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ABSTRACT
The interaction among particles is a vital aspect of Parti-
cle Swarm Optimization. As such, it has a strong influence
on the swarm’s success. In this study various approaches
regarding the particles’ communication behavior and their
relationship are examined, as well as possibilities to com-
bine the approaches. A new variant of the popular FIPS
algorithm, the so-called Ranked FIPS, is introduced, which
resolves specific shortcomings of the traditional FIPS. As
all tested PSO variants feature distinct strengths and weak-
nesses, a new adaptive strategy is proposed which operates
on dissimiliarly configured subswarms. The exchange be-
tween these subswarms is solely based on particle migration.
The combination of the Ranked FIPS and other strategies
within the so called Particle Swarm Optimizer with Migra-
tion achieves a very good, yet remarkably reliable perfor-
mance over a wide range of recognized benchmark prob-
lems.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global opti-
mization; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
Particle Swarm Optimization, Social Interaction, Adaptive
Optimization, Subswarms, Performance Analysis

1. INTRODUCTION
Particle Swarm Optimization (PSO) [1, 2] is inspired by

the social interaction of individuals living together in groups.
In the resulting iteration-based optimization algorithm, each
individual i, hereafter called particle, is characterized by a
position ~xi,t (where t is the iteration counter), a velocity ~vi,t

(at which it moves through the search space), and a fitness
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value f(xi,t) (where f is the objective function of the opti-
mization problem). The search space position with the best
fitness value particle i has visited so far is its private guide
~pi,t. A subset of all particles is assigned to each particle as
its neighborhood. In the standard approach, the best pri-
vate guide of a particle’s neighbors serves as the particle’s

local guide ~li,t. In each iteration all particle positions and
velocitys are updated according to the following equations:

~vi,t = ω · ~vi,t−1 + ~U [0, c1]⊗ (~pi,t−1 − ~xi,t−1)

+ ~U [0, c2]⊗ (~li,t−1 − ~xi,t−1)
~xi,t = ~xi,t−1 + ~vi,t

where ω, c1, and c2 are predefined parameters, ~U [m, n] is
a vector of random real numbers uniformly distributed over
[m, n], and ⊗ denotes element-by-element vector multiplica-
tion. Afterwards, particle i updates its private guide.

Particle interaction involves two aspects: First, which par-
ticles are defined as a particle’s neighbors, and second, how
to process the received information. In this paper, differ-
ent approaches such as stereotyping [3], FIPS [4,5], and dy-
namic neighborhood graphs [6,7] are studied experimentally,
also in combination with each other. A novel FIPS variant,
the so-called Ranked FIPS, is introduced, which outperforms
previous strategies on both the CEC 2005 benchmark suite
and a traditional one. However, each neighborhood configu-
ration has its specific strengths and weaknesses. Therefore,
a new particle swarm optimizer which adapts its neighbor-
hood structure to the optimization process by using sub-
swarms and migration is proposed. This variant is able to
provide very good, yet more reliable results than other par-
ticle swarm optimizers tested.

2. RELATED WORK
As this paper is concentrated on particle interaction, we

give a brief overview of three distinct enhancements to the
main PSO algorithm dealing with how particles are related
and how they communicate with each other.

2.1 The Fully Informed Particle Swarm (FIPS)
The Fully Informed Particle Swarm (FIPS) was first de-

scribed in 2003 by Rui Mendes et al. [4, 8]. It is based on
the assumption that individuals do not merely follow their
direct archetype, but are influenced by their whole neighbor-
hood in a specific way. A Fully Informed Particle therefore
has knowledge about the best solutions found so far by any
neighbor, not just the most successful one.

In its original form, the FIPS velocity equation completely
replaces the PSO one, discarding private guide and local
guide. For greater flexibility, in our work it is employed as
a replacement to the local guide alone though. In order to
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reflect the behavior from literature, c1 can be set to 0. On
the other hand, it is still possible to have a private guide,
which enables a combination of FIPS with the stereotyping
algorithm presented in section 2.2.

The velocity calculation is done according to [5], but en-
hanced with the private guide, while the position is updated
in correspondance to the canonical PSO:

~vi,t = ω · ~vi,t−1 + ~U [0, c1]⊗ (~pi,t−1 − ~xi,t−1)

+
PN

j=1
~U [0, c2]⊗ (~pj,t−1 − ~xi,t−1)

where N denotes the size of the particle’s neighborhood and
~pj,t−1 denotes the private guide of neighbor particle j.

This version is called unweighted, as all solutions prop-
agated by the neighbors are considered in equal measure.
Hence, particles are guided to popular solutions, not partic-
ularly good ones. A reasonable alteration is to weight every
private guide from the neighborhood by its fitness value:

~vi,t = ω · ~vi,t−1 + ~U [0, c1]⊗ (~pi,t−1 − ~xi,t−1)

+
PN

j=1 f(~pj,t−1)−1 ~U [0,c2]⊗(~pj,t−1−~xi,t−1)PN
j=1 f(~pj,t−1)−1

In this form, the weighted FIPS is suitable for solving
minimization problems with f(x) ≥ 0. To enable bench-
marks with negative objective values, in the above equation
f(~pj,t−1)

−1 is replaced by −f(~pj,t−1) if f(~pj,t−1) < 0 as a
simple workaround.

2.2 Particle Swarms with Stereotyping
In 2002 Kennedy introduced an algorithm which estab-

lishes a relationship between particles that are located close
to each other in the search space [3]. The swarm is parti-
tioned into several equivalence classes, called clusters, ac-
cording to the private guides. The knowledge of the whole
cluster is then used for the calculation of −→v .

As PSO was designed with the social interaction and mu-
tual influence of human individuals being in mind, stereotyp-
ing takes one step further in the used analogy. Individuals
perceive others not solely on the basis of their individual fea-
tures, but also based on stereotypes found for specific groups
they are members of. Additionally, members themselves try
to comply with the values and behaviors formulated by so-
cial groups they belong to. Such a group does not solely rely
on the experiences of individual members; it is possible for
it to strike completely new paths. The membership is de-
pendent on the individual itself though. The notion is that
individuals with ‘similiar’ interests tend to form a group. In
the domain of PSO this means that particles searching in
the same proximity, and therefore most likely near the same
local optimum, form a cluster.

