi of a 1 in
this position would increase by 1/N . On the other hand, if
the winner contains a 0 in this position and the loser con-
tains a 1, then the probability pi of a 1 in this position would
decrease by 1/N . Finally, if the winner and the loser con-
tain the same bit in any position, the probability of a 1 in
this position would not change. This update procedure can
be simulated even without an explicit population using the
following update rule [13]:

pi

8><
>:

pi − 1
N

if wi = 0 and li = 1

pi + 1
N

if wi = 1 and li = 0

pi otherwise

Although cGA does not maintain an explicit population, the
parameter N serves as a replacement of the population-size
parameter (similarly as λ in PBIL).

Performance of cGA can be expected to be similar to that
of PBIL, if both algorithms are set up similarly. Further-
more, cGA should perform similarly to the simple genetic al-
gorithm with uniform crossover with the population size N .
Even more closely, cGA resembles the univariate marginal
distribution algorithm (UMDA) [21] and the equilibrium ge-
netic algorithm (EGA) [17].

2.3 EDA with Optimal Dependency Trees
In the EDA with optimal dependency trees [3],

dependency-tree models are used and it is thus necessary
to maintain not only the univariate probabilities but also
the pairwise probabilities for all pairs of string positions.
The pairwise probabilities are maintained using an array
A, which contains a number A[Xi = a, Xj = b] for ev-
ery pair of variables (string positions) Xi and Xj and ev-
ery combination of assignments a and b of these variables.
A[Xi = a, Xj = b] represents an estimate of the number
of solutions with Xi = a and Xj = b. Initially, all entries
in A are initialized to some constant Cinit; for example,
Cinit = 1000 may be used [3].

Given the array A, the marginal probabilities p(Xi =
a, Xj = b) are estimated for every pair of variables Xi and
Xj and every assignment of these variables as

p(Xi = a, Xj = b) =
A[Xi = a, Xj = b]P

a′,b′ A[Xi = a′, Xj = b′]
·

Then, a dependency tree is built that maximizes the mutual
information between connected pairs of variables. The tree
may be built using a variant of Prim’s algorithm for find-
ing minimum spanning trees [29], minimizing the Kullback-
Liebler divergence between the empirical distribution and
the dependency-tree model [6].

New candidate solutions can be generated from the prob-
ability distribution encoded by the dependency tree, which
is defined as

p(X1 = x1, . . . , Xn = xn) =
nY

i=1

p(Xi = xi|Xp(i) = xp(i))

where p(i) denotes the parent of Xi. The generation starts at
the root, the value of which is generated using its univariate
probabilities P (Xi), and then continues down the tree by
always generating the variables for which the parents would
have already been generated.

Each iteration of the dependency-tree EDA proceeds sim-
ilarly as in PBIL. First, a dependency tree is built from A.
Then, N candidate solutions are generated from the current
dependency tree and Nbest best solutions are selected out
of the generated candidates based on their evaluation. The
selected best solutions are then used to update A; the up-
date rule multiplies each entry in A by the decay rate α < 1
and then for each new solution it adds 1 to all entries in
A consistent with the new solution. In [3], α = 0.99. The
above update rule is similar to that used in PBIL.

While both PBIL and cGA use a probabilistic model
based on only univariate probabilities, the EDA with op-
timal dependency trees is capable of encoding conditional
dependencies between some pairs of string positions, en-
abling the algorithm to efficiently solve some problems that
are intractable with PBIL and cGA. Nonetheless, using
dependency-tree models is still insufficient to fully cover mul-
tivariate dependencies; this may yield the EDA with optimal
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dependency trees intractable on many decomposable prob-
lems with multivariate interactions [4, 26, 10, 33, 24].

3. BAYESIAN OPTIMIZATION ALGO-
RITHM (BOA)

This section describes the Bayesian optimization algo-
rithm (BOA).

3.1 Basic BOA Algorithm
The Bayesian optimization algorithm (BOA) [26] evolves

a population of candidate solutions represented by fixed-
length vectors over a finite alphabet. In this paper we as-
sume that candidate solutions are represented by n-bit bi-
nary strings, but none of the presented techniques is limited
to only the binary alphabet. The first population of candi-
date solutions is typically generated at random according to
the uniform distribution over all possible strings.

