
Aiming for a Theoretically Tractable CSA Variant
by Means of Empirical Investigations

Jens Jägersküpper
∗

& Mike Preuss
TU Dortmund

Fakultät für Infomatik
44221 Dortmund, Germany

ABSTRACT
Evolution Strategies (ES) for black-box optimization of a
function f : Rn → R are investigated. Namely, we consider
the cumulative step-size adaptation (CSA) for the variance
of multivariate zero-mean normal distributions, which are
commonly used to sample new candidate solutions within
Evolution Strategies (ES). Four simplifications of CSA are
proposed and investigated empirically and evaluated statis-
tically. The background for these four new CSA-derivatives,
however, is not performance tuning, but our aim to accom-
plish a probabilistic/theoretical runtime analysis of an ES
using some kind of a CSA in the near future, and a better un-
derstanding of this step-size control mechanisms. Therefore,
we consider two test problems, namely the Sphere function
without and with Gaussian noise.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Experimental Analysis; G.3 [Probability and Statis-
tics]: Probabilistic Algorithms; G.1.6 [Optimization]: Sphere
Function; I.2.8 [Problem Solving, Control Methods,
and Search]: Evolution Strategies

General Terms
Algorithms, Experimentation, Performance, Theory

Keywords
Empirical Analysis, Evolution Strategies, Sphere Function

1. INTRODUCTION
Within this work, we try to establish an alternative way

towards theoretical tractability of evolution strategies (ES),
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namely of those employing the cumulative step-size adapta-
tion (CSA) for determining the expected length of the next
search step. Although we aim at theoretical advances, our
approach is purely empirical at first, to be carried on with a
proper analysis later, once a simplified, but still functionally
similar algorithm is found.

Thus, instead of creating a complex new step-size adap-
tation, we follow an unorthodox approach by trying to dis-
sect one, namely CSA, into parts, which may then be re-
placed by alternative mechanisms we regard as better suited
for a probabilistic/theoretical analysis. While doing so, we
heavily rely on experimentation to assess how far we depart
from the original algorithm when substituting mechanisms
by simpler ones. At the same time, we aim at better un-
derstanding the ‘core’ mechanisms of the original algorithm.
Furthermore, a simplified algorithm may also be interest-
ing for practitioners, as simple methods often spread much
faster than their complicated counterparts, even if the latter
have slight performance advantages. However, in our case
the surrogate methods hardly differ concerning implemen-
tation requirements but rather in the accessibility towards
theoretical analysis.

In a sense, our approach can be seen as algorithm re-
engineering, a viewpoint which is to our knowledge uncom-
mon in meta-heuristics, and especially in evolutionary com-
putation (EC). Therefore, we strive for making a method-
ological contribution that hopefully inspires other researchers
to follow a similar path. Within the domain of numer-
ical black-box optimization, the covariance matrix adap-
tation evolution strategy (CMA-ES) of Hansen and Oster-
meier [1996] is regarded as one of the most efficient mod-
ern methods, cf. the list of over 100 references to appli-
cations of CMA-ES compiled by Hansen [2008]. Although
empirical evidence shows that this evolutionary algorithm
(EA) performs very well on many benchmark and practi-
cal optimization problems, its theoretical foundations are
rather weak, unfortunately a common situation in EC. The
CMA-ES features two original mechanisms when compared
to naive ES: the covariance matrix adaptation and the cu-
mulative step-size adaptation (CSA). While the former de-
velops, in some sense, a quadratic model like the well-known
BFGS gradient-based optimization algorithm (cf. Nocedal
and Wright [1999] for instance), which is especially useful
on ill-conditioned optimization problems, it is the duty of
the latter to cope with a difficulty that emerges in every
real-valued black-box optimization algorithm, namely the
adaptation of step-sizes when approaching an optimum.
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Evolutionary algorithms usually strive for learning good
step-sizes, which may be implemented by, e.g., self-adaptation
or simple success-based rules, the most prominent of which
may be the 1

5
-rule to increase/decrease step sizes if more/less

than 1
5

of the performed test steps are successful. This
simple deterministic adaptation mechanism (which is due
to Rechenberg/Schwefel), has already been the subject of
a probabilistic analysis of the (random) number of steps
necessary to reduce the approximation error in the search
space. The first results from the viewpoint of analyzing ES
like “usual” randomized algorithms were obtained for the
simplest quadratic function, namely x 7→ x>Ix =

∑n
i=1 x

2
i

(which is usually called Sphere in EC), in [Jägersküpper,
2003]. This analysis has been extended to quadratic forms
with bounded condition number, on the one hand, and on
the other hand to a certain class of ill-conditioned quadratic
forms (parameterized in the dimensionality of the search
space) for which the condition number grows as the dimen-
sionality of the search space increases [Jägersküpper, 2005].
The main result of the latter work is that the performance
degrades in the same order as the condition grows. This
drawback has already been noticed before in practical EC,
of course.

