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ABSTRACT
This paper considers self-adaptive (µ/µI , λ)-evolution strate-
gies on the noisy sharp ridge. The evolution strategy (ES)
is treated as a dynamical system using the so-called evolu-
tion equations to model the ES’s behavior. The approach
requires the determination of the one-generational expected
changes of the state variables – the progress measures. For
the analysis, the stationary state behavior of the ES on the
sharp ridge is considered. Contrary to the usual perception
of noise, it is shown that noise has a positive influence on the
performance. An explanation for this astonishing behavior
is given and conditions for the usefulness of noise in other
fitness landscapes are discussed.

Categories and Subject Descriptors
G.1.6 [Optimization]: Unconstrained Optimization; I.2.8
[Problem Solving, Control Methods, and Search]:
Heuristic Methods

General Terms
Algorithms, Performance

Keywords
Evolution strategies, self-adaptation, dynamical systems, ridge
functions, noise

1. INTRODUCTION
Usually, noise is seen to have a detrimental influence on

the outcome of an evolutionary process. On the sphere, for
example, noise may cause a residual location error stopping
the evolutionary algorithm from reaching its goal – the ac-
tual optimizer (see e.g. [4]). Further problems may include a
loss of step-size control [12]. Surveys on noisy optimization
and evolutionary algorithms can be found for example in
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[15]. To our knowledge, there are only three papers [16, 20,
7] which come to a different interpretation of the influence
of noise. Bäck and Hammel [7] performed an experimental
investigation of the effects of noise on three test functions.
They found that low levels of noise w.r.t. the fitness do not
influence the performance. Furthermore, in the case of one
test function, a generalized Ackley function, small noise lev-
els were found to lead to a greater convergence reliability.
Levitan and Kauffman investigated adaptive walks under
noise – simulating single agent hill-climbing walks on NK-
landscapes [16]. They too found that small noise levels might
be helpful. In [20], Rana et al. considered local and genetic
search algorithms under noisy fitness evaluations on five test
functions. Conducting a series of experiments, they identi-
fied two effects: A positive “soft annealing effect” meaning
that noise smoothes the perceived fitness landscape which
enables an algorithm to escape local optima and a negative
effect of creating false optima. They found that it depends
on the fitness function whether noise leads to positive or
negative effects and conjectured that on simple fitness land-
scapes noise has little positive effects or even deteriorates
the performance.

This paper is devoted to an analysis of mutative self-
adaptation under noisy fitness evaluations. The adaptation
of the mutation strength is a necessity in real-valued search
spaces. To this end, several methods, e.g. the 1/5th rule [21]
or the cumulative step-size and covariance matrix adapta-
tion [19], have been introduced. One of the methods applied
is self-adaptation as introduced by Rechenberg and Schwe-
fel [21, 22]. The main principle of self-adaptation consists
in treating the strategy parameters – the mutation strength
in this case – in the same manner as the object parameters.
They become part of an individual’s genome and are evolved
alongside with the object parameters.

In this paper, we consider self-adaptation on the noisy
sharp ridge. Ridge functions are relatively simple test func-
tions and can be seen as an extension of the sphere model.
However, they have practical importance since evolution-
ary algorithms are often required to follow locally ridge-like
function topologies [23]. Although the sharp ridge is a rel-
atively simple function, it poses a problem for self-adaptive
evolution strategies and other evolutionary algorithms. As
noted by Herdy, they are prone to stagnation on the sharp
ridge [14]. Up to now, several analyses of adaptation mech-
anisms on ridge functions have been presented starting with
[14]. Most papers, however, focus on cumulative step-size
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adaptation. Arnold, for instance, presented an analysis of
intermediate evolution strategies on non-noisy ridge func-
tions [3]. Arnold and Beyer [5] focused on CSA-ES on the
noisy parabolic ridge. Lunacek and Whitley [17] considered
self-adaptive (1, λ)-ES on the non-noisy parabolic and sharp
ridge – gathering experimental data to test several hypothe-
ses on the working principles of evolution strategies. In [6],
Arnold and MacLeod compared several adaptation mecha-
nisms on ridge functions. Self-Adaptation is included, but
in a different form than in this paper.

This paper focuses on self-adaptation of intermediate evo-
lution strategies on the noisy sharp ridge. It will be shown
that the noisy sharp ridge is an example for an optimization
problem where noise leads to an improvement. The paper is
organized as follows. First, the fitness function and the noise
model are presented. Afterwards, the working principles of
self-adaptive intermediate evolution strategies are described.
In the following section, the analysis approach is introduced
and applied to the noisy sharp ridge. The results obtained
are then compared with the results from experiments.

