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ABSTRACT
This article presents a robust EDA for global optimization
with real parameters. The approach is based on the lin-
ear combination of individuals of two populations. One is
the current population Pt, from which a probability density
model is created and a new population Ps is simulated. The
new population Pt+1 is a linear combination of Pt and Ps.
The linear combination factor involved is self-adaptive.

Categories and Subject Descriptors: J.2[Physical Sci-
ences and Engineering]Mathematics and Statistics

General Terms: Algorithms, Design, Performance.

Keywords: Estimation Distribution Algorithms, Conver-
gence, Optimization.

1. INTRODUCTION
Premature convergence is a well known issue of Estima-

tion Distribution Algorithms (EDAs) [1]. The approach of
this paper is to keep diversity by combining two populations.
The first population P(t) is the one available at the current
generation. A sample of the bests is taken and a probabil-
ity density function (PDF) model is created. The second
population is simulated from the model, and then linearly
combined with the first one, individual by individual, result-
ing in a new individual that populates the new generation
P(t+1). This paper presents the Directional EDA (DEDA).

2. DIRECTIONAL EDA
Consider a vector u ∈ P(t) that will get an increment

and change its position to v ∈ P(t+1). The step size h is:
h = v−u. In a more general situation, we can take a step λh
resulting in the new position v∗ = u + λh. In general v∗ =
u + λ (v − u). The new vector λ (v − u) is the direction of
motion biased by the best individuals seeking the optimum.
Algorithm 1 presents the pseudocode of the Directional EDA
(named after the direction vector). The adaptation of the
linear coefficient takes place in steps 13 through 17. Notice
that each individual has its own coefficient. Every coefficient
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Algorithm 1 Pseudocode of the proposed Directional EDA

1: Define the set of three elements with last values of function
f(·) of the ith individual of the population at time t:

F(t)
i = {fk

i |k = t, t− 1, t− 2}, where fk
i ≡ f(P(k)

i )

2: t ← 1 and Λ
(1)
i ← 1, i = 1 . . . n.

3: Set P(1) as random population of size n.
4: repeat
5: Sorting P(t) in ascending order, respect to f(·).
6: Set Q(t) of size m, as the subset of the first elements of

P(t).
7: Estimate: PDF H(t) such that Q(t) ∼ H(t).
8: Generate: new population of size n from the model H(t):

S(t) ∼ H(t).
9: for i = 1 . . . n do
10: u ← P(t)

i , v ← S(t)
i , λ ← Λ

(t)
i

11: Calculate: v∗ = u + λ (v − u).

12: P(t+1)
i ← v∗

13: if The set F(t)
i is in ascending order then

14: Λ
(t+1)
i ← 2λ {Increase Acceleration of step length}

15: else if The set F(t)
i is in descending order then

16: Λ
(t+1)
i ← 1

2
λ {Decrease Acceleration of step length}

17: else
18: Λ

(t+1)
i ← Λ

(t)
i

19: end if
20: end for
21: t ← t + 1
22: until Termination

is adjusted when all three past function values were either
incremented (step 13) or decremented (step 15).

3. EXPERIMENTS AND RESULTS
A PDF model is approximated using a Gaussian Mixture

Model (GMM) with four kernels. The GMM is calculated
with the Expectation Maximization (EM) algorithm and it
is initialized with the K-means algorithm. Each problem
was ran 10 times. Population size=20, and sample size=15.

3.1 Experiment 1
The results for a well known 5-functions benchmark are

shown in Table 1. The stop criterion was set to reach an
error smaller than 1.0E − 6.

3.2 Experiment 2
The goal is to solve and compare results for seven multi-

modal functions listed in [2]. The detailed settings are listed
in Table 2. The stop criteria was set to reach 301850 eval-
uations or when the result obtained was closer than a δ =

473



Problem Best Approximation Evaluations

Dimension 10
Sum-Can 1.0000E+5 ± 1.5789E-7 3864 ± 248
Griewangk 6.6407E-7 ± 2.9451E-7 1060 ± 268

Sphere 6.5735E-7 ± 2.4091E-7 1056 ± 193
Rosenbrock 5.0950E-7 ± 3.8759E-7 20264 ± 15675

Ackley 7.9657E-7 ± 1.4341E-7 1616 ± 109
Dimension 50

Sum-Can 1.0000E+5 ± 1.1506E-7 4388 ± 363
Griewangk 6.0690E-7 ± 2.4766E-7 964 ± 175