As noted above, within CMA-ES the cumulative step-size
adaptation (CSA) is used, which is neither a self-adaptive
mechanism nor based on a success rule. Here, we exclu-
sively deal with this CSA mechanism and, consequently,
again assume a (spherically) symmetric problem where the
CMA mechanism is dispensable. Furthermore, as opposed
to virtually all theoretical work which goes for the limit case
(n→∞), we explicitly focus on practically relevant dimen-
sions. As it may be debatable what ‘relevant’ is, we give
a 3-fold categorization to be used in the following. Prob-
lems with up to 7 dimensions are seen as small (S), whereas
the medium sized ones (M) from from 8 to 63 dimensions
are to our knowledge of the highest practical importance.
Problems with 64 dimensions and beyond are termed large
(L). As the efficiency of CSA has been disputed for noisy
problems (Beyer and Arnold [2003b]), these also pose an in-
teresting test case for the simplified CSA-derivatives and are
thus additionally considered in this investigation. Indeed, it
turns out that at least one of our CSA-derivatives displays
a surprising behavior under noise.

Within the following section, the original CSA for σ-adap-
tation is described in detail. The newly “re-engineered” four
CSA-derivatives are presented in Section 3, and their tech-
nical details and differences are discussed in Section 4. We
then experimentally compare the five CSA-variants in Sec-
tion 5.1 and present our conclusions in Section 6.

2. CUMULATIVE STEP-SIZE ADAPTATION
Originally, CSA was proposed by Hansen and Ostermeier

[1996].The underlying idea is as follows: Consecutive steps
of an iterative direct-search method should be orthogonal.
Therefore, one may recall that steps of steepest descent (a
gradient method) with perfect line search (i.e., the truly best
point on the line in gradient direction is chosen) are orthog-
onal when a positive definite quadratic form is minimized.
Within CSA the observation of positively [negatively] cor-
related successive steps is taken as an indicator that the
step-size is too small [resp. too large]. As a consequence,
the variance (actually the standard deviation σ) of the mul-
tivariate normal distribution is increased [resp. decreased].

Since the steps’ directions are random, considering just the
last two steps, namely their correlation, does not enable a
smooth σ-adaptation because of large variations in the ran-
dom angle between two steps. Thus, in each iteration, the
correlation of the step just taken in this iteration and the
so-called evolution path is considered. Essentially, the evo-
lution path is a recent part of the trajectory of candidate
solutions generated during the run of the ES. Considering
the complete trajectory is not the most appropriate choice,
though. Rather, a particular number of steps (amount of
the recent history of the search) should be considered.

Throughout this paper, we employ a (1,5) Evolution Strat-
egy as basic algorithm. That is, in each iteration five candi-
date solutions are generated, each independently in the same
way, namely by adding a random vector to the current can-
didate solution each component of which is chosen i.i.d. ac-
cording to a zero-mean normal distribution with variance σ2.
The best of those five samples becomes the next candidate
solution—irrespective of whether this best of five amounts
to an improvement or not. (CSA is not designed for elitist
selection where the best sample becomes the next candidate
solution only if it is at least as good.) The reason for this
choice is that, according to Beyer [Beyer, 2001, p. 73], for
this so-called comma-selection five samples are most “effec-
tive” (allow maximum progress per sample/f -evaluation)—
given that σ could be adapted optimally. Thus, differences
in the adaptations’ abilities (to choose σ as close to optimal
as possible) should be most noticeable for this choice.