Each iteration of BOA starts by selecting a population of
promising candidate solutions from the current population.
Any selection method used in population-based evolution-
ary algorithms can be used; for example, we can use binary
tournament selection. Then, a Bayesian network is built for
the selected solutions. New solutions are generated by sam-
pling the probability distribution encoded by the learned
Bayesian network. Finally, the new solutions are incorpo-
rated into the original population; for example, this can be
done replacing the entire old population with the new solu-
tions. The procedure is terminated when some predefined
termination criteria are reached; for example, when a so-
lution of sufficient quality has been reached or when the
population has lost diversity and it is unlikely that BOA
will reach a better solution than the solution that has been
found already.

3.2 Bayesian Networks
A Bayesian network (BNs) [23, 16] is defined by two com-

ponents: (1) Structure, which is defined by an undirected
acyclic graph where each node corresponds to one random
variable and each edge defines a direct conditional depen-
dency between the connected variables (the subset of nodes
from which there exists an edge to the node are called the
parents of this node). (2) Parameters, which define condi-
tional probabilities of all values of each variable given any
combination of values of the parents of this variable. A
Bayesian network defines the joint probability distribution

p(X1, . . . , Xn) =
nY

i=1

p(Xi|Πi),

where Πi are the parents of Xi and p(Xi|Πi) is the con-
ditional probability of Xi given Πi. Each variable directly
depends on its parents.

Bayesian networks are more complex than decision trees
discussed in section 2.3, allowing BOA to encode arbitrary
multivariate dependencies. The estimation of Bayesian net-
works algorithm (EBNA) [8] and the learning factorized dis-
tribution algorithm (LFDA) [20] are also EDAs based on
Bayesian network models.

3.3 Learning Bayesian Networks in BOA
To learn a Bayesian network from the set of selected so-

lutions, we must learn both the structure of the network as

well as the parameters (conditional and marginal probabili-
ties).

To learn the parameters, the maximum likelihood estima-
tion defines the conditional probability that Xi = xi given
that the parents are set as Πi = πi where xi and πi denote
any assignment of the variable and its parents:

p(Xi = xi|Πi = πi) =
m(Xi = xi, Πi = πi)

m(Πi = πi)
,

where m(Xi = xi, Πi = πi) denotes the number of instances
with Xi = xi and Πi = πi, and m(Πi = πi) denotes the
number of instances with Πi = πi.

To learn the structure of a Bayesian network, a greedy
algorithm [14] is typically used. In the greedy algorithm for
network construction, the network is initialized to an empty
network with no edges. Then, in each iteration, an edge
that improves the quality of the network the most is added
until the network cannot be further improved or other user-
specified termination criteria are satisfied.

There are several approaches to evaluating the quality of a
specific network structure. In this work, we use the Bayesian
information criterion (BIC) [32] to score network structures.
BIC is a two-part minimum description length metric [12],
where one part represents model accuracy, whereas the other
part represents model complexity measured by the number
of bits required to store model parameters. For simplicity,
let us assume that the solutions are binary strings of fixed
length n. BIC assigns the network structure B a score [32]

BIC(B) =
nX

i=1

„
−H(Xi|Πi)N − 2|Πi| log2(N)

2

«
,

where H(Xi|Πi) is the conditional entropy of Xi given its
parents Πi, n is the number of variables, and N is the pop-
ulation size (the size of the training data set).

3.4 Sampling Bayesian Networks in BOA
The sampling can be done using the probabilistic logic

sampling of Bayesian networks [15], which proceeds in two
steps. The first step computes an ancestral ordering of the
nodes, where each node is preceded by its parents.

In the second step, the values of all variables of a new
candidate solution are generated according to the computed
ordering. Since the algorithm generates the variables accord-
ing to the ancestral ordering, when the algorithm attempts
to generate the value of a variable, the parents of this vari-
able must have already been generated. Given the values of
the parents of a variable, the distribution of the values of
the variable is given by the corresponding conditional prob-
abilities.