Particles belonging to the same cluster need not be neigh-
bors in the swarm’s topology. Instead, a distinct relationship
is established. Clusters are formed using the search space
position of the private guides. A quantization algorithm like
k-means (as suggested by Kennedy) can be used to partition
them efficiently. The particles are assigned to k clusters such
that each cluster will consist of at least one member.

After determining the k clusters and their corresponding
epicenters in the search space, it is possible to use them for
the velocity calculation in several ways. The epicenter can
either replace the private guide, the local guide, or both.
Kennedy’s research led to the conclusion that only the first
method yields a significant performance increase. Replacing
the local guide alone resulted in performance degradation.
For our experiments we therefore implemented this variant.

Since it does not affect the local guide at all, it is possible
to use the FIPS algorithm in combination. Kennedy used
a cluster count k = 5 on a swarm with 20 particles. We
investigated different cluster counts and can conclude that
5 is also a good value for the extended swarm size of 50.

2.3 The Completing Graph
For many optimization problems it is advantageous to ex-

plore the search space first and only then improve good so-
lutions at the end of the optimization process. Hence, the
capability to (smoothly) switch from exploration to exploita-
tion is a desired algorithm property. The exploration behav-
ior of a particle swarm can, e.g., be controlled via its neigh-
borhood topology: while densely connected swarms show
fast convergence and high exploitation potential, sparsely
connected swarms thoroughly explore the search space.

Accordingly, Suganthan’s [6], and Richards’s and Ven-
tura’s [7] particle swarms start with a sparse neighborhood
topology, and each particle gradually increases the number
of its neighbors until the swarm is fully connected. With
Richards’s and Ventura’s approach, each particle pi initially
has only a single neighbor: pi+1 (p0 is the neighbor of pN−1).
This is equivalent to a directed Ring topology. Then, after
a certain number of iterations K, each pi adds pi+2 to its
neighborhood, after 2K iterations pi+3 is added, and so on,
until all particles are connected. K is chosen such that the
swarm is fully connected after 4/5-ths of the desired func-
tion evaluations. If the number of iterations is not known
beforehand (as is the case when particles are allowed to en-
ter infeasible space and the evaluation step is skipped), K
has to be estimated.

In every time step the swarm is connected via a Ring-like
topology. In order to combine the completing graph scheme
with the successful von Neumann topology, the following ap-
proach was used in our experiments: Initially, the swarm is
connected via an arbitrary desired topology. The goal is to
complete the neighborhood graph to a fully connected one
until the K2-th iteration, where K2 is a user-specified pa-
rameter. Therefore, every K2/missing edges iterations, a
random edge is inserted between two nodes of the lowest de-
gree. Note that the graph’s diameter may rapidly decrease,
contrary to Richards’s and Ventura’s approach.

3. RANKED FIPS
In this section, a novel variant of the FIPS algorithm is

presented. First we briefly discuss some shortcomings affili-
ated with the weighted and unweighted FIPS.

3.1 Motivation
When the FIPS algorithm was introduced by Rui Mendes

et al. in 2003 as PSON and PSOWN, respectively, it was
tested with six traditional benchmark functions, and the re-
sults were very promising, showing major performance im-
provements over the canonical PSO algorithm [8]. However,
particles where initialized uniformly over the whole search
space, and the global optima of all used benchmark functions
are located in the center of the search space. Further work,
e.g., the introduction of FIPS in 2004, revealed that the
algorithm is indeed biased towards the center of its initial-
ization in search space. It was found that FIPS was still able
to often outperform the regular PSO and often reach fitness
criterions in less computation time when using asymmetrical
initialization. However, in many cases it also suffered from
a very bad performance, the used neighborhood topology
being a key factor [4]. Further investigations revealed three
major drawbacks of the FIPS algorithm:
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• On some problems, e.g. Ackley and Michalewicz, the
optimization process is not able to significantly im-
prove the initial particle positions, whereas other PSO
variants are more successful.

• The neighborhood topology, especially the average ver-
tex degree and whether a particle is included in its own
neighborhood or not, has a strong effect on the veloc-
ity of the particles. Using an unsuitable neighborhood
configuration results either in premature convergence
or in no convergence at all, if particles are allowed
to leave the search space. Experimental analyses of
Mendes et al. show that the FIPS algorithm is very
sensible to its neighborhood settings [4]. They pre-
sented guidelines for choosing a neighborhood config-
uration which restricts FIPS to a very limited subset
of appropriate neighborhood topologies.

• While it was found that the weighted FIPS doesn’t
work significantly better than the unweighted FIPS,
the reasons remained unclear. Still, information about
the quality of solutions found should intuitively help
the optimizer, if utilized right. It seems the weighted
FIPS fails to incorporate this information well.
Examining the optimization runs of several benchmark
functions, we compared the resulting weights of the
propagated solutions after applying the random oper-

ator ~U . It was found that after vast improvements
were made in the first iterations, in the majority of
the optimization time the private guides of particles
close to each other in the topology have very similiar
fitness values, leading to a strongly diminished effect
of the weighting compared to the randomization. The
weighting effect renders negligible, explaining the sim-
iliar overall behavior in regard to the unweighted FIPS.

3.2 Algorithm
In an attempt to resolve these shortcomings (especially

the one mentioned last), in our proposed algorithm, the
propagated solutions are not weighted directly by their fit-
ness value. Instead, the fitness values are used to define a
ranking, where a lower fitness value corresponds to a lower
rank, respectively. The weight of a solution is solely defined
by its rank. Therefore, the distance between a pair of fitness
values is rendered irrelevant, whereas information about a
solution’s relative quality is still preserved. There are several
methods of defining the static rank weights. In our work, we
used the following rule: The weight of a solution with rank
r is always twice as high as the weight of the solution with
the subsequent rank r + 1, while the sum over all weights is
1. Depending on the number of neighbors present, this leads
to rank weights r1 ∈ [ 1

2
, 2

3
], r2 ∈ [ 1

4
, 1

3
], and so on. Using

these rank weights, we formulate the following equation to
calculate vi,t:

~vi,t = ω · ~vi,t−1 + ~U [0, c1]⊗ (~pi,t−1 − ~xi,t−1)

+
PN

j=1 rj · ~U [0, c2]⊗ (~pj,t−1 − ~xi,t−1)

given

∀rj , j < N : rj = 2rj+1PN
j=1 rj = 1

∀~pj,t−1, j < N : f(~pj,t−1) < f(~pj+1,t−1)

This leads to a more stable approach than the weighted
FIPS in two respects: Firstly, the rank weights remain the
same throughout the whole optimization process and are

independent of the objective function. Even if progress is
very slow, the ranking gives strong emphasis to better solu-
tions. Secondly, by using the presented formula to calculate
the rank weights, the influence of the neighborhood size has
only a small effect on the weight of the best solution prop-
agated. This solution has a guaranteed minimum weight
factor of 0.5. Both make the ranked FIPS behave much
more like the standard PSO, while it still incorporates the
knowledge of the whole neighborhood. Optimization runs
show reasonable particle velocities independently from the
used neighborhood topology. Our experiments have shown
that using the ranked FIPS with particles being included in
their respective neighborhood does not lead to the erratic
behavior known from the original FIPS methods. Neverthe-
less if particles are not included in their neighborhood, still
better results are obtained.