In the following, we denote by “CSA” the original ver-
sion as proposed by Hansen and Ostermeier. Therein σ is
adapted continuously, namely after each iteration of the evo-
lution loop. The deterministic update of the evolution path
p ∈ Rn after the ith iteration works as follows:

p[i+1] := (1− cσ)p[i] +
√
cσ(2− cσ) ·m[i]/σ[i] (1)

where m[i] ∈ Rn denotes mutation vector actually selected
in the ith step. Recall that m[i] is one of the five vectors
each of which was independently chosen according to a zero-
mean multivariate normal distribution with standard devi-
ation σ[i]. Note that the length of such a vector follows a
scaled (by σ) χ-distribution. (We let χ̄ denote the expec-

tation of the χ-distribution.) Initially, p[0] is chosen as the
all-zero vector. The σ-update is done deterministically as
follows:

σ[i+1] := σ[i] · exp

(
cσ
dσ
·
(
|p[i+1]|
χ̄

− 1

))
(2)

In Eqn. (1), the fixed parameter cσ ∈ (0, 1) determines
the weighting between the recent history of the optimiza-
tion and its past in the evolution path p. It is chosen as
1/
√
n as suggested by Hansen and Ostermeier [1996]. Since

(1−1/
√
n)i = 0.5 for i �

√
n · ln 2 (as n grows), the half-live

of a step within the evolution path is roughly 0.5
√
n itera-

tions for small dimensions and roughly 0.7
√
n for large n.

(In fact, this is the reason why we will choose the “phase
length” k as d

√
n e a priori for the simplified versions which

are to be described in the next section.) The fixed param-
eter “dσ” in Eqn. (2) is called “damping factor”. We used
dσ := 0.5 because this leads to a better performance than
dσ ∈ {0.25, 1} for the considered function scenario. Some
sort of interdependence between dσ and cσ appears likely,
and moreover, an optimal choice may depend (among oth-
ers) on the function to be optimized.
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3. FOUR CSA-DERIVATIVES
In this section we introduce four simplifications of the orig-

inal CSA, created by subsequently departing further and
further from the defining equations (1) and (2). The first
simplification (common to all four variants) will be to par-
tition the course of the optimization into phases of a fixed
length. Such a partitioning of the process has turned out
useful in former analysis (cf. Droste et al. [2002], Jägersküp-
per [2007] for instance). Thus, all variants to be introduced
will use phases (with a fixed length), after each of which
σ is adapted—solely depending on what happened during
the phase, respectively. The second simplification to be in-
troduced is as follows: Rather than comparing the length
of the displacement (vector) of a phase with the (expected)
length that would be observed if the steps in the phase were
orthogonal, the actual correlations of the selected mutation
vectors of a phase in terms of orthogonality are considered
directly and aggregated into a criterion, which we will call
correlation balance.

pCSA. The “p” stands for phased. The run of the ES is
partitioned into phases lasting k := d

√
ne steps, each. (This

phase length will also be used for the following three algo-
rithms.) In each phase, the vector corresponding to the total
movement (in the search space) of the steps in this phase is
considered. The length of this displacement vector is com-
pared to ` :=

√
k · σ · χ̄, where χ̄ is the expectation of the

χ-distribution with n degrees of freedom. Note that ` equals
the diameter of a k-dimensional cube with edges of length
σ · χ̄, and that σ · χ̄ equals the expected step length used
in the phase. Thus, if all k steps had the expected length,
and if they were completely orthogonal, then the length of
the displacement vector in such a phase would just be equal
to `. Thus, depending on whether the actual length is larger
[or smaller] than `, σ is considered as too small (because of
positive correlation) [resp. as too large (because of negative
correlation)]. Then σ is scaled up [resp. down] by a fixed
scaling factor larger than one [resp. its reciprocal]. The fac-

tor 1 + 1/n1/4 by which the σ-scaling was actually done was
determined by a parameter scan (cf. Figure 1)—whereas the
phase length k was chosen a priori as d

√
ne (for the reason

confer the discussion in the section on the original CSA). All
in all, pCSA is pretty close to the original CSA.

sCSA. “sCSA” stands for simplified CSA, actually simpli-
fied pCSA. Now, sCSA differs from pCSA in that the actual
lengths of the k steps are considered (rather than the ex-
pected length σ · χ̄ for each step in the phase). Namely, the
squared length of the phase’s displacement vector is com-
pared to the sum s of the squared lengths of the k steps.
If the k steps in a phase were completely orthogonal, then
these two values would be equal (Pythagoras). Thus, if the
squared length of the total movement is larger than s, then
σ is up-scaled; if it is smaller than s, then σ is down-scaled
(as within pCSA, respectively).

CBA2. “CBA”stands for correlation-balance adaptation. Af-
ter each phase, the k vectors that correspond to the k move-
ments in the phase are considered. For each pair of these
k vectors the correlation is calculated, so that we obtain(
k
2

)
= k(k−1)/2 correlation values (actually, the inner prod-

ucts suffice). If the majority of these values are positive
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Figure 1: Parameter scan of σ-scaling factors for
pCSA over 2 to 1024 dimensions. Number of steps
devided by dimensionality. The solid line represents
the chosen factor 1 + 1/n1/4.