4. INCREMENTAL BOA (IBOA)
This section outlines iBOA. First, the basic procedure of

iBOA is briefly outline. Next, the procedures used to update
the structure and parameters of the model are described and
it is discussed how to combine these components. Finally,
the benefits and costs of using iBOA are analyzed briefly.

4.1 iBOA: Basic Procedure
The basic procedure of iBOA is similar to that of other

incremental EDAs. The model is initialized to the proba-
bility vector that encodes the uniform distribution over all
binary strings; all entries in the probability vector are thus
initialized to 0.5.
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Figure 1: Basic procedure of the incremental
Bayesian optimization algorithm (iBOA).

In each iteration, several solutions are generated from the
current model. Then, the generated solutions are evaluated.
Given the results of the evaluation, the best and the worst
solution out of the generated set of solutions are selected
(the winner and the loser). The winner and the loser are
used to update the parameters of the model. In some it-
erations, model structure is updated as well to reflect new
dependencies that are supported by the results of the pre-
vious tournaments. The basic iBOA procedure is visualized
in figure 1.

There are two main differences between BOA and iBOA
in the way the model is updated. First of all, the param-
eters must be updated incrementally because iBOA does
not maintain an explicit population of solutions. Second,
the model structure also has to be updated incrementally
without using a population of strings to learn the structure
from. The remainder of this section discusses the details
of iBOA procedure. Specifically, we discuss the challenges
that must be addressed in the design of the incremental ver-
sion of BOA. Then, we present several approaches to dealing
with these challenges and detail the most important iBOA
components.

4.2 Updating Parameters in iBOA
The parameter updates are done similarly as in cGA.

Specifically, iBOA maintains an array of marginal proba-
bilities for each string position given other positions that
the variable depends on or that the variable may depend
on. Let us denote the winner of the tournament (best
solution) by w = (w1, . . . , wn) and the loser (worst solu-
tion) by l = (l1, . . . , ln). A marginal probability p(Xβ(1) =
xβ(1), . . . , Xβk

= xβ(k)) of order k with the positions speci-
fied by β(·), denoted by by p(xβ(1), . . . , xβ(k)) for brevity, is
updated as follows:

p(xβ(1), . . . , xβ(k))←

8>>>>>>>>>>>><
>>>>>>>>>>>>:

p(xβ(1), . . . , xβ(k)) + 1
N

if ∀j : wβ(j) = xβ(j) and

∃j : lβ(j) �= xβ(j)

p(xβ(1), . . . , xβ(k))− 1
N

if ∃j : wβ(j) �= xβ(j) and

∀j : lβ(j) = xβ(j)

p(xβ(1), . . . , xβ(k))

otherwise

The above update rule increases each marginal probability
by 1/N if the specific instance is consistent with the winner

of the tournament but it is inconsistent with the loser. On
the other hand, if the instance is consistent with the loser
but not with the winner, the probability is decreased by
1/N . This corresponds to replacing the winner by the loser
in a population of N candidate solutions. For any subset
of variables, at most two marginal probabilities change in
each update because we only change marginal probabilities
for the assignments consistent with either the winner or the
loser of the tournament.

The conditional probabilities can be computed from the
marginal ones. Thus, with the update rule for the marginal
probabilities, iBOA can maintain any marginal and condi-
tional probabilities necessary for sampling and structural
updates.

While it is straightforward to initialize any marginal prob-
ability under the assumption of the uniform distribution
and to update the marginal probabilities using the results of
a tournament, one question remains open—what marginal
probabilities do we actually need to maintain when we do not
know how the model structures will look a priori? Since this
question is closely related to structural updates in iBOA, we
discuss it next.

4.3 Updating Model Structure in iBOA
In all incremental EDAs proposed in the past, already at

the beginning of the run it is clear what probabilities have to
be maintained. In cGA and PBIL, the only probabilities we
have to maintain are the univariate probabilities for different
string positions. In the dependency-tree EDA, we also have
to maintain pairwise probabilities. But what probabilities
do we need to maintain in iBOA? This issue poses a difficult
challenge because we do not know model structure a priori
and that is why it is not clear what conditional and marginal
probabilities we will need.