1.1 The Noisy Sharp Ridge
Ridge functions F : R

N → R are defined as follows

F (y) = y1 − d
“

N
X

i=2

y2
i

”α/2

(1)

with parameters d and α. The parameter d weighs the loss
part of the ridge function whereas the parameter α deter-
mines the topology of the fitness landscape. A ridge function
with α = 1 is called a sharp ridge. Ridge functions do not
have a finite optimum. An algorithm is therefore required
to increase the fitness perpetually. As (1) shows, there are
two ways to improve the fitness: On the one hand, the linear
gain part can be increased which equals a movement parallel
to the ridge axis. On the other hand, the loss components
can be decreased which equals a movement towards the ridge
axis.

In the following, we consider the effects of additive nor-
mally distributed noise with zero mean and constant stan-
dard deviation (noise strength) σǫ. The fitness that is used
in the evaluation of an offspring is thus given by

F̃ (y) = y1 − d
“

N
X

i=2

y2
i

”α/2

+ σǫN (0, 1) (2)

with N (0, 1) denoting a standard normally distributed ran-
dom variable. In the following, two new variables are in-
troduced to simplify the notations in (1) and (2). For the
remainder of the paper let x := y1 and R := (y2, . . . , yN )T.
The equations – for instance (2) – change to

F̃ (x,R) = x− d
“

RTR
”α/2

+ σǫN (0, 1)

= x− dRα + σǫN (0, 1) (3)

with R := ‖R‖.

1.2 The Self-Adaptive Intermediate Evolution
Strategy

In this paper, self-adaptive intermediate (µ/µI , λ) evolu-
tion strategies are considered. In the following, the basic

working principle is described. Let y
(g)
m denote the object

vector and ς
(g)
m the mutation strength of the mth parent in

generation g. Based on a µ elemental parent population

(ym, ςm)
(g)
m=1,...,µ, λ offspring are created by variation:

1. First, the mutation strength is varied. In this pa-
per, intermediate ES are considered which also ap-
ply arithmetic recombination in the case of the mu-
tation strengths and compute the mean 〈ς(g)〉 of the µ

parental mutation strengths ς
(g)
m . The mutation strength

is then mutated which is realized by a multiplication
with a random variable ǫ

ςl = 〈ς(g)〉ǫ. (4)

A common choice for ǫ is a log-normally distributed
random variable (see e.g. [13]). In this case, the ran-
dom variable obeys ǫ ∼ exp(τN (0, 1)). The parameter
τ is called learning parameter.

2. The object parameters are changed afterwards. First,
recombination takes place and the centroid 〈y(g)〉 of

the µ parental object vectors y
(g)
m is computed. The

object parameters are then mutated by adding a nor-
mally distributed random vector with zero mean and
the newly created mutation strength ςl

yl = 〈y(g)〉 + ςlN(0, 1). (5)

Finally, based on the apparent fitness F̃ , (3), the µ best
offspring are chosen for the succeeding parental population.

1.3 Modeling the Evolution Strategy: The ES
as a Dynamical System

Due to the form of the undisturbed fitness function f(x,R)
=x−dR, three variables are of interest: the x-component de-
noting the change parallel to the ridge axis, the lateral com-
ponent R or its length R measuring the (N−1)-dimensional
distance to the ridge, and the mutation strength ς. There-
fore, the ES’s time-dynamical behavior can be characterized
by three state variables.

In the following, we follow the approach first introduced
by Beyer in [8] and consider the ES as a dynamical system.
This approach aims at modeling the change of a state vari-
able u(g) from one generation to the next. This change can
be divided into an expected or deterministic change and a
random change ǫu

u(g+1) = u(g) + E[u(g+1) − u(g)] + ǫu(u
(g)). (6)

Note that (6) neglects dependencies of u on the present state
of other variables. To keep the notations short, these de-
pendencies are only explicitely denoted when needed. Let
us first address the expected changes. In the case of the
state variables in the object parameters space, these are
termed progress rates and denoted as ϕx := E[x(g+1) − x(g)]

and ϕR := E[R(g) − R(g+1)]. In the case of the muta-
tion strength, the so-called self-adaptation response function
(SAR) ψ must be obtained. Note that due to the multiplica-
tive change, the change of the mutation strength in (4) is
modeled by

ς(g+1) = ς(g)E
h ς(g+1) − ς(g)

ς(g)

i

+ ς(g)ǫσ

=: ς(g)ψ(ς(g)) + ς(g)ǫσ (7)

and ψ denotes thus the expected relative change of the ran-
dom variable ψ := E[(ς(g+1)−ς(g))/ς(g)]. In a first approach,
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the random changes in (6) are neglected leading to the so-
called deterministic evolution equations. The quality of the
results obtained in this manner must be evaluated by ex-
periments. While the approach is strongly simplifying the
stochastic system’s behavior, it will turn out that it serves
quite well to extract the main characteristics of the ES’s
behavior in the stationary state.