[negative], the σ used in the respective phase is considered
as too small [resp. as too large]. Hence, σ is scaled up [resp.
down] after the phase by some predefined factor larger than
one [resp. by the reciprocal of this factor]. A parameter scan
has shown that this scaling factor should again be chosen as
1 + 1/n1/4—just as for pCSA, cf. Fig. 1 and Fig. 2. (The
name CBA2 has historical reasons; the first CBA-design con-
sidered only the k− 1 sequent pairs of vectors instead of all(
k
2

)
pairs.)

CBA3. CBA3 differs from CBA2 as follows: Rather than
considering just the signs of the

(
k
2

)
correlation values, the

actual values are added up1. Then, depending on whether
their sum is positive [negative], σ is scaled up [resp. down]
in the same way as in CBA2. The idea behind this modi-
fication is that this sum aggregates more information than
the criterion in CBA2. (More information, however, need
not necessarily be advantageous. In this case, however, it is
as we will see.)

4. DISCUSSION OF THE CSA-VARIANTS
First of all note that up to 4-dimensional search space—

actually, when the phase length k = d
√
ne equals two—the

criteria in CBA2, CBA3, and sCSA are equivalent.
The partition of the course of the optimization into phases

(here, of the same length) in each of which σ is kept un-
changed and after each of which σ is deterministically up-
dated solely depending on what happened in that phase,
enables the following line of reasoning:

First, one shows that the adaptation is such that after
each phase the “right” decision is made (with high probabil-

1correlation of vectors x and y is <x,y>
|x|·|y| , equals cos (x∠y)
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Figure 2: Parameter scan of σ-scaling factors for
CBA2 including the chosen factor 1 + 1/n1/4.

ity), i.e., the changes of σ are such that the step lengths are
better [at least as well] adapted to the current optimization
situation than [as] in the previous phase. Second, one shows
that this results in σ being (actually, becoming and remain-
ing) close to optimal, and that each such phase causes a cer-
tain reduction of the approximation error (in expectation or
with a certain probability), so that the (expected) number
of phases required for a predefined reduction of the approxi-
mation error can be estimated. Third, one has to show that
the probability of a “wrong” decision is small enough, such
that a sequence of wrong decisions is almost never observed
(at least a very rare event). Finally, one has to show that
when something does go wrong in a phase, then this phase is
only moderately harmful, i.e., if (at all) the approximation
error is increased, then only by a small amount (again with
very high probability).

In contrast, for the original CSA, all steps are represented
in the evolution path. So, in the case a very bad step hap-
pens (which might be a rare event), this bad step may in-
fluence the adaptation for a long period, depending on how
bad it was (and on the parameters cσ and dσ, of course). To
cover such effects in a probabilistic analysis is much more
involving than the line of reasoning about phases described
above.

Note that, because of the random direction of the trial
steps, the probability that two steps are exactly orthogonal
is zero. Thus, two steps are a.s. either positively or nega-
tively correlated so that in a phase of k steps the number of
positively correlated pairs of steps is a.s. equal to

(
k
2

)
minus

the number of negatively correlated pairs. Thus, for a theo-
retical analysis of CBA2, for each phase

(
k
2

)
0-1-variables can

be defined. Each of these indicator variables tells us whether
the respective pair of steps is positively correlated (“1”) or
not (“0”). Recall that in CBA2 the σ-adaptation is based on
whether the sum of these indicator variables is larger than

(
k
2

)
/2 or smaller. There are strong bounds on the deviation

of the actual sum of 0-1-variables from the expected sum, in
particular when the variables are independent—which is not
the case in CBA2, unfortunately; but this can be overcome
by stochastic dominance arguments.

All in all, CBA2 is a candidate for a theoretical analysis
of the runtime of an ES using this simplified variant of CSA.
Of course, it was an open question, whether CBA2 performs
well compared to the original CSA and also compared to
the other three simplifications thereof. Thus, we decided
for an experimental comparison. Note that the number of
f -evaluations (which is five times the number of iterations)
is the only performance measure which will be considered
in the following comparison of the five σ-adaptation mecha-
nisms.