Let us first focus on structural updates and assume that
the current model is the probability vector (Bayesian net-
work with no edges). To decide on adding the first edge
Xi → Xj based on the BIC metric or any other standard
scoring metric, we need to have pairwise marginal probabil-
ities p(Xi, Xj). In general, let us consider a string position
Xi with the set of parents Πi. To decide on adding another
parent Xj to the current set of parents of Xi using the BIC
metric or any other standard scoring metric, we also need
probabilities p(Xi, Xj , Πi).

If we knew the current set of parents of each variable,
to evaluate all possible edge additions, for each variable,
we would need at most (n − 1) marginal probability ta-
bles. Overall, this would result in at most n(n− 1) = O(n2)
marginal probability tables to maintain. However, since we
do not know what the set of parents of any variable will be,
even if we restricted iBOA to contain at most k parents for
any variable, to consider all possible models and all possible
marginal probabilities, we would need to maintain at least`

n
k

´
marginal probability tables. Of course, maintaining

`
n
k

´
probability tables for relatively large n will be intractable
even for moderate values of k. This raises an important
question—can we do better and store a more limited set of
probability tables without sacrificing model-building capa-
bilities of iBOA?

To tackle this challenge, for each variable Xi, we are go-
ing to maintain several probability tables. First of all, for
any variable Xi, we will maintain the probability table for
p(Xi, Πi), which is necessary for specifying the conditional

458



probabilities in the current model. Additionally, for Xi, we
will maintain probability tables p(Xi, Xj , Πi) for all Xj that
can become parents of Xi, which are necessary for adding
a new parent to Xi. This will provide iBOA not only with
the probabilities required to sample new solutions, but also
those required to make a new edge addition ending in an
arbitrary node of the network. Overall, the number of sub-
sets for which the probability table will be maintained will
be upper bounded by O(n2), which is a significant reduction
from Ω(nk+1) for any k ≥ 2.

Nonetheless, we still must resolve the problem of adding
new marginal probabilities once we make an edge addi-
tion. Specifically, if we add an edge Xj → Xi, to add an-
other edge ending in Xi, we will need to store probabilities
p(Xi, Xj , Xk, Πi) where k denotes the index of any other
variable that can be added as a parent of Xi. While it is
impossible to obtain an exact value of these probabilities un-
less we would maintain them from the beginning of the run,
one way to estimate these parameters is to assume indepen-
dence of Xk and (Xi, Xj , Πi), resulting in the following rule
to initialize the new marginal probabilities:

p(Xi, Xj , Xk, Πi) = p(Xk)p(Xi, Xj , Πi). (1)

Once the new marginal probabilities are initialized, they
can be updated after each new tournament using the update
rule presented earlier. Although the above independence as-
sumption may not hold in general, if the edge Xk → Xi

is supported by future instances of iBOA, the edge will be
eventually added. While other approaches to dealing with
the challenge of introducing new marginal probabilities are
possible, we believe that the strategy presented above should
provide robust performance as is also supported by the ex-
periments presented later. At the same time, after adding
an edge Xj → Xi, we can eliminate probabilities p(Xi, Πi)
from the set of probability tables, because this probability
table will not be necessary anymore.

Initially, when the model contains no edges, the marginal
probabilities p(Xi, Xj) for all pairs of variables Xi and
Xj must be stored for the first round of structural up-
date and updated after each tournament. Later in the run,
the marginal probabilities for each variable will be changed
based on the structure of the model and the results of the
tournaments.

4.4 Sampling New Solutions
There is no difference between the Bayesian network

learned in BOA and iBOA. Therefore, the same sampling
algorithm as in BOA can be used in iBOA. Specifically, the
variables are first topologically ordered and for each string,
the variables are generated according to the generated an-
cestral ordering using the conditional probabilities stored in
the model as described in section 3.4.

4.5 Combining iBOA Components
There are several strategies for combining all the iBOA

components described above together. This section briefly
reviews and discusses several of these strategies.

The first approach is to perform continuous updates of
both the structure as well as the parameters. After per-
forming each tournament, all probabilities will be updated
first, and then the structure will be updated by adding any
new edges that lead to an improvement of model quality.