4. ADAPTIVE MULTI-SWARM OPTIMIZER
Each particle swarm optimizer has its specific strengths

and weaknesses. However, the characteristics of the objec-
tive function are rarely known beforehand. Hence, it is de-
sirable to combine the different approaches in such a way
that the swarm chooses a configuration which is well-suited
for the respective problem. In order to achieve this goal, a
new adaptive strategy was developed.

4.1 Presentation of the new Algorithm
The new particle swarm optimizer consists of several sub-

swarms which cannot communicate with each other. Ini-
tially, the particles are evenly divided into a predefined num-
ber of subswarms. Each subswarm features different param-
eter settings, such as control parameters, inertia weight, or
neighborhood topology. In each iteration, particles can mi-
grate from one subswarm to another by keeping their posi-
tion, velocity and private guide, but adopting the configura-
tion of the new subswarm. The algorithm is therefore called
Particle Swarm Optimization with Migration (MPSO).

To migrate a particle, it has to be deleted from its old and
added to its new subswarm. As the neighborhood graph is
an important algorithmic setting, the subswarms’ topologies
should be preserved as far as possible. If a subswarm is fully
connected or connected via the Ring topology, adding and
deleting particles is straightforward. For the von Neumann
topology, the following approach is used: If a particle is
deleted, two new communication links are added, from its
left to its right neighbor, and from its top to its bottom
neighbor. A gap arises which will be filled again if a particle
is added to this sub-topology. If a particle is added, but no
gaps are available, it is simply inserted at the end of the
grid, possibly expanding it in one dimension. For deletion,
a random particle is chosen due to our assumption that this
decision does not greatly influence the algorithmic behavior.
Figure 1 demonstrates the migration procedure for the von
Neumann topology.

Many different strategies for triggering migration may be
integrated into the general concept of MPSO. Two different
approaches were investigated: A rather simple one (MPSO-1)
and a more advanced strategy using penalty points for eval-
uating the subswarms’ performance (MPSO-2 ). MPSO-1
and MPSO-2 will be described in the following subsections
and compared with each other in Section 5.2.

4.2 MPSO-1
MPSO-1 is a rather simple realization of the multi-swarm

concept. It was implemented for comparison and to deter-
mine if it is able to compete with more complicated methods.
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Figure 1: MPSO with 50 particles and two sub-
swarms l, r. Initially each subswarm consisted of 25
particles. Then, l lost particles 12 and 6 which were
inserted as 25 and 26 into r. Afterwards, r lost three
random particles, which were inserted into the gaps
of l’s grid, and at the end of the grid, respectively.

To decide which subswarms are involved in migration, fit-
ness values are assigned to all subswarms. The fitness value
of a subswarm is adopted from the best private guide cur-
rently present in the subswarm. Then, every K3 iterations
a single particle migrates from the subswarm with worst fit-
ness to the one with best fitness, where K3 is a user-defined
parameter.

4.3 MPSO-2
To have more far reaching trends being the cause of mi-

gration, a more sophisticated method is needed than using
the data of just a single iteration. We therefore introduce
the concept of penalty points: scoring bad on a specified cri-
terion results in penalty points assigned to the subswarm.
A possible criterion could be the fitness value as used by
MPSO-1. To avoid defining a fixed threshold for the cri-
terion, scoring bad is defined relatively to all other sub-
swarms. To implement this concept, the following steps are
performed at each iteration:

• Measure criterion values for all subswarms and com-
pare pairwise. If a ratio higher than Pratio (user-
defined) is found, assign a penalty point to the sub-
swarm with lower value.

• Test all subswarms’ penalty records against penalty
limit Plimit (user-defined) to identify ceding subswarms.

• Sort all subswarms with respect to the latest criterion
measurement. Migrate a particle from every ceding
subswarm to another subswarm in this order. Reset
the penalty record of the losing subswarm.

Several possible criteria come to mind: the best solution
found (as in MPSO-1), the advancement regarding the best
objective value found, or a measurement of convergence (dif-
ference between private guides in terms of search space posi-
tion or fitness value). Here, the advancement over a window
of the last 200 iterations is used, i.e. the ratio of the current
fitness value and the fitness value 200 iterations ago.

Swarms should not be penalized as long as they still have
potential for further improvement, while premature conver-
gence should be penalized, even if a good local optimum was
found. At the beginning of the optimization process huge

 0

 50

 100

 150

 200

 250

 300

 0  20000  40000  60000  80000  100000  120000  140000
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

fit
ne

ss
 v

al
ue

pa
rt

ic
le

 c
ou

nt

evaluations

Rastrigin, 30 dimensions

Swarm 1:      particles
fitness value

Swarm 2:      particles
fitness value

Swarm 3:      particles
fitness value

Swarm 4:      particles
fitness value

Figure 2: Sample optimization run with 4 sub-
swarms. The current fitness value of every swarm
and its particle count are shown over time. Swarm 2
is fast, but suffers from premature convergence and
has to spend all particles. Swarm 3 also is not able
to improve its result and loses particles. Finally, all
particles belong to the steadily improving Swarm 1.

fitness leaps are common. Therefore, if the advancement
criterion value is greater than a threshold value of 0.01, it is
set to that value. The iteration window size and the thresh-
old value were determined by experiments on the traditional
benchmark suite presented in Section 5. Although they seem
to also be practical for the CEC problems, further work is
needed on this topic. Figure 2 shows a sample optimization
run of MPSO-2.