As mentioned before, the deterministic evolution equa-
tions are used to investigate the change of the state variables
x, R, and ς over time leading to

x(g+1) = x(g) + ϕx(〈ς(g)〉, σǫ) (8)

R(g+1) = R(g) − ϕR(R(g), 〈ς(g)〉, σǫ) (9)

〈ς(g+1)〉 = 〈ς(g)〉
“

1 + ψ(R(g), 〈ς(g)〉, σǫ)
”

. (10)

In the following, the notations in (8) - (10) are simplified.

First, we shorten the notations setting R := R(g), r :=
R(g+1), and σ := 〈ς(g)〉. Afterwards, similar normalization
as in the sphere model case are introduced: ϕ∗

x := Nϕx/R,
ϕ∗

R := NϕR/R, σ∗ := Nσ/R, and σ∗

ǫ := Nσǫ/R. In the fol-
lowing, the main characteristics of the normalized progress
measures are shortly discussed.

The progress rate ϕ∗

x = NE[x(g+1)−x(g)]/R was obtained
for τ = 0 and N → ∞ (see e.g. [3, 6] for a derivation) as

ϕ∗

x(σ
∗) =

σ∗2

p

(1 + d2)σ∗2 + σ∗
ǫ
2
cµ/µ,λ. (11)

Note, there is no influence of the value of x on its own ex-
pected change.

The progress rate ϕ∗

R = NE[R(g) −R(g+1)]/R(g), i.e.,

ϕ∗

R(σ∗) =
dσ∗2

p

(1 + d2)σ∗2 + σ∗
ǫ
2
cµ/µ,λ − σ∗2

2µ
(12)

consists of a gain and a quadratic loss part and can be inter-
preted as a function of the mutation strength. Again, (12)
is determined for N → ∞ and τ = 0. The ridge parameter
d and noise strength σ∗

ǫ influence the gain part whereas the
loss part is only influenced by the parent number µ.

The SAR ψ = E[(〈ς∗(g+1)〉 − 〈ς∗(g)〉)/〈ς∗(g)〉],

ψ(σ∗) = τ 2

„

1/2 + e1,1µ,λ
(1 + d2)σ∗2

(1 + d2)σ∗2 + σ∗
ǫ
2

−cµ/µ,λ
dσ∗2

p

(1 + d2)σ∗2 + σ∗
ǫ

2

«

(13)

was determined under the assumption τ ≪ 1 and for N →
∞. In the appendix, a short sketch of the derivation of the
SAR is provided. It should be noted that the prediction
quality of (13) deteriorates relatively fast with increasing σ∗

for smaller values of N . The progress coefficients e1,1µ,λ and
cµ/µ,λ in (11) to (13) are given by

eα,βµ,λ =
λ− µ

√
2π

α+1

 

λ

µ

!

×
Z

∞

−∞

tβe−
α+1

2
t2Φ(t)λ−µ−1

“

1 − Φ(t)
”µ−α

dt(14)

with cµ/µ,λ := e1,0µ,λ (see [10, p. 172]).
Since the required functions are given, the analysis can be

started. First note that the evolution of the x-component

does not influence the evolution of R and σ∗. Instead, the
evolution parallel to the axis is governed by the evolution
of the remaining two state variables. Therefore, it suffices
to consider the system in R and σ∗. Note, 〈ς∗(g+1)〉 :=

N〈ς∗(g+1)〉/r with r = R(1 − ϕ∗

R/N). Using (9) and (10),
the evolution equations read therefore

 

r

〈ς∗(g+1)〉

!

=

0

@

R
“

1 − ϕ∗

R(σ∗, σ∗

ǫ )/N
”

σ∗

“

1+ψ(σ∗,σ∗

ǫ )

1−ϕ∗

R(σ∗,σ∗

ǫ )/N

”

1

A . (15)

In (15), a third g-dependent variable appears: The normal-

ized noise strength σ∗

ǫ
(g) which changes with R(g). However,

the (direct) influence of R(g) can be eliminated leading to
the new evolution equation

σ∗

ǫ
(g+1)

=
σ∗

ǫ

1 − ϕ∗

R(σ∗, σ∗
ǫ )/N

. (16)

Due to the normalization, the evolution of R neither influ-
ences the evolution of the mutation strength nor the evo-
lution of the noise strength. Its evolution can be decou-
pled and it suffices to analyze the two-dimensional evolution
equations

 

σ∗

ǫ
(g+1)

〈ς∗(g+1)〉

!

=

0

@

σ∗

ǫ
1−ϕ∗

R
(σ∗,σ∗

ǫ )/N

σ∗

“

1+ψ(σ∗,σ∗

ǫ )

1−ϕ∗

R(σ∗,σ∗

ǫ )/N

”

1

A . (17)

For the remainder of this paper, the evolution equations (17)
are used.