The second approach attempts to simulate BOA some-

Incremental BOA (iBOA)

t := 0;

B := probability vector (no edges);

p := marginal probabilities for B assuming

uniform distribution;

while (not done) {

generate k solutions from B with probabilities p;

evaluate the generated solutions;

update p using the new solutions;

update B using the new p;

t := t+1;

};

Figure 2: Pseudocode of the incremental Bayesian
optimization algorithm (iBOA). Model structure is
denoted by B, marginal probabilities are denoted by
p. Depending on the variant of iBOA, some struc-
tural updates may be skipped.

what closer by updating the structure only once in N it-
erations; only the probabilities for sampling new solutions
will be updated in every iteration of iBOA. This will sig-
nificantly reduce the complexity of structural updates and
improve the overall efficiency. While the model structure
will not be updated as frequently as in the first approach,
the structural updates might be more accurate because of
forcing the metric to use more data to make an adequate
structural update.

The third approach removes the steady-state component
of iBOA and updates both the probabilities for sampling new
solutions as well as the model structure only once in every
N iterations. That means that until the next structural
update, the probability distribution encoded by the current
model remains constant, and it is only changed once new
edges have been added to the new values after the last N
parameter updates.

All above approaches can be implemented efficiently, al-
though in practice it appears that the second approach per-
forms the best. The basic procedure of iBOA is outlined in
figure 2.

4.6 Benefits and Costs
Clearly, the main benefit of using iBOA instead of the

standard BOA is that iBOA eliminates the population and
it will thus reduce the memory requirements of BOA. This
can be especially important when solving extremely big and
difficult problems where the populations may become very
large. iBOA also provides the first incremental EDA capable
of maintaining multivariate probabilistic models built with
the use of multivariate statistics.

Nonetheless, eliminating the population size also brings
disadvantages. First of all, it becomes difficult to effec-
tively maintain diversity using niching, such as restricted
tournament selection, because niching techniques typically
require an explicit population of candidate solutions. While
it might be possible to design specialized niching techniques
that directly promote diversity by modifying the probabilis-
tic model in some way, doing this seems to be far from
straightforward. Second, while iBOA reduces memory com-
plexity of BOA by eliminating the population, it still is nec-
essary to store the probabilistic model including all marginal
probabilities required to make new edge additions. Since the
marginal probability tables may require even more memory
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than the population itself, the memory savings will not be
as significant as in cGA or PBIL. Nonetheless, as discussed
in the section on future work, this problem may be allevi-
ated by using local structures in Bayesian networks, such as
default tables or decision trees.

5. EXPERIMENTS
This section presents experimental results obtained with

iBOA on concatenated traps of order 4 and 5, and compares
performance of iBOA to that of the standard BOA.

5.1 Test Problems
To test iBOA, we used two separable problems with fully

deceptive subproblems:

• Trap-4. In trap-4 [1, 7], the input string is first par-
titioned into independent groups of 4 bits each. This
partitioning is unknown to the algorithm and it does
not change during the run. A 4-bit fully deceptive trap
function is applied to each group of 4 bits and the con-
tributions of all trap functions are added together to
form the fitness. The contribution of each group of 4
bits is computed as

trap4(u) =

j
4 if u = 4
3− u otherwise

,

where u is the number of 1s in the input string of
4 bits. The task is to maximize the function. An
n-bit trap-4 function has one global optimum in the
string of all 1s and (2n/4−1) other local optima. Traps
of order 4 necessitate that all bits in each group are
treated together, because statistics of lower order are
misleading. Since BOA performance is invariant with
respect to the ordering of string positions [24], it does
not matter how the partitioning into 4-bit groups is
done, and thus, to make some of the results easier to
understand, we assume that trap partitions are located
in contiguous blocks of bits.

• Trap-5. In trap-5 [1, 7], the input string is also par-
titioned into independent groups but in this case each
partition contains 5 bits and the contribution of each
partition is computed using the trap of order 5:

trap5(u) =

j
5 if u = 5
4− u otherwise

,

where u is the number of 1s in the input string of
5 bits. The task is to maximize the function. An
n-bit trap-5 function has one global optimum in the
string of all 1s and (2n/5−1) other local optima. Traps
of order 5 necessitate that all bits in each group are
treated together, because statistics of lower order are
misleading.