5. EXPERIMENTAL RESULTS
Our experimental analysis consists of two parts: First,

the different neighborhood-related algorithms described in
Sections 2 and 3 are compared to each other, also in com-
bined form. Next, using the knowledge from the first ex-
periment, adaptive multi-swarm optimizers are set up and
investigated.

For the experimental analysis, eight widely-used bench-
marks, namely Sphere, Rosenbrock, Rastrigin, Griewank,
Ackley, Schwefel 2.6 (function descriptions, search and ini-
tialization ranges were taken from [2]), Shaffer (see [8]),
Michalewicz, and the CEC 2005 benchmark suite [9] were
used. Michalewicz is defined as follows:

f(~x) = −
nX

i=1

 
sin (xi)

„
sin

„
i · x2

i

π

««2·m
!

, ~x ∈ [0 . . . 3.14]n

Its initialization space was set to [2.355 . . . 3.14]n, and Shaf-
fer’s one to [50 . . . 100]2. The initialization ranges of the
Schwefel 2.6 function were modified to [−250 . . . 250], so that
neither the best nor the second-best local optimum are lo-
cated inside the initialization space. When optimizing a
CEC 2005 benchmark, particles were initialized with uni-
form distribution over search space. From the CEC 2005
benchmarks all noisy problems (f4 and f17), and f8 (which
did not yield meaningful results because all swarms were
equally unsuccessful) were skipped. A 30-dimensional pa-
rameter space was used for all benchmarks except Shaffer,
which is a two-dimensional problem. Griewank was addi-
tionally tested in 10 dimensions.

All parameters which are not related to the neighborhood
strategies themselves are fixed. For the other parameters,
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we use the following settings: As neighborhood topology, we
apply the so-called von Neumann graph, a two-dimensional
grid with wrap-around edges, as proposed by Kennedy and
Mendes [10]. A particle is not included in its own neigh-
borhood. In each iteration, the particles’ private guides are
updated simultaneously after the movement of all particles.
Velocities are initialized with uniform distribution over the
search space. All other parameters were chosen according
to the Standard PSO [2]: c1 = c2 = 1.496172, ω = 0.72984,
and the swarmsize is 50. When a particle leaves the search
space, it is not evaluated, and neither its position nor its ve-
locity are altered. The PSO terminates on a limit of 300, 000
objective function evaluations. Each PSO configuration was
repeated 100 times. In Table 3 (see Appendix) mean values
and standard errors are presented.

5.1 Experiment I
This experiment compares different PSO variants on both

a traditional and the CEC05 benchmark suites, with a total
of 31 objective functions. A second focus is on the combi-
nation of these algorithms, where applicable.

5.1.1 Candidates
Sections 2 and 3 showed several different approaches to

alter the PSO’s behavior regarding particle communication.
Stereotyping creates a second connectivity layer between the
particles by means of the private guide, whereas the FIPS
replaces the local guide. Finally, we survey the completing
graph as a simple dynamic transformation of the neighbor-
hood topology. Adding possible combinations, we end up
with the following selection of candidates:

• regular: Standard PSO with Von-Neumann topology

• st: Stereotyping on private guide

• fu, fw, fr: unweighted, weighted and ranked FIPS

• stfr: ranked FIPS with stereotyping

• cg, stcg, frcg: completing graph with generalized
edge insertion on regular, st and fr, respectively

• dircg: directed completing graph based on ring topol-
ogy, with circular edge insertion

The FIPS variants fu, fw, fr, frcg, the following set-
tings are applied: c1 = 0, c2 = 2.99234. The completing
graphs are configured to be finished at iteration K2 = 6000,
which is the minimal count of iterations passed.

5.1.2 Results
From the results in Table 3 and the ranks presented in

Table 1, we can conclude that each presented modification
is able to provide significant performance improvements over
the Standard PSO, but not all of the tested combinations
are able to do so. Although some of the candidates seem to
be more suitable for one of the used benchmark suites than
for the other, the correlation between the rank sums

P
1 andP

2 is very high (0.786).
Stereotyping is a strategy that was mostly overlooked ever

since its introduction. Our results give reason to reconsider:
st achieves better results than regular on all problems ex-
cept f15, where only dircg beats regular. Also, the best
solutions are often found by st. Stereotyping can be rec-
ommended even for completely unknown problems, as the
solution quality is always good in this experiment. The low
standard deviation of its ranks (the lowest of all candidates)
is another indicator for reliability.

The fr strategy manages to produce impressive results
over the whole test set, on par with st. Compared to st,
fr finds the best solutions more often, but has more serious
problems, too. While the other FIPS variants also show im-
provements over the Standard PSO on most problems, they
deliver worse results for 11 (fu) and 9 problems (fw), re-
spectively. However, the neighborhood configuration chosen
is the best suited for FIPS according to [4] and our earlier
experiments. The ranked FIPS does not completely domi-
nate regular, either. Both fu and fw have serious problems
with Michalewicz and Ackley, while fr at least works well on
Ackley. Interestingly, frcg works very well on Michalewicz,
but degrades performance for many other problems.

As both stereotyping and the ranked FIPS manage to im-
prove the optimization process, and they do so in different
fields, it is reasonable to search for a good combination of
both. However, stfr failed and led to the worst results on
many problems. The reason is that the FIPS does not work
well in combination with a private guide, as own experiments
have shown. In subsection 5.2 we try a more sophisticated
combination.

The key idea of the completing graph method was the
transition from exploration to exploitation. However, our
results show that densifying the neighborhood graph is not
sufficient to produce the supposed benefits. Only dircg
achieves a significant performance improvement, while all
other combinations fail to do so. Previous experiments pre-
sented measurable, but insignificant differences between cir-
cular edge insertion and generalized least-grade insertion re-
garding the optimization process using an undirected ring as
base topology. This changes with directed edges in the ring
topology, where a solution has to be communicated to the
whole swarm before it can become the local guide for the
originating particle. The swarm converges very slowly. Due
to the completion, exploitation still comes into play near the
end of the optimization process. Note that it is important
to exclude a particle from its neighborhood to prevent local
convergence.

This experiment has two clear winners: Kennedy’s stereo-
typing (st) and the ranked FIPS (fr). While the completing
graph also works very well in a very specific setting, our ef-
forts to generalize it proved fruitless.

5.2 Experiment II
Based on the previous experiment, we investigate promis-

ing multi-swarm configurations using MPSO-1 and MPSO-
2. The number of subswarms involved needs to be chosen
along the subswarm’s configurations. It is hard to find a
high number of subswarms complementing each other well.
Also, a higher number of subswarms result in a lower par-
ticle count per swarm. Hence, in this experiment different
configurations with only two or three subswarms are chosen.