2. A STATIONARY STATE
Evolution strategies show two kind of behaviors on the

undisturbed sharp ridge. Depending on the size of the d-
parameter, they either converge towards the axis or they
diverge from the axis. The former situation is usually con-
nected with a stagnation of the evolutionary process since
the ES reduces the mutation strength in the approach of
the axis. Noise changes the situation: If the fitness evalu-
ations are overlaid with additive noise with constant noise
strength, the ES cannot converge completely to the axis but
fluctuates eventually at a distance to the axis. The evolu-
tion equations (17) can be used to determine the stationary
state.

2.1 Determining Stationary States
Stationary points of (17) givem as (σ∗

ǫ
(g+1), 〈ς∗(g+1)〉)T =

(σ∗

ǫ , σ
∗)T can be determined in a straightforward way. The

stationary solution of the evolution equation for σ∗

ǫ in (17)
requires the progress rate (12) to be zero which results in
two stationarity conditions

ς∗stat1 = 0
_

q

(1 + d2)ς∗stat2
2 + σ∗

ǫ
2 = 2µcµ/µ,λd. (18)

Therefore, the task is to find solutions of (18) which are also
stationary points for the evolution of the mutation strength
in (17). It can be shown that a stationary state of the system
(17) is given by

 

σ∗

ǫ stat1

ς∗stat1

!

=

 

c

0

!

(19)
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with c ∈ R, c ≥ 0 or by

 

σ∗

ǫ stat

ς∗stat

!

=

0

B

B

B

@

2dµcµ/µ,λ

s

d2(4µc2
µ/µ,λ

−2e
1,1
µ,λ

−1)−2e
1,1
µ,λ

−1

d2(4µc2
µ/µ,λ

−2e
1,1
µ,λ

)−2e
1,1
µ,λ

2dµcµ/µ,λ
r

d2(4µc2
µ/µ,λ

−2e
1,1
µ,λ

)−2e
1,1
µ,λ

1

C

C

C

A

. (20)

Note, the stationary mutation strength ς∗stat goes to zero

for d → 0 and to 2µcµ/µ,λ/
q

4µc2µ/µ,λ − 2e1,1µ,λ for d → ∞.

The normalized noise strength behaves in accordance to d:
For d → 0, σ∗

ǫ stat(d) → 0 and σ∗

ǫ stat(d) → ∞ for d → ∞.
Both variables are completely determined by the population
parameter µ and λ and of course by the ridge parameter d.

The noise effectively stops the ES from approaching the
ridge axis arbitrarily close. Using (20),

Rstat =
Nσǫ

2dµcµ/µ,λ

×

v

u

u

t

d2(4µc2µ/µ,λ − 2e1,1µ,λ) − 2e1,1µ,λ

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1) − 2e1,1µ,λ − 1
(21)

is derived as the stationary distance to the axis.
As (19) and (20) show, system (17) comes to a halt either

by a loss of step-size control in an arbitrary distance to the
axis (19) or by attaining stationary values for the mutation
strength and the distance.

The question remains under which conditions the latter
stationary state exists. A closer look at (20) reveals that the
weighting constant d is decisive w.r.t. µ and λ. Let µ ≤ λ/2.
The stationary state is only defined for constants d which
fulfill d ≥ dcrit = [(2e1,1µ,λ + 1)/(4µc2µ/µ,λ − 2e1,1µ,λ − 1)](1/2).
This critical d-value has been encountered in the case of the
undisturbed ridge [18]. There it decided about convergence
or divergence of the ES to the axis. The reason for the reap-
pearance is that only for d > dcrit, the ES moves towards
the axis at all. In the case of d < dcrit, the distance to
the axis and the mutation strength enlarge. Since the noise
strength remains constant, it gradually looses its influence
until the ES behaves as if it were optimizing the noise-free
ridge. The constraint µ ≤ λ/2 is sufficient but not neces-
sary. The equations generally hold unless µ ≈ λ but a sharp
boundary cannot be given.

Let us sum up our findings. Let us assume that the ES
starts far away from the ridge axis. For d > dcrit, the ES
moves towards the ridge axis as in the undisturbed case.
Contrary to its behavior in the noise-free case, however, it
converges to a stationary state that has a well-defined dis-
tance to the axis. The evolution of R comes to a halt on
average and the ES travels parallel to the axis direction.

2.2 On the Beneficial Influence of Noise
Now, we are at the position to discuss the influence of

noise on the performance. To this end, the stationary progress
rate parallel to the axis is determined using (20) and the sec-
ond condition in (18)

ϕ∗

xstat =
ς∗stat

2

2µd
. (22)

As the normalized stationary mutation strength, the nor-
malized stationary progress rate depends only on the sta-
tionary mutation strength in (20), the constant d, and on
the population parameters.
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Figure 1: The stationary noise strength (20) and
experimental results as functions of µ.