5. EXPERIMENTAL INVESTIGATION OF
THE CSA-VARIANTS

5.1 Runtime and mutation strength
To find out the potentials of the previously described σ-

adaptation mechanisms, we focus on the simplest unimodal
function scenario, namely the minimization of the distance
from a fixed point. This is equivalent to the minimization
of a perfectly conditioned positive definite quadratic form.
One of these functions, namely x 7→ x>Ix =

∑n
i=1 xi

2, is
very often considered in EC and has been named Sphere
(level sets of such functions form hyper-spheres).

Experiment. Do the four proposed CSA-derivatives per-
form similar to the original CSA?

Pre-experimental planning. In addition to the adaptation
rule and the phase length, the scaling factor by which σ is
increased or decreased after a phase had to be fixed. Af-
ter some testing we decided to apply the factor 1 + 1/n1/4,
which has been determined for pCSA and CBA2 by means
of parameter scans (Figure 1), also for sCSA and CBA3.

Task. The hypothesis is that the five σ-adaptation mecha-
nisms perform equally well in terms of number of iterations.
As the data can not be expected to be normally distributed,
we compare two variants, namely their runtimes, by the
Wilcoxon rank-sum test (as implemented by “wilcox.test” in
“R”), where a p-value of 0.05 or less indicates a significant
difference, i.e, we reject the hypothesis of equal performance.

Setup. The initial distance from the optimum is 220 and the
stopping criterion is a distance of less than 1 from the op-
timum/origin, i.e., we measure the number of iterations to
halve the approximation error in the search space 20 times.
The initial σ is set to 220 · 1.225/n in each case. We in-
vestigate ten search-space dimensions, namely n = 2i for
i ∈ {1, 2, . . . , 10}. Each of the five σ-adaptation mecha-
nisms is run 1001 times. (101 runs for each σ-scaling factor
in the parameter scans; Fig. 1 and Fig. 2).

Results. Figure 3 displays median runtimes and hinges for
four of the five CSA-variants. The lower and upper hinges
refer to the lower quartile (25th percentile) and the upper
quartile (75th percentile), respectively. Although CBA3 and
sCSA (green in Figure 3) differ for a phase length k ≥ 3, they
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Figure 4: Normalized σ (w.r.t. dimensionality and
distance from optimum) in a typical run (i.e. median
runtime) on 2-dimensional (S) Sphere Problem

cannot be visually distinguished here. Unfortunately, it is
an open question why.

Additionally, we depict the σ-adaptation within typical
runs (i.e. median runtime) in the Figures 4, 5, and 6. Note
that σ is considered well-chosen (after normalization) if con-
tained within the two horizontal lines; the lines correspond
to a normalized σ of 1.0 (blue) and 2.0 (red).

Observations. Independent of the search-space dimension,
i.e. for all ten dimensions investigated (namely dimension
n = 2i for i ∈ {1, . . . , 10}):

1. The original CSA performs significantly better than
each of the four CSA-derivatives proposed.

2. The test cannot tell a significant difference between
CBA3 and sCSA.

3. CBA2 performs significantly worse than pCSA, which
already performs significantly worse than CSA.

Furthermore, except for small dimensions, CBA2 performs
significantly worse than CBA3 and sCSA. Thus, for prac-
tically relevant and large dimensions, CBA2 is significantly
worse than the four other CSA-variants. (Recall that the cri-
teria in CBA2, CBA3, and sCSA are equivalent for a phase
length k = 2, so that observing a significant difference in the
2D and 4D experiments would be a surprise.)

All in all, for small dimensions we have CSA followed by
pCSA and than the group with sCSA, CBA3 and CBA2;
whereas for large dimensions, we have CSA followed by the
group containing pCSA, sCSA, CBA3, and finally CBA2 as
the worst, cf. Figure 3. Actually, transferring the continuous
CSA-mechanism to a phased one (pCSA) does not lead to
an enormous performance loss (cf. Fig. 4 and 7).

Discussion. Despite the reported findings, we attest that
CBA2 does not fail, it ensures a reliable σ-adaptation—it is
merely worse than the others. It particular, we are interested
in how much worse CBA2 is compared to the original CSA.
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Figure 5: Normalized σ in a typical run of each vari-
ant on 16-dimensional (M) Sphere

Actually, for 2-dimensional search space, when we multiply
the number of steps in each of the 1001 CSA-runs by 3,
the Wilcoxon test can no longer tell us a significant differ-
ence between CSA and CBA2 (p-value increases to 0.85). In
four dimensions, the test cannot tell a significant difference
for a factor of 2.3 (p-value 0.78), and for eight dimensions
the factor 1.618 does not lead to a significant difference (p-
value 0.095). Since the p-values drop below 5% again when
the fators are increased, resepectively, we may conclude that
CBA2 is slower than CSA by roughly a factor of three in two
dimensions, by roughly a factor of 2.3 in four dimensions,
and by roughly 62% in eight dimensions. As can be seen
in Figure 7, then the factor between CSA and CBA2 drops
almost linearly down to roughly 13% for 1024-dimensional
search space (p-value 0.75 when multiplying each of the 1001
runtimes of CSA by 1.13). So, at least concerning the run-
times pCSA behaves much more like the original CSA than
CBA2, cf. Figure 7 again.