5.2.1 Candidates
Experiment I showed that fr and st both provide the

best performance among the candidates, each having differ-
ent strengths and weaknesses. Therefore, both were chosen
as subswarm strategies for all MPSO configurations. Candi-
dates fu and fw seem to be an appropriate supplement, while
fu performs better than both st and fr for 4 problems and is
the single best solution for 2 problems. Alternatively, dircg
could be favored, being a completely different approach from
the first two subswarms.

As a result, the following candidates were tested:

• M1-2, M2-2: MPSO-1, MPSO-2 with fr and st

• M1-3a, M2-3a: MPSO-1, MPSO-2 with fr, st, dircg
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Sphere Rosenbrock Ackley Griewank10 Griewank Michalewicz Rastrigin Schwefel Shaffer
P

1

st 1 4 1 5 5 3 2 4 1 26
stcg 1 3 1 6 6 2 4 5 1 29
stfr 1 10 8 2 4 7 10 10 8 60
fu 1 9 10 1 1 9 9 9 1 50
fw 1 8 9 3 1 10 6 7 1 46
fr 1 6 1 4 1 8 1 1 8 31
frcg 1 1 4 7 7 1 3 8 8 40
regular 1 7 7 9 10 4 8 6 1 53
cg 1 2 6 10 9 6 7 3 1 45
dircg 1 5 5 8 8 5 5 2 1 40

f1 f2 f3 f5 f6 f7 f9 f10 f11 f12 f13 f14 f15 f16

st 1 1 8 4 3 1 5 6 4 5 1 3 5 5
stcg 1 1 3 3 2 2 6 5 3 1 2 4 6 3
stfr 1 1 2 9 10 8 8 7 6 10 5 7 7 10
fu 1 1 5 6 8 9 3 4 7 3 9 5 4 8
fw 1 1 7 5 7 10 2 2 5 4 10 6 3 7
fr 1 1 4 1 4 3 1 1 1 6 4 2 10 1
frcg 1 1 1 2 1 4 4 3 2 2 3 1 8 2
regular 1 10 10 10 9 6 10 9 9 8 8 10 2 6
cg 1 1 9 8 5 7 9 10 10 9 7 9 9 9
dircg 1 1 6 7 6 5 7 8 8 7 6 8 1 4

f18 f19 f20 f21 f22 f23 f24 f25
P

2
P

1 +
P

2 std.dev.

st 1 2 1 6 3 5 1 5 76 102 1.95
stcg 2 1 2 7 2 7 1 6 70 99 2.01
stfr 7 7 7 10 10 10 10 10 162 222 3.00
fu 6 6 6 1 9 3 8 4 116 166 3.09
fw 5 5 5 4 8 2 1 3 103 149 2.91
fr 3 3 3 2 4 1 1 1 58 89 2.43
frcg 4 4 4 3 1 6 1 2 60 100 2.31
regular 10 9 9 8 7 8 1 9 169 222 2.98
cg 9 10 10 9 6 9 9 8 173 218 3.02
dircg 8 8 8 5 5 4 1 7 121 161 2.52

Table 1: Ranks of the tested candidates in Experiment I. Sums of ranks for the traditional and the CEC05
benchmarks, standard deviation of all ranks. Best values are printed bold. Mean values and standard errors
are presented in the Appendix.

• M1-3b, M2-3b: MPSO-1, MPSO-2 with fr, st and fu

For the MPSO-1 variants, the iteration count K3 = 60 was
chosen. For the MPSO-2 variants, penalty limit Plimit = 60
and penalty ratio Pratio = 2 are used.

5.2.2 Results
For an MPSO strategy to be considered successful, the

overall performance should be at least in between the per-
formance of its parts (i.e., the strategies used in the sub-
swarms). The main advantage has to be a broader applica-
bility due to its adaptive characteristic. Both the M1-2 and
M2-2 configurations achieve this goal, producing comparable
results with significantly lower standard deviations of their
respective ranks, as seen in Table 2.

The extra efforts spent on the more complicated design
of M2-2 pay off: M2-2 reaches both the lowest rank sum and
the lowest standard deviation. The mean solutions found are
worse compared to both st and fr on 6 problems. However,
they are still of very good quality for all problems tested.
Remarkably, on some problems M2-2 is even the single best
candidate. The Standard PSO beats M2-2 only on Shaffer,
where M2-2 sometimes fails to reach the global optimum.
An interesting insight was provided by Rosenbrock: On this
function, the advancement criterion doesn’t trigger migra-
tion well, as the swarms never stop to steadily improve.

It can be observed that the overall results of both M2-3a,
M2-3b and both M1-3a, M1-3b are very similiar, but worse
than their 2-subswarm counterparts. The supplemental sub-
swarms tried here cannot sufficiently support the whole op-
timization process. The higher number of subswarms leads
to smaller subswarm sizes, making the optimization process
less efficient to start with.

Other than the variants with 3 subswarms involved, both
M2-2 and M1-2 already show very promising results, even
though they weren’t analyzed in detail yet and are merely
in a proof-of-concept state.

6. CONCLUSION AND FUTURE WORK
The work presented here deals with interaction among

particles. Different methods of communication and altering
the particles’ relationships were examined. A new variant of
the popular FIPS algorithm was introduced, with promising
qualities observed. It was tested within a wide context of
neighborhood-related modifications to PSO. Different possi-
ble combinations of these were explored for the first time. To
achieve meaningful and comparable results, tests were run
both on a comprehensive set of traditionally used benchmark
problems and on the newly established CEC05 benchmark
suite. Furthermore, a new adaptive strategy was introduced,
combining different PSO variants to produce a reliable per-
formance over a wider spectrum of functions. Apart from
the general concept of migration between subswarms, two
different realizations of which were devised, with focus on
simplicity and sophistication, respectively. Complementing
subswarm configurations were successfully derived from the
results of the previous experiment.