The non-normalized progress parallel to the ridge axis is
obtained by plugging (20) and (21) into (22) as

ϕstx (σǫ) = σǫcµ/µ,λ

s

1

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1) − 2e1,1µ,λ − 1

×
s

1

d2(4µc2
µ/µ,λ

− 2e1,1µ,λ) − 2e1,1µ,λ
(23)

The non-normalized progress rate increases linearly with the
noise strength – a behavior that also holds for the non-
normalized mutation strength

ςstat =
σǫ

q

d2(4µc2µ/µ,λ − 2e1,1µ,λ − 1) − (2e1,1µ,λ + 1)
. (24)

As (23) and (24) reveal, noise improves the performance of
the ES. The positive influence of the noise can be traced
back to the general behavior of the ES on the sharp ridge.
If the ES is far away from the ridge axis the influence of the
noise is relatively small in comparison to that of R. Pro-
vided d > dcrit, the ES starts approaching the axis but
is hindered in the convergence by the noise. Higher noise
strengths result in larger distances to the axis and in larger
stationary mutation strengths. Larger mutation strengths
are connected with higher expected gains on the ridge axis.
On the sharp ridge, therefore, noise with a constant stan-
dard deviation effectively stops the ES from optimizing the
contained sphere model, i.e., the loss part of the ridge func-
tion, and enforces a more significant gain parallel to the axis.
This only holds for sufficiently large ridge parameters d.

If d is too small, the ridge is not being tracked and a diver-
gence of the distance occurs. The distance R increases which
lessens the (relative) influence of the noise. In this case, the
ES will gradually start to behave as if it were optimizing the
undisturbed sharp ridge – striding away from the axis with
a negative progress rate ϕR – but with an overall positive
quality change, i.e., the gain parallel to the axis surpasses
the loss due to the distances’ increase. In short, noise either
soon looses its influence or has an actual positive influence
as it keeps the ES from optimizing only the sphere part.

2.3 Comparison with Experiments
Figures 1 - 3 show a comparison between the normalized

stationary values (20) and (22) and experimental data for
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Figure 2: The stationary progress rate (22), the ap-
proximation (27) (thin grey line), and experimental
results as functions of µ.

three search space dimensionalities N = 30, N = 100, and
N = 500. The results for N = 30 are denoted by dots, those
for N = 100 by squares, whereas the results for N = 500 are
given by diamonds. The constant d was set to d = 5. The
experimental results were averaged over several runs with
different choices of σǫ with σǫ/N = 1, 2, 3, and 5. In the
case of N = 30 each data point was sampled over 100, 000
generations for each noise strength and then averaged over
all noise strengths, i.e., over a total of 4 × 100, 000 genera-
tions. For N = 100 and N = 500 4 × 200, 000 generations
were used. The prediction quality improves with the search
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Figure 3: The stationary mutation strength (20),
the approximation (25) (thin grey line), and exper-
imental results as functions of µ.

space dimensionality with the exception of the stationary
mutation strength in (20), Fig. 3. In this case, the agree-
ment is good even for the lower dimensional search space
N = 30 and does not improve visibly if N increases. It
can be seen though that (20) tends to overestimate the sta-
tionary mutation strength if the parent number is relatively
small. This probably causes in turn the greater deviations of
(22) from the experimental progress rates for these µ values
(see Fig. 2). While the agreement of (22) with the experi-
ments is quite good for large N in general, the experimental
results for µ = 1 and µ = 2 are far lower than predicted.
Figures 4 compares the non-normalized values (21), (23),
and (24) with the results of experiments. The results for

N = 30 are denoted by dots, those for N = 100 by squares,
whereas the results for N = 500 are given by diamonds.
The search space dimensionalities were N = 30, N = 100,
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Figure 4: The stationary progress rate (23) and ex-
perimental results for constant noise σǫ = 1/N as a
function of µ.

and N = 500. In the case of N = 30 each data point was
sampled over 100, 000 generations, whereas for N = 100 and
N = 500 200, 000 generations were used. Again, the predic-
tion quality is relatively poor for N = 30 and improves with
the search space dimensionality.

2.4 The Effects of Recombination
The effects of recombination remain to be addressed. Fig-

ure 4 shows the stationary progress rate as a function of the
parent number µ. As it reveals, switching from µ = 1 to
µ > 1 is not beneficial. To find out why, let us start with
the normalized mutation and noise strength (20). Provided
that the size of the offspring population is not small, (20)
shows an interesting scaling behavior with respect to µ. If
2µc2µ/µ,λ ≫ e1,1µ,λ holds, the stationary point can be approx-
imated with

 

σ∗

ǫ appr

ς∗appr

!