Sphere 6.8914E-7 ± 1.9606E-7 1188 ± 149
Rosenbrock 4.8490E-7 ± 3.6665E-7 47400 ± 54566

Ackley 8.5737E-7 ± 1.0040E-7 1588 ± 121

Table 1: Best individual and number of function
evaluations for Experiment 1 after 10 runs

Function D Domain Type Optimum
Sphere 30 [−100, 100] Min 0

Sum-Can 10 [−0.16, 0.16] Max 105

TwoPeaks 5 [−100, 100] Max 10.1053
ThreePeaks 5 [−100, 100] Max 10.1053

Shekel (n = 5) 4 [0, 10] Max 10.1033
Shekel (n = 5) 30 [0, 10] Max 10.0139

Schwefel 30 [−500, 500] Min −12569.4866

Table 2: Test functions of Experiment 2

[1.0e−7, 1.0e−7, 1.0e−4, 1.0e−4, 1.0e−4, 1.0e−4, 1.0e−2]
(in the same order top to bottom of problems in Table 2).
The experimental results are summarized in Table 3 (MFE
stands for mean number of fitness function evaluations).

Problem MFE Best Mean S.D.

Sphere 2448 5.1633E-8 6.9286E-8 1.634E-8
Sum-Can 8929 1.0000E+5 1.0000E+5 1.452E-8
TwoPeaks 24189 10.1053E00 10.1053E00 4.456E-5
ThreePeaks 33151 10.1053E00 10.1053E00 4.371E-5

Shekel (D=4) 7748 10.1033E00 10.1032E00 2.952E-5
Shekel (D=30) 53024 10.0139E00 9.8643E00 4.728E-1

Schwefel 240000 -12569.48 -1.0852E+4 1.819E+3

Table 3: DEDA results for Experiment 2.

3.3 Experiment 3.
The functions of this experiment are convex and mono-

tone [1]. The goal of the experiment is to estimate the scal-
ability of the algorithm through the linear regression coeffi-
cient. The average number of evaluations is measured versus
dimensionality values 2,4,8,10,20,40 and 80. The functions
are defined in Table 4.

4. COMMENTS AND CONCLUSIONS
Notice that the non linear Rosenbrock function is perfectly

solved in dimensions 10 and 50 in Experiment 1. Also the
function Sum-Can is solved in only 3864 and 4388 fitness
function evaluations. In Experiment 2, DEDA easily solved
the problems that required automated clustering techniques
in [2]. For Experiment 3, the plots in Figure 1 denoting scal-
ability are almost flat. The comparison in Table 5 shows the
regression coefficients are really superior for the proposed di-
rectional EDA than for the adaptive variance IDEA [1].

Name Definition Value
to reach

Sphere
∑l

i=1 x2
i 10−10

Ellipsoid
∑l

i=1 10
6 i−1

l−1 x2
i 10−10

Cigar x2
1 +

∑l
i=2 106x2

i 10−10

Tablet 106x2
1 +

∑l
i=2 x2

i 10−10

Cigar
Tablet

x2
1 +

∑l−1
i=2 104x2

i + 108x2
l 10−10

Two Axes
∑bl/2c

i=1 106x2
i +

∑l
i=bl/2c x2

i 10−10

Different
Powers

∑l
i=1 |x2

i |
2+10 i−1

l−1 10−15

Rosenbrock
∑l−1

i=1

(
100

(
x2

i − xi+1
)2

+ (xi − 1)2
)

10−10

Parabolic
Ridge

−x1 + 100
∑l

i=2 x2
i 10−10

Sharp
Ridge

−x1 + 100
√∑l

i=2 x2
i 10−10

Table 4: Functions and max error for Experiment 3
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Figure 1: Dimensionality versus average number of
fitness function evaluations

Function Best result in [1] This Paper
Algorithm β β

Sphere CMA-ES 0.9601 0.1572
Ellipsoid IDEA 1.2171 0.1359

Cigar CMA-ES 1.1093 0.1374
Tablet IDEA 1.0806 0.0647

Cigar Tablet IDEA 1.1142 0.0875
Two Axes IDEA 1.2854 0.1421

Different Powers AVS-IDEA 1.1692 0.1861
Parabolic Ridge CMA-ES 1.0853 0.0995

Table 5: Results for Experiment 3, log e = ε + log lβ.
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