It was observed that both Kennedy’s stereotyping and the
newly introduced ranked FIPS can be considered as a major
improvement over the canonical PSO algorithm. The ranked
FIPS allows the FIPS concept to be used independently
of the neighborhood topology chosen, and additionally per-
forms significantly better than the original FIPS. Kennedy
and Mendes suggested to seek after very best suited neigh-
borhood topologies for both PSO and FIPS [5]. Research
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Sphere Rosenbrock Ackley Griewank10 Griewank Michalewicz Rastrigin Schwefel Shaffer
P

1

fr 1 2 1 1 1 9 1 1 8 25
st 1 1 1 4 7 1 2 7 1 25
regular 1 9 9 9 9 7 9 9 1 63
M1-2 1 4 4 6 6 4 3 2 1 31
M1-3a 1 6 6 8 8 5 6 3 1 44
M1-3b 1 8 7 2 5 8 7 6 1 45
M2-2 1 5 3 5 4 3 4 4 7 36
M2-3a 1 3 5 7 1 2 5 5 1 30
M2-3b 1 7 8 3 1 6 8 8 8 50

f1 f2 f3 f5 f6 f7 f9 f10 f11 f12 f13 f14 f15 f16

fr 1 1 2 1 2 7 1 1 1 7 8 1 9 7
st 1 1 4 4 1 2 4 4 8 6 1 4 8 8
regular 1 9 8 9 9 9 9 9 9 9 9 9 7 9
M1-2 1 1 7 3 5 8 2 2 3 5 3 3 6 4
M1-3a 1 1 6 5 6 1 5 5 4 4 4 7 3 6
M1-3b 1 1 9 8 8 5 6 6 5 8 6 8 4 2
M2-2 1 1 1 2 3 3 3 3 2 3 2 2 5 3
M2-3a 1 1 5 7 4 4 7 7 7 2 5 6 1 5
M2-3b 1 1 3 6 7 6 8 8 6 1 7 5 2 1

f18 f19 f20 f21 f22 f23 f24 f25
P

2
P

1 +
P

2 std.dev.

fr 3 5 5 4 2 1 1 2 72 97 2.80
st 1 2 2 8 1 8 1 6 85 110 2.69
regular 9 9 9 9 7 9 1 8 176 239 2.65
M1-2 5 3 3 5 4 7 1 3 84 115 1.90
M1-3a 8 7 7 7 8 2 1 7 105 149 2.39
M1-3b 6 6 6 3 9 5 1 1 114 159 2.66
M2-2 2 1 1 1 3 3 1 5 51 87 1.51
M2-3a 7 8 8 6 5 6 1 9 112 142 2.49
M2-3b 4 4 4 2 6 4 1 4 91 141 2.59

Table 2: Ranks of the tested candidates in Experiment II. Sums of ranks for the traditional and the CEC05
benchmarks, standard deviation of all ranks. Best values are printed bold. Mean values and standard errors
are presented in the Appendix.

not presented here revealed that well suited topologies for
the regular PSO algorithm seem to be equally-well suited
for the ranked FIPS though. The problems of FIPS on
Michalewicz are still to be explained, whereas analyzing the
combination of the ranked FIPS with the completing graph
on Michalewicz could give viable insights.

The investigations into the completing graph as a dynamic
modification to the neighborhood topology yielded an inter-
esting observation: In order to produce the desired balance
between exploration and exploitation over time, it is possi-
ble to model the feedback loop of particles using accordingly
designed directed neighborhood graphs.

MPSO as a new approach to an adaptive optimizer al-
ready produced very good results, while no major drawbacks
were observed. The main goal was an increased reliability
compared to non-adaptive algorithms. This was achieved
without a distinct performance tradeoff. Still, many as-
pects need further analysis, particularly of the described
MPSO-2 variant. The amount of newly introduced parame-
ters should be minimized. While the measurement was done
on advancement, ultimately it worked best to identify con-
vergence. Other methods to achieve similiar characteristics
should be considered, especially with simplicity in mind.
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APPENDIX

Table 3: Mean best fitness value und standard errors of all investigated PSO configurations. The best possible
objective value is presented together with the function name.

Sphere (0) Rosenbrock (0) Ackley (0) Griewank10 (0) Griewank (0) Michalewicz

st 0 ± 0 12.6828 ± 0.64128 0 ± 0 0.0097496 ± 0.001084122 0.00088427 ± 0.000477080 −27.048 ± 0.0947
stcg 0 ± 0 11.0347 ± 0.69692 0 ± 0 0.01435008 ± 0.001285017 0.00105974 ± 0.000300287 −27.273 ± 0.0773
stfr 0 ± 0 83.1315 ± 6.84333 19.8251 ± 0.02047 0.00103504 ± 0.000323430 0.00027076 ± 0.000156931 −21.534 ± 0.4549
fu 0 ± 0 28.8177 ± 2.16316 20.6174 ± 0.00826 0.0008716 ± 0.000288123 0 ± 0 −14.354 ± 0.0769
fw 0 ± 0 28.0251 ± 1.92892 20.6085 ± 0.00880 0.00161604 ± 0.000398050 0 ± 0 −14.321 ± 0.0689
fr 0 ± 0 14.5786 ± 0.35119 0 ± 0 0.00598495 ± 0.000781610 0 ± 0 −14.647 ± 0.1013
frcg 0 ± 0 3.158 ± 0.18863 1.3613 ± 0.49620 0.0148625 ± 0.001159888 0.00137997 ± 0.000359280 −27.595 ± 0.0689
regular 0 ± 0 27.1572 ± 2.81880 4.7595 ± 0.82488 0.02636437 ± 0.001900490 0.00524597 ± 0.000734530 −24.454 ± 0.0960
cg 0 ± 0 7.9983 ± 0.59072 3.5714 ± 0.74121 0.02883631 ± 0.002114088 0.00490211 ± 0.000657427 −24.302 ± 0.1149
dircg 0 ± 0 14.4438 ± 1.85019 2.0022 ± 0.56470 0.02099247 ± 0.001734157 0.0018973 ± 0.000413487 −24.352 ± 0.0949
M1-2 0 ± 0 16.8173 ± 1.12045 0.3837 ± 0.26862 0.01132982 ± 0.001063869 0.00058903 ± 0.000209316 −24.912 ± 0.2964
M1-3a 0 ± 0 18.8044 ± 1.60735 3.0507 ± 0.69951 0.01525 ± 0.001284279 0.00108413 ± 0.000327385 −24.671 ± 0.2014
M1-3b 0 ± 0 25.1636 ± 2.26098 4.2748 ± 0.80505 0.00710593 ± 0.000745932 0.00039429 ± 0.000202352 −24.332 ± 0.3031
M2-2 0 ± 0 18.3962 ± 1.27212 0.382 ± 0.26740 0.01057738 ± 0.001058579 0.00034504 ± 0.000174323 −25.306 ± 0.2370
M2-3a 0 ± 0 16.5593 ± 1.16814 2.9681 ± 0.68641 0.01457251 ± 0.001321692 0 ± 0 −25.775 ± 0.1310
M2-3b 0 ± 0 22.5293 ± 1.91066 4.4205 ± 0.81027 0.00849868 ± 0.001027115 0 ± 0 −24.578 ± 0.2169