Concerning the obtained performance differences, we as-
sume that CBA2—the only variant for which a theoretical
analysis seems currently feasible—still works reasonably well
to legitimate such an analysis, at least for the practically rel-
evant (M) and large (L) dimensions. In the M+L domain,
the number of f -evaluations to spend is increased by a maxi-
mum of 62%, getting less for larger dimensions down to 13%
for 1024D.

Clearly, the differences in the runtimes are due to differ-
ences in the ability to adapt σ. Therefore, we consider the
normalized σ∗, i.e., σ times the dimensionality divided by
the distance from the optimum point. Note that, for the sim-
ple function scenario considered, for each dimension there is
a unique σ∗ resulting in maximum expected reduction of the
approximation error per step. Figures 4, 5, and 6 show the
course of σ∗ for each of the five CSA-variants for a typical
run in dimension 2 (very small), 16 (of practical interest),
and 1024 (very large), respectively. In the following table,
the log-mean of σ∗, i. e. exp(mean(lnσ∗)), for these runs
are given (together with exp(std(lnσ∗))).

507



1 1 1 1 1 1 1 1 1 1

2 4 6 8 10

20
40

60
80

10
0

log2(dim)

up
pe

r/l
ow

er
 h

in
ge

s,
 m

ed
ia

n=
2

2 2 2 2 2 2 2 2 2 2

3
3

3 3 3 3 3 3 3 31 1 1 1 1 1 1 1 1 1

2 4 6 8 10

20
40

60
80

10
0

log2(dim)

up
pe

r/l
ow

er
 h

in
ge

s,
 m

ed
ia

n=
2

2 2 2 2 2 2 2 2 2 2

3
3

3 3 3 3 3 3 3 3

1

1

1
1

1 1 1 1 1 1

2 4 6 8 10

20
40

60
80

10
0

log2(dim)

up
pe

r/l
ow

er
 h

in
ge

s,
 m

ed
ia

n=
2 2

2

2

2
2

2
2 2 2 2

3

3

3

3
3

3
3 3 3 3

1
1 1 1 1 1 1 1 1 1

2 4 6 8 10

20
40

60
80

10
0

log2(dim)

up
pe

r/l
ow

er
 h

in
ge

s,
 m

ed
ia

n=
2

2
2 2 2 2 2 2 2 2 2

3
3 3 3

3 3
3 3 3 3

csa
scsa
pcsa

1 1 1 1 1 1 1 1 1 1

2 4 6 8 10

20
40

60
80

10
0

log2(dim)

up
pe

r/l
ow

er
 h

in
ge

s,
 m

ed
ia

n=
2

2 2 2 2 2 2 2 2 2 2

3
3

3 3 3 3 3 3 3 31 1 1 1 1 1 1 1 1 1

2 4 6 8 10

20
40

60
80

10
0

log2(dim)

up
pe

r/l
ow

er
 h

in
ge

s,
 m

ed
ia

n=
2

2 2 2 2 2 2 2 2 2 2

3
3

3 3 3 3 3 3 3 3

1

1

1
1 1

1
1 1 1 1

2 4 6 8 10

20
40

60
80

10
0

log2(dim)

up
pe

r/l
ow

er
 h

in
ge

s,
 m

ed
ia

n=
2 2

2

2
2 2

2
2 2 2 2

3

3

3
3

3
3

3 3 3
3

1
1 1 1 1 1 1 1 1 1

2 4 6 8 10

20
40

60
80

10
0

log2(dim)

up
pe

r/l
ow

er
 h

in
ge

s,
 m

ed
ia

n=
2

2
2 2 2 2 2 2 2 2 2

3
3 3 3

3 3
3 3 3 3

csa
cba2
pcsa

Figure 3: Number of steps divided by dimensionality for sCSA/pCSA/CSA (left) and CBA2/pCSA/CSA
(right), where (1) lower hinge, (2) median, (3) upper hinge of 1001 runs, respectively. The figure for CBA3
would be virtually congruent with the one for sCSA.
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Figure 6: Normalized σ in a typical run of each vari-
ant on 1024-dimensional (L) Sphere

av.σ∗, dev. 2D 16D 1024D
CSA 1.884, 2.270 1.370, 1.370 1.406, 1.126
pCSA 4.033, 1.928 1.560, 1.534 1.327, 1.335
sCSA 3.260, 1.858 1.711, 1.432 1.298, 1.361
CBA3 3.379, 2.047 1.693, 1.436 1.240, 1.347
CBA2 3.247, 2.167 1.663, 1.568 1.178, 1.463