5.2 Description of Experiments
Although iBOA does not maintain an explicit popula-

tion of candidate solutions, it still uses the parameter N
which loosely corresponds to the actual population size in
the standard, population-based BOA. Thus, while iBOA is
population-less, we still need to set an adequate population
size to ensure that iBOA finds the global optimum reliably.
We used the bisection method [30, 24] to estimate the min-
imum population size to reliably find the global optimum
in 10 out of 10 independent runs. To get more stable re-
sults, 10 independent bisection runs were repeated for each

problem size and thus the results for each problem size were
averaged over 100 successful runs. The number of genera-
tions was upper bounded by the number of bits n, based on
the convergence theory for BOA [22, 34, 10, 24] and prelim-
inary experiments. For iBOA, the number of generations is
defined as the ratio of the number of iterations divided by
the population size.

In iBOA, the number of solutions in each tournament was
set to s = 4 based on preliminary experiments, which showed
that this value of s performed well. To use selection of simi-
lar strength in BOA, we used the tournament selection with
tournament size 4. Although these two methods are not
equivalent, they should perform similarly. In both BOA and
iBOA, BIC metric was used to evaluate competing network
structures in model building and the maximum number of
parents was not restricted in any way. In iBOA, the model
structure is updated once in every N iterations, while the
sampling probabilities are updated in each iteration. Finally,
in BOA, the new population of candidate solutions replaces
the entire original population; while this setting is not op-
timal (typically elitist replacement or restricted tournament
replacement would perform better [24, 25]), it was still the
method of choice to make the comparison fair because iBOA
does not use any elitism or niching either.

Although one of the primary goals of setting up BOA and
iBOA was to make these algorithms perform similarly, the
comparison of these two algorithms is just a side product of
our experiments. The most important goal was to provide
empirical support for the ability of iBOA to discover and
maintain a multivariate probabilistic model without using an
explicit population of candidate solutions. We also tried the
original cGA; however, due to the use of the simple model
in the form of the probability vector, cGA was not able to
solve problems of size n ≥ 20 even with extremely large
populations and these results were thus omitted.

5.3 Results
Figure 3 shows the number of evaluations required by

iBOA to reach the global optimum on concatenated traps
of order 4 and 5. In both cases, the number of evaluations
grows as a low-order polynomial; for trap-4, the growth can
be approximated as O(n1.69), whereas for trap-5, the growth
can be approximated as O(n1.43). While the fact that the
number of evaluations required by iBOA scales better on
trap-5 than on trap-4 seems somewhat surprising, both cases
are relatively close to the bound predicted by BOA scalabil-
ity theory [28, 24], which estimates the growth as O(n1.55).

The low-order polynomial performance of iBOA on trap-
4 and trap-5 provides strong empirical evidence that iBOA
is capable of finding an adequate problem decomposition
because models that would fail to capture the most impor-
tant dependencies on the fully deceptive problems trap-4
and trap-5 would fail to solve these problems scalably [4,
33, 10].

Figure 4 shows the number of evaluations required by
standard BOA to reach the global optimum on concate-
nated traps of order 4 and 5. In both cases, the number of
evaluations grows as a low-order polynomial; for trap-4, the
growth can be approximated as O(n1.9), whereas for trap-5,
the growth can be approximated as O(n2.04). In both cases,
we see that BOA performs worse than predicted by scala-
bility theory [28, 24], which is most likely because of using
an elitist replacement strategy, which significantly alleviates
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Figure 3: Performance of iBOA on concatenated traps of order 4 and 5.

the necessity of having accurate models in the first few iter-
ations [24], and because of the potential for too strong pres-
sure towards overly simple models due to the use of BIC
metric to score network structures. In any case, we can con-
clude that iBOA not only keeps up with standard BOA, but
without an elitist replacement strategy or niching, it even
outperforms BOA with respect to the order of growth of the
number of function evaluations with problem size.