Rastrigin (0) Schwefel (-12569.487) Shaffer (0) f1 (-450) f2 (-450) f3 (-450)

st 38.495 ± 0.8981 −8197.3 ± 73.34 0 ± 0 −450 ± 0 −450 ± 0 528923 ± 15309.9
stcg 42.704 ± 1.1982 −8170.6 ± 64.52 0 ± 0 −450 ± 0 −450 ± 0 360494 ± 11051.3
stfr 165.693 ± 3.2835 −4830.2 ± 51.43 0.000194318 ± 0.000136023 −450 ± 0 −450 ± 0 313812 ± 8978.58
fu 102.301 ± 2.4993 −5807.9 ± 198.36 0 ± 0 −450 ± 0 −450 ± 0 474109 ± 11844.3
fw 98.361 ± 2.2244 −8086 ± 133.42 0 ± 0 −450 ± 0 −450 ± 0 481954 ± 12596.1
fr 25.037 ± 0.7446 −8920.3 ± 61.02 0.000194318 ± 0.000136023 −450 ± 0 −450 ± 0 463154 ± 12930.1
frcg 39.798 ± 1.0925 −6518.4 ± 74.66 0.000194318 ± 0.000136023 −450 ± 0 −450 ± 0 210984 ± 7209.02
regular 100.938 ± 2.3547 −8100.9 ± 46.70 0 ± 0 −450 ± 0 −449.99983 ± 0.000047009 916289 ± 36341.9
cg 99.346 ± 2.6098 −8439.1 ± 55.10 0 ± 0 −450 ± 0 −450 ± 0 585366 ± 22135.1
dircg 71.985 ± 1.7065 −8832.9 ± 54.05 0 ± 0 −450 ± 0 −450 ± 0 476351 ± 18227.4
M1-2 45.256 ± 1.2900 −8628.3 ± 61.35 0 ± 0 −450 ± 0 −450 ± 0 909012 ± 47909.4
M1-3a 71.837 ± 1.8238 −8453.4 ± 55.99 0 ± 0 −450 ± 0 −450 ± 0 852047 ± 46839.0
M1-3b 71.9 ± 2.1901 −8370.1 ± 52.99 0 ± 0 −450 ± 0 −450 ± 0 1365630 ± 77000.9
M2-2 50.518 ± 1.3737 −8452.7 ± 57.50 7.9904e-05±0.000079504 −450 ± 0 −450 ± 0 456816 ± 13749.5
M2-3a 69.463 ± 1.8485 −8381.2 ± 56.67 0 ± 0 −450 ± 0 −450 ± 0 529336 ± 18709.6
M2-3b 84.204 ± 1.8550 −8148.1 ± 66.34 0.000194318 ± 0.000136023 −450 ± 0 −450 ± 0 494060 ± 15043.0

f5 (-310) f6 (390) f7 (-180) f9 (-330) f10 (-330) f11 (90)

st 3168.1 ± 41.75 405.34 ± 1.199 −179.98943 ± 0.000841 −289.01 ± 0.971 −279.98 ± 0.997 104.87 ± 0.408
stcg 3022 ± 38.44 401.55 ± 0.4790 −179.98851 ± 0.000785 −287.73 ± 0.901 −281.85 ± 1.136 104.18 ± 0.333
stfr 4482.4 ± 71.86 660.52 ± 32.292 −179.98094 ± 0.00266 −271.51 ± 1.142 −269.45 ± 1.049 108.00 ± 0.454
fu 3337.9 ± 36.60 427.89 ± 3.188 −179.97524 ± 0.00448 −300.94 ± 0.560 −282.04 ± 1.948 108.27 ± 0.531
fw 3253.4 ± 28.72 420.47 ± 2.397 −179.97298 ± 0.00503 −303.82 ± 0.528 −295.38 ± 1.792 106.33 ± 0.492
fr 2633.5 ± 28.96 407.51 ± 1.677 −179.98793 ± 0.000770 −304.60 ± 0.661 −301.09 ± 0.565 101.27 ± 0.287
frcg 2655 ± 37.88 400.94 ± 2.711 −179.98782 ± 0.000999 −291.35 ± 1.017 −294.22 ± 0.754 103.87 ± 0.367
regular 4652.7 ± 105.93 444.96 ± 6.363 −179.98262 ± 0.00130 −265.28 ± 1.759 −237.71 ± 2.406 119.02 ± 0.246
cg 4396.7 ± 99.97 412.44 ± 3.243 −179.98161 ± 0.00153 −266.29 ± 2.016 −233.77 ± 3.574 119.03 ± 0.312
dircg 3855.4 ± 88.14 414.64 ± 3.332 −179.98314 ± 0.00126 −280.59 ± 1.363 −255.36 ± 1.799 118.23 ± 0.350
M1-2 2913 ± 41.48 414.64 ± 2.465 −179.98749 ± 0.00101 −296.36 ± 0.716 −290.64 ± 1.371 102.53 ± 0.313
M1-3a 3255.3 ± 66.20 415.46 ± 2.899 −179.99022 ± 0.000674 −288.46 ± 1.087 −278.77 ± 1.417 103.11 ± 0.313
M1-3b 3475 ± 62.54 421.35 ± 3.940 −179.98823 ± 0.00103 −287.83 ± 0.894 −276.73 ± 1.524 104.16 ± 0.290
M2-2 2895.3 ± 47.39 409.6 ± 1.289 −179.98934 ± 0.000944 −294.32 ± 0.789 −286.81 ± 1.266 101.42 ± 0.263
M2-3a 3390.2 ± 65.14 412.72 ± 2.592 −179.98877 ± 0.00108 −287.55 ± 0.975 −273.02 ± 1.269 104.57 ± 0.323
M2-3b 3369.8 ± 54.18 418.82 ± 3.843 −179.98821 ± 0.00122 −284.82 ± 0.947 −270.07 ± 1.656 104.19 ± 0.292