The unique optimal σ∗ (w.r.t. dimension), however, is hard
to attain, especially for small dimensions, where the formu-
las obtained by Beyer for/in a simplied model do not predict
the true values very well. Simulation is also difficult, as the
response surface is very flat and noisy near the optimum.

Concerning the average σ∗ in the table, obviously in 16-
and 1024-dimensional space the original CSA adapts σ much
more smoothly than the four derivatives, which is clearly due
to the phases (most obvious in Fig. 6). For these dimension,
the original CSA indeed shows smaller deviations from the
average σ∗ than the other four CSA-variants. Taking CSA
as a reference, besides a larger fluctuation, for 16D the four
proposed CSA-derivatives adapt σ such that it is too large
on average, whereas in 1024D, they adapt σ such that it is
too small on average. For 16D, which we consider practically
relevant, one clearly sees that sCSA, CBA3, and CBA2 are
quite similar w.r.t. the average σ∗. This perfectly fits with
the observations made for the runtimes. Moreover, for 16D
pCSA lies right between this group and CSA, which again
fits perfectly with the runtimes. For 1024D, CBA2 has the
smallest average σ∗ as well as the largest deviations, which
again fits its relatively bad performance w.r.t. the runtimes.
For 2D, however, correlations between the average σ∗ and
the runtimes can hardly be found, which becomes especially
clear for pCSA. Actually, for 2D the runs are quite short and,
in addition, the step-lengths can deviate strongly from the
expectation σ · χ̄, so that the data might just be too noisy.
Alternatively, there might be a completely different reason
for the good performance of pCSA in 2D, which would be
very interesting to reveal.

5.2 Residual approx. error in case of noise
Evolution strategies have turned out useful for optimiza-

tion scenarios where function evaluation is disturbed by noise,
cf. Beyer and Arnold [2003a]. Therefore, we now investigate
how well the four proposed CSA-derivatives manage approx-
imating the optimum in the presence of noise. CBA3, sCSA,
and pCSA are such that (after each phase) with probability
one σ is either scaled up or scaled down. For CBA2, if

(
k
2

)
is odd (k is the number of steps in a phase which was cho-
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Figure 7: Factors beween (1) lower hinge, (2) me-
dian, (3) upper hinge of the 1001 runtimes of CSA
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sen as d
√
n e), then after a phase σ is surely either scaled

up or scaled down. Only if
(
k
2

)
is even, CBA2 may leave σ

unchanged after a phase (namely when the number of posi-
tively correlated step-pairs equals the number of negatively
correlated ones). Furthermore, recall that in each of the four
mechanisms the same factor is used for σ-scaling. Thus—
except for CBA2 in the case that

(
k
2

)
is even—the four mech-

anism will behave equivalently on constant functions as well
as under random selection. To find out the potentials of
the four simplified σ-adaptations compared to the original
CSA mechanisms, we focus again on the simplest unimodal
function scenario, namely the minimization of the distance
from a fixed point. Given a search point x ∈ Rn, the black
box returns x 7→

√
x>Ix = ‖x‖ plus a noise-term which is

chosen (independently for each function evaluation) accord-
ing to a normal distribution with zero mean and standard
deviation 1/n.

Experiment. Do the four proposed CSA-derivatives achieve
the same residual approximation error as the original CSA
under noise?

Pre-experimental planning. Actually, the investigations
of the performance in the noiseless case.

Task. The hypothesis: The five σ-adaptation mechanisms
perform equally well in terms of the residual distance from
the optimum point. Therefore, the algorithms are stopped
when there is no improvement in the best-so-far distance
from the optimum for 20n iterations. We pairwise compare
the performance of either two variants, namely their final
distance from the optimum after externally stopping as de-
scribed above, by the Wilcoxon rank-sum test For detecting
a significant difference, we demand a p-value of 0.05 or less,
which enables us to reject the hypothesis of equal perfor-
mance w.r.t. residual approximation error under noise.