=

„

2dµcµ/µ,λ√
µ

«

. (25)

Equation (25) holds for µ 6≈ 1 and µ 6≈ λ and large λ. Inter-
estingly, it equals the scaling behavior on the noisy sphere
with only one exception, the ridge parameter d, which ap-
pears in the case of the noise strength. Apparently, the
ES behaves very similarly on the noise sharp ridge as on
the noisy sphere. Recombination increases the mutation
strength in (25) and (23) proportionally to

√
µ. An increase

also occurs in the case of the normalized noise strength which
increases with 2µcµ/µ,λ. This results in smaller distances to
the ridge axis. With similar arguments as before, the scaling
behavior of the distance to the ridge w.r.t. µ reads

Rappr =
Nσǫ

2dµcµ/µ,λ
. (26)

The approximate distance (26) is also the minimal possible
distance that can be obtained. This can be verified by using
the second stationary condition in (18), (1+d2)ς∗stat2

2 + σ∗

ǫ
2

= 4d2µ2c2µ/µ,λ and letting ς∗stat2 → 0.
While the decrease of the distance was beneficial on the

sphere, it has the opposite effect on the ridge. The normal-
ized stationary progress (22) reveals the problem: If µ 6≈ 1
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and µ 6≈ λ, the influence of µ on the normalized progress
rate is negligible. Because of ς∗stat ∝ √

µ, the normalized
progress rate does not differ much from

ϕ∗

xappr =
1

2d
(27)

provided that λ is not small.
Since the normalized progress rate stays nearly constant,

a problem is encountered in the case of the non-normalized
variables. The non-normalized progress rate (23) scales ap-
proximately with 1/(2µcµ/µ,λ) and drops sharply if recom-
bination is introduced. As we have seen, the increase of the
normalized mutation strength with

√
µ is not sufficient to

change the normalized progress rate. The decrease of the
progress rate with the decreasing distance is not counter-
acted in any way.

Something similar can be observed in the case of the non-
normalized mutation strength, itself. The normalized noise
scales with 2µcµ/µ,λ and the distance with 1/(2µcµ/µ,λ).
This outperforms the increase of the normalized mutation
strength with

√
µ: The non-normalized mutation strength

decreases with 1/(2
√
µcµ/µ,λ). This decreasing is necessary

on the sphere. Since the ES is able to approach the opti-
mizer more closely, the mutation strength must reflect this
and decrease accordingly. On the ridge, however, this means
that the mutation strength is decreased because the subgoal
of optimizing the sphere is better realized. This does not
result in a better achievement of the overall goal.

On first sight, recombination does not have any benefits.
However, the (1, λ)-ES looses step-size control in the station-
ary state and reduces the mutation strength to extremely
small values – a behavior not predictable by the determin-
istic evolution equations. Therefore, as a rule the (1, λ)-ES
exhibits long stagnation phases. Recombination with a small
number of parents is therefore necessary. This is a further
similarity to the noisy sphere [12]. There, it could be shown
that the (1, λ)-ES performed basically a random walk – bi-
ased, however, towards smaller mutation strengths. How-
ever, the exact causes for the behavior on the sharp ridge
remain to be investigated.
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Figure 5: Comparison of a (10, 10I , 60)-CSA-ES and
self-adaptive (10, 10I , 60)-ES on the noisy sharp ridge
with d = 5, σǫ = 100/30, and N = 30. Shown are the
the evolutions of the mutation strength and the x-
component (every 100th value) for the first 200, 000
generations. The results were averaged over 10 runs.

3. CONCLUSIONS
In this paper, noisy ridge functions were investigated using

the standard noise model of additive normally distributed
noise. It has been shown using the evolution equations, that
noise has a positive effect and improves the performance.
Unlike the findings in [7, 16, 20], this does not only hold for
small noise levels but even more for higher levels.

Optimizing ridge functions comprises two subgoals: a)
minimizing the (N − 1)-dimensional sphere, thus, reaching
the ridge axis. b) travelling along (i.e., parallel to) the ridge
axis. If d is sufficiently large, subgoal a) dominates the evo-
lution process. As a result the mutation strength is perma-
nently reduced and the fitness gain w.r.t. subgoal b) reduces,
too. Additive noise prevents the ES from perfectly reach-
ing subgoal a). The ES stays away from the ridge axis and
a steady state distance as well as a steady state mutation
strength is obtained on average. Therefore, no premature
convergence occurs. Instead, due to the steady state muta-
tion strength evolution strategies show on average a constant
progress parallel to the axis direction. Of course, this only
holds if d is sufficiently large so that the axis acts as an at-
tractor. If d is too small and the ES diverges, the effects
of the noise are soon diluted until it behaves as if it were
optimizing the undisturbed ridge. If d is sufficiently large, a
stationary state of the distance and the mutation strength
exists. Here, we find that the larger the noise strength, the
larger the stationary distance and the mutation strength.
This results in larger progress parallel to the axis direction.
Additive noise is beneficial on the sharp ridge: Because of
the noise the finite subgoal of optimizing the sphere cannot
be realized.