6. SUMMARY AND CONCLUSIONS
This paper proposed an incremental version of the

Bayesian optimization algorithm (BOA). The proposed al-
gorithm was called the incremental BOA (iBOA). Just like
BOA, iBOA uses Bayesian networks to model promising so-
lutions and sample the new ones. However, iBOA does not
maintain an explicit population of candidate solutions; in-
stead, iBOA performs a series of small tournaments between
solutions generated from the current Bayesian network, and
updates the model incrementally using the results of the
tournaments. Both the structure and parameters are up-
dated incrementally.

The main advantage of using iBOA rather than BOA is
that iBOA does not need to maintain a population of can-
didate solutions and its memory complexity is thus reduced
compared to BOA. However, without the population, im-
plementing elitist and diversity-preservation techniques be-
comes a challenge. Furthermore, memory required to store
the Bayesian network remains significant and should be ad-
dressed by using local structures in Bayesian networks to
represent the models more efficiently. Despite the above
difficulties, this work represents the first step toward the de-
sign of competent incremental EDAs, which can build and
maintain multivariate probabilistic models without using an
explicit population of candidate solutions, reducing memory
requirements of standard multivariate estimation of distri-
bution algorithms.

Most importantly, there are three issues that need to be
addressed in future work: (1) Complexity of model rep-
resentation should be improved using local structures in
Bayesian networks, such as default tables [9] and decision
trees/graphs [5, 9]. (2) Elitist and diversity-preservation
techniques should be incorporated into iBOA to improve its
performance. (3) Other graph operations (e.g., edge removal
and reversal) should be added to complement edge additions.

Acknowledgments
This project was sponsored by the National Science Foundation

under CAREER grant ECS-0547013, by the Air Force Office of

Scientific Research, Air Force Materiel Command, USAF, under

grant FA9550-06-1-0096, and by the University of Missouri in St.

Louis through the High Performance Computing Collaboratory

sponsored by Information Technology Services, and the Research

Award and Research Board programs. The U.S. Government is

authorized to reproduce and distribute reprints for government

purposes notwithstanding any copyright notation thereon. Any

opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily re-

flect the views of the National Science Foundation, the Air Force

Office of Scientific Research, or the U.S. Government. Some ex-

periments were done using the hBOA software developed by Mar-

tin Pelikan and David E. Goldberg at the University of Illinois at

Urbana-Champaign and most experiments were performed on the

Beowulf cluster maintained by ITS at the University of Missouri

in St. Louis.

7. REFERENCES
[1] D. H. Ackley. An empirical study of bit vector function

optimization. Genetic Algorithms and Simulated
Annealing, pages 170–204, 1987.

[2] S. Baluja. Population-based incremental learning: A
method for integrating genetic search based function
optimization and competitive learning. Tech. Rep. No.
CMU-CS-94-163, Carnegie Mellon University, Pittsburgh,
PA, 1994.

[3] S. Baluja and S. Davies. Using optimal dependency-trees
for combinatorial optimization: Learning the structure of
the search space. Proceedings of the International
Conference on Machine Learning, pages 30–38, 1997.

[4] P. A. N. Bosman and D. Thierens. Linkage information
processing in distribution estimation algorithms.
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-99), I:60–67, 1999.

[5] D. M. Chickering, D. Heckerman, and C. Meek. A Bayesian
approach to learning Bayesian networks with local
structure. Technical Report MSR-TR-97-07, Microsoft
Research, Redmond, WA, 1997.

[6] C. Chow and C. Liu. Approximating discrete probability
distributions with dependence trees. IEEE Transactions on
Information Theory, 14:462–467, 1968.

[7] K. Deb and D. E. Goldberg. Analyzing deception in trap
functions. IlliGAL Report No. 91009, Illinois Genetic
Algorithms Laboratory, Urbana, IL, 1991.

461



16 32 64 128
10

3

10
4

10
5

Problem size

N
um

be
r 

of
 e

va
lu

at
io

ns

 

 

BOA

O(n1.90)

(a) Trap-4

15 30 60 120
10

3

10
4

10
5

Problem size

N
um

be
r 

of
 e

va
lu

at
io

ns

 

 

BOA

O(n2.04)

(b) Trap-5

Figure 4: Performance of standard BOA on concatenated traps of order 4 and 5.

[8] R. Etxeberria and P. Larrañaga. Global optimization using
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