Setup. The initial distance from the optimum is 210 (as ap-
posed to 220 in the setting above) and the algorithms are
run until for 20n steps there has been no improvement of
the best-so-far optimum distance. The initial σ is set to
210 · 1.225/n in each case. Each of the five σ-adaptation
mechanisms is run 1001 times. We investigate nine search
space dimensions, namely n = 2i with i ∈ {1, 2, . . . , 9}.

Results. The results are depicted in Figure 8. The figure for
CBA3 would be virtually congruent with the one for sCSA
(green)—again.

Observations. Independent of the search-space dimension,
i.e. for dimension n = 2i for i ∈ {1, . . . , 9}:

1. the test cannot tell a significant difference between
sCSA and CBA3

2. pCSA is significantly better than sCSA and CBA3

Moreover, CSA ends up with a significant smaller residual
distance from the optimum in each comparison except one:
For dimension 2, the test cannot tell a significant difference
between CSA and pCSA. Moreover, when multiplying each
of the 1001 residual distances of CSA by 1.05, CSA is still
significantly better than the four CSA-derivatives in all di-
mensions except when comparing with pCSA for 2D and
4D. When multiplying each of the 1001 residual distances
of CSA by 1.25, however, then CSA is significantly worse
than the four CSA-derivatives for medium and large dimen-
sions. Interestingly, CBA2 is never significantly worse than
sCSA nor than CBA3, which is in contrast to the results
for the runtimes in the noise-free case (there, CBA2 turned
out to be worse than the other four CSA-variants for large
dimensions).

Discussion. For practically relevant and large dimensions,
CSA is significantly better—by at least 5% and at most
25%—than the simplified CSA-derivatives proposed. Fur-
thermore, also for practically relevant and large dimensions,
the four CSA-derivatives proposed here show almost no dif-
ferences (as suggested by the arguments at the beginning
of this section). Thus, we may indeed account the advan-
tage of CSA to the evolution path. Concerning pCSA, how-
ever, there is again surprisingly good performance in small
dimensions—recall that a phase consists of just two steps
in case of 2D and 4D. Actually, this may be due to the
relatively large (average) σ∗-values caused by pCSA which
have been observed in the noise-free case for small dimen-
sions. Larger mutation strengths may cause a slightly better
signal-to-noise ratio when the search gets into the noisy re-
gion, so that a slightly smaller residual distance from the
optimum can be reached.

6. CONCLUSIONS & OUTLOOK
The main aim of this work was to develop a simplified

version of the CSA mechanism: simple enough to enable
theoretical analysis, but still resembling the original one suf-
ficiently enough w.r.t. performance (in a very restricted set-
ting at least). From the experimental results obtained and
the construction details of the four CSA-variants proposed,
we conclude that CBA2 fulfills both criteria. Unfortunately,
the theoretical analysis itself has not been finished yet.
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Figure 8: Residual distance from optimum for CSA and CBA2 (left) and sCSA and pCSA (right) under
noise, where (1) lower, (3) upper hinge, (2) median of 1001 runs

Additionally, some interesting facts have been unveiled.
One of these affects the transfer from continuous to phased
updates. Contrary to our expectation, this modification
does not explain the large runtime differences in small (S)
dimensions. This may rather be due to the observed large
fluctuations in the step-sizes adjusted by the four variants;
CSA step-size curves are obviously much smoother, espe-
cially in high dimensions. Furthermore, it has been found
that the scaling factor for all four variants seems to follow a
double square root (1+1/n1/4) instead of a single square root
function as suggested by results in previous work. Another
interesting, but yet unexplained observation is the similarity
between CBA3 and sCSA. Obviously, the sum of the cosines
of k(k − 1)/2 angles between step vectors resembles very
closely the difference between the sum of the squared single
step lenghts and the squared length of the total displace-
ment.

The investigation of CSA and its variants under noise—
where CBA3 and sCSA behave virtually identically again—
gives raise to another argument in favor of tackling CBA2
theoretically: The performance differences, especially be-
tween CBA2 and CSA, are even smaller under noise.

Currently, we aim at actually performing the theoreti-
cal/probabilistic analysis of CBA2 following the approach
outlined in Section 4. Furthermore, we are going to experi-
mentally review the performance of the four CSA-derivatives
on more complex (actually, less trivial) functions—in com-
parison to the original CSA, but also to classical zeroth-
order/direct-search methods, cf. Kolda et al. [2004].
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