Recombination has a similar effect as in the case of the
sphere model. It reduces the distance to the axis. This de-
crease with µ is stronger than the increase of the normalized
stationary mutation strength (w.r.t. the distance and search
space dimensionality). These responses eventually cause a
performance degradation: The normalized progress stays
constant and the non-normalized progress rate decreases.
However, recombination on the ridge is necessary since the
(1, λ)-ES looses step-size control.

Having analyzed the ES on the noisy sharp ridge, we have
found a first example where it can be shown analytically
that noise can help to improve the performance of the ES.
Due to the deeper understanding of the underlying evolu-
tionary process, we can now envision the conditions a fitness
landscape should obey in order to be a candidate for noise-
improved EA performance: The noise prevents the ES from
being attracted by local optimal basins and the mutation
strength is kept at a reasonable level. If there is in addition
a global fitness landscape topology that has a global ten-
dency to better attractors, then the ES can have the chance
to evolve to more promising regions of the fitness landscape.
The depth of the attractors that can be passed by can be
controlled by the noise strength used. Actually, assuming a
simple local landscape structure, the noise strength needed
to avoid a local attractor of predefined depth can already
be estimated [11]. Therefore, it should be possible to search
for attractors of greater depth, thus, having a strategy for
more global search. However, two caveats must be men-
tioned here. First, this idea can only work if there is an
appropriate global fitness topology. Second, at the end of
the evolutionary process, the user must reduce the noise
level in order to get close to the local optimizer which is
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then hopefully the global one. In other words, a guarantee
for reaching the global optimizer cannot be given.

The analysis presented here can and should be extended in
several points: First of all, the progress measures obtained
for the evolution equations hold exactly only for N → ∞.
All results obtained using these progress measures hold only
approximately in low-dimensional search spaces. Therefore,
one aim should be to use progress measures obtained for fi-
nite N . In addition, an inclusion of the perturbation parts of
the evolution equations would be interesting. Furthermore,
a comparison with other adaptation schemes as the CSA or
the 1/5th rule is of interest. Figure 5, for example, shows a
comparison of a CSA-ES to a self-adaptive ES. In the case
of the CSA, a problem occurs: The CSA-ES shows a loss of
step-size control on the sharp ridge. This erratic behavior
of the mutation strength is also observed for other choices
of µ. This has consequences for the optimization of the x-
component. While the CSA-ES surpasses the self-adaptive
ES in the early stages of the evolutionary run, the progress
stagnates in the steady state whereas the self-adaptive ES
progresses still. The speed of the self-adaptive ES depends
on the size of the steady state mutation strength and there-
fore on the noise strength. The higher the noise the sooner
the self-adaptive ES surpasses the CSA-ES. Finding a pre-
dictive model for these observations remains a task for future
research.
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APPENDIX
A. ON THE DETERMINATION OF THE

SELF-ADAPTATION RESPONSE
The section sketches the derivation of the self-adaptation

response function (SAR) which denotes the expected relative
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change of the mutation strength

ψ(σ) = E
h 〈ς〉 − σ

σ

i

=
1

µ

λ
X

m=1

E
h ςm;λ − σ

σ

i

. (28)

The random variable ςm;λ is the mutation strength associ-
ated with the mth best perceived fitness change in λ trials.
Using the concept of induced order statistics [1, 2], the pdf
of the random variable is given by

pm;λ(ς|σ) =
λ!pσ(ς|σ)

(m− 1)!(λ−m)!

Z

∞

−∞

pQ(Q|ς)

×PQ(Q|σ)λ−m
“

1 − PQ(Q|σ)
”m−1

dQ.(29)

The derivation of the SAR can be divided into two main
parts: First, an expression for the fitness change induced by
a mutation has to be determined. Afterwards, the result-
ing equations have to be transformed and simplified. Let us
first address the fitness change. In the case of the undis-
turbed sharp ridge, it has been obtained by Beyer in [9].
A straightforward adaptation for noise leads to PQ(Q|ς) =

Φ
“

Q+d
√
R2+ς2N−R

r

σ2
ǫ+ς2(1+d2

R2+ς2N/2

R2+ς2N
)

”

. In the following, we use a more

general notation setting PQ(Q|ς) = Φ([Q + h(ς)]/g(ς)).
The first point in the determination of the SAR is to elimi-

nate the integral expression PQ(Q|σ) =
R

∞

0
PQ(Q|ς)pσ(ς|σ) dς

in (29). As shown in [10], substituting PQ(Q|σ) with PQ(Q|σ)
introduces an error of order τ 2. Since we consider the case
of τ ≪ 1, the error may be neglected. First, the argument
of the distribution function is standardized – introducing
z = −[Q+ h(σ)]/g(σ). The SAR changes to

ψ(σ) =

Z

∞

0

“ ς − σ

σ

”pσ(ς|σ)

µ

µ
X

m=1

λ!