f12 (-460) f13 (-130) f14 (-300) f15 (120) f16 (120) f18 (10) f19 (10)

st 4045.9 ± 502.42 −127.37 ± 0.065 −288.24 ± 0.052 457.36 ± 7.218 324.79 ± 18.651 886.11 ± 5.596 892.44 ± 5.289
stcg 3394 ± 396.38 −127.36 ± 0.061 −288.20 ± 0.050 460.17 ± 7.450 304.29 ± 17.274 888.38 ± 5.514 891.98 ± 5.387
stfr 11545.6 ± 1050.60 −126.79 ± 0.080 −287.74 ± 0.041 464.38 ± 7.338 374.97 ± 18.411 913.76 ± 5.251 916.76 ± 4.889
fu 3576.4 ± 559.00 −124.71 ± 0.209 −288.08 ± 0.031 457.03 ± 6.832 351.03 ± 17.664 907.01 ± 4.556 914.30 ± 3.875
fw 3839.6 ± 421.41 −124.49 ± 0.228 −288.04 ± 0.032 452.33 ± 5.878 336.71 ± 19.148 901.28 ± 5.000 909.86 ± 4.382
fr 4061.9 ± 452.68 −127.02 ± 0.071 −288.43 ± 0.037 487.37 ± 7.825 277.18 ± 16.820 889.35 ± 5.203 900.29 ± 4.524
frcg 3502.2 ± 571.12 −127.13 ± 0.062 −288.60 ± 0.054 477.16 ± 7.763 295.96 ± 17.899 894.39 ± 5.012 904.21 ± 4.270
regular 10448.3 ± 991.29 −125.74 ± 0.122 −287.49 ± 0.033 447.08 ± 9.493 333.99 ± 9.913 936.56 ± 1.979 932.83 ± 2.483
cg 10625.7 ± 1291.83 −125.89 ± 0.110 −287.61 ± 0.050 478.91 ± 11.492 367.50 ± 10.926 933.48 ± 3.275 935.34 ± 2.757
dircg 6945.5 ± 803.79 −126.4 ± 0.087 −287.66 ± 0.045 435.91 ± 8.334 306.64 ± 9.387 915.84 ± 3.966 919.87 ± 3.728
M1-2 3863 ± 510.48 −127.24 ± 0.066 −288.32 ± 0.041 431.44 ± 5.296 260.75 ± 12.949 897.22 ± 4.915 895.12 ± 4.921
M1-3a 3324.4 ± 350.87 −127.17 ± 0.057 −288.17 ± 0.047 407.14 ± 7.603 274.03 ± 10.555 908.25 ± 4.303 907.99 ± 4.295
M1-3b 4604.6 ± 442.10 −127.12 ± 0.068 −288.09 ± 0.039 407.89 ± 7.309 248.67 ± 10.379 900.56 ± 5.112 901.64 ± 5.025
M2-2 2534.4 ± 355.06 −127.29 ± 0.047 −288.37 ± 0.065 426.15 ± 7.705 256.78 ± 12.349 886.64 ± 5.385 880.73 ± 5.545
M2-3a 2476.7 ± 303.31 −127.13 ± 0.060 −288.21 ± 0.057 402.44 ± 7.841 270.54 ± 9.387 907.18 ± 4.577 912.99 ± 4.017
M2-3b 2353.2 ± 300.79 −127.05 ± 0.082 −288.22 ± 0.058 405.79 ± 6.973 245.43 ± 8.901 895.84 ± 5.368 896.97 ± 5.174

f20 (10) f21 (360) f22 (360) f23 (360) f24 (260) f25 (260)

st 892.48 ± 5.286 921.244 ± 18.667 1304.7 ± 2.456 925.74 ± 13.765 460 ± 0 513.16 ± 0.232
stcg 893.57 ± 5.234 947.458 ± 21.937 1296.0 ± 2.367 942.22 ± 16.464 460 ± 0 513.40 ± 0.245
stfr 920.14 ± 4.717 977.019 ± 24.977 1378.3 ± 3.127 1081.67 ± 28.206 519.87 ± 23.722 521.70 ± 9.702
fu 917.48 ± 3.404 860.000 ± 0 1347.4 ± 1.579 919.35 ± 12.336 469.79 ± 9.743 511.54 ± 0.226
fw 906.80 ± 4.545 875.879 ± 9.456 1346.9 ± 1.735 910.88 ± 9.630 460 ± 0 511.43 ± 0.238
fr 900.33 ± 4.526 866.389 ± 6.357 1306.0 ± 0.994 894.16 ± 0.000049 460 ± 0 509.61 ± 0.133
frcg 900.77 ± 4.545 869.411 ± 7.016 1287.1 ± 2.423 931.70 ± 13.965 460 ± 0 510.72 ± 0.140
regular 932.71 ± 2.478 974.268 ± 22.982 1323.6 ± 3.480 949.77 ± 16.356 460 ± 0 515.78 ± 0.289
cg 936.99 ± 2.861 974.670 ± 24.633 1322.8 ± 3.933 987.62 ± 20.583 473.26 ± 10.610 515.27 ± 0.266
dircg 921.84 ± 3.360 898.478 ± 13.535 1313.8 ± 3.250 925.23 ± 12.601 460 ± 0 514.47 ± 0.257
M1-2 893.35 ± 5.077 866.494 ± 6.461 1315.1 ± 1.749 925.60 ± 13.702 460 ± 0 511.03 ± 0.170
M1-3a 909.40 ± 4.197 872.561 ± 7.711 1332.7 ± 2.513 898.29 ± 4.0194 460 ± 0 514.12 ± 0.286
M1-3b 902.41 ± 4.923 865.580 ± 6.526 1339.8 ± 2.517 910.47 ± 7.987 460 ± 0 509.53 ± 1.370
M2-2 885.42 ± 5.422 865.575 ± 6.521 1307.1 ± 2.103 906.77 ± 8.825 460 ± 0 512.68 ± 0.209
M2-3a 912.51 ± 3.994 868.685 ± 7.247 1320.1 ± 2.449 910.79 ± 9.634 460 ± 0 515.87 ± 0.322
M2-3b 898.22 ± 5.112 865.576 ± 6.522 1322.6 ± 2.869 908.76 ± 8.4038 460 ± 0 511.12 ± 1.216
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