(m− 1)!(λ−m)!

× 1√
2π

Z

∞

−∞

g(σ)

g(ς)
e
−

1
2

“

g(σ)z−(h(ς)−h(σ))
g(ς)

”2

×
“

1 − Φ(z)
”λ−m

Φ(z)m−1 dz dς. (30)

In the following, several transformations and calculations
have to be performed. In the next step, the order of the
summation and the inner integration is swapped. The sum
in (30) itself represents a regularized incomplete beta func-
tion [10, p. 147f] and can be substituted by an integral.
The integral is then plugged into the SAR and the integra-
tion order of the inner integrals is changed which results in

ψ(σ) =

Z

∞

0

g(σ)

g(ς)

“ ς − σ

σ

”

pσ(ς|σ)(λ− µ)

 

λ

µ

!

×
Z

∞

−∞

“

1 − Φ(t)
”λ−µ−1

Φ(t)µ−1 e−
t2

2

2π

×
Z t

−∞

e
−

1
2

“

g(σ)z−(h(ς)−h(σ))
g(ς)

”2

dz dtdς. (31)

This is the point to introduce further simplifications in or-
der to solve the integrals. The starting point is the inner-
most integral over z which leads the distribution function
Φ(((g(σ)/g(ς))t− (h(ς)−h(σ))/g(σ)). This function is then
expanded into its Taylor series around σ. Plugging the re-
sulting series into the SAR, three integrals are obtained: one

containing the normal distribution function at σ, one com-
prising the first derivation and a quadratic (ς−σ)-term, and
one with higher derivations and polynomials in (ς − σ) with
degree three or higher. First of all, the integration over ς is
addressed. The expectation of (ς − σ)k leads to a series in
τ 2l. It can be shown that the expectation of [(ς − σ)/σ]k

does not include any τ 2l-terms with 2l + 1 < k. In this pa-
per, the series is expanded to the precision of τ 2, thus the
expectations of terms [(ς − σ)/σ]k, k ≥ 3, enter the error
term. Since the last integral contains only polynomials in
(ς − σ) with degree three or higher, only the first two terms
need to be taken into account

ψ(σ) = τ 2

„

(λ− µ)

2

 

λ

µ

!

Z

∞

−∞

“

1 − Φ(t)
”λ−µ−1 Φ(t)µe−

t2

2√
2π

dt

+σ(λ− µ)

 

λ

µ

!

Z

∞

−∞

“

− g′(σ)

g(σ)
t− h′(σ)

g(σ)

”

×
“

1 − Φ(t)
”λ−µ−1

Φ(t)µ−1 e−t
2

2π
dt

«

+ O(τ 4). (32)

The value of the first integral is one. The other integral can-
not be solved analytically. Instead, the generalized progress
coefficients eα,βµ,λ (14) are used. The SAR is finally given by

ψ(σ) = τ 2

„

1

2
+ σ

“

e1,1µ,λ
g′(σ)

g(σ)
− cµ/µ,λ

h′(σ)

g(σ)

”

«

+ O(τ 4). (33)

The self-adaptation response (33) has been derived under
the assumption τ ≪ 1. In the case of the sharp ridge, the
functions g and h read h(ς) = d

√
R2 + ς2N −R) and g(ς) =

p

σ2
ǫ + ς2(1 + d2(R2 + ς2N/2)/(R2 + ς2N). Obtaining the

first derivatives, introducing normalizations, and plugging
the results into the SAR leads to

ψ(σ∗) = τ 2

 

1

2
− cµ/µ,λdσ

∗2

q

1 + σ∗2

N

r

σ∗
ǫ
2 + σ∗2

“

1 + d2
“

1+ σ∗2

2N

1+ σ∗2

N

””

+

e1,1µ,λσ
∗2
“

1 + d2
“

1+ σ∗2

2N

1+ σ∗2

N

””

“

σ∗
ǫ
2 + σ∗2 + d2σ∗2

“

1+ σ∗2

2N

1+ σ∗2

N

””

−
e1,1µ,λd

2 σ∗4

N

“

1
`

1+ σ∗2

N

´2

”

2
“

σ∗
ǫ
2 + σ∗2 + d2σ∗2

“

1+ σ∗2

2N

1+ σ∗2

N

””

!

+O(τ 4). (34)

Letting N → ∞ gives finally (11)

ψ(σ∗) = τ 2
“1

2
+

e1,1µ,λσ
∗2(1 + d2)

σ∗2(1 + d2) + σ∗
ǫ
2

− cµ/µ,λdσ
∗2

p

σ∗2(1 + d2) + σ∗
ǫ
2

”

+ O(τ 4).
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