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ABSTRACT
Genetic Algorithms (GAs) are historically the most com-
monly used optimization method in Quantum Control (QC)
experiments. We transfer specific Derandomized Evolution
Strategies (DES) that have performed well on noise-free the-
oretical Quantum Control calculations, including the Co-
variance Matrix Adaptation (CMA-ES) algorithm, into the
noisy environment of Quantum Control experiments. We
study the performance of these DES variants in laboratory
experiments, and reveal the underlying strategy dynamics
of first- versus second-order landscape information.

It is experimentally observed that global maxima of the
given QC landscapes are located when only first-order in-
formation is used during the search. We report on the dis-
ruptive effects to which DES are exposed in these experi-
ments, and study covariance matrix learning in noisy versus
noise-free environments. Finally, we examine the charac-
teristic behavior of the algorithms on the given landscapes,
and draw some conclusions regarding the use of DES in QC
laboratory experiments.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION
The advent of modern Evolution Strategies (ES) [3], also

known as Derandomized Evolution Strategies [8], allows suc-
cessful global optimization with minimal requirements con-
cerning exogenous parameters, mostly without recombina-
tion, and with a low number of function evaluations. Fur-
thermore, investigation of the actual strategy parameter spa-
ce, such as the evolving covariance matrix, may allow for
inferring properties of the underlying search landscape.

Quantum Control (QC) [22, 15, 23, 11], sometimes re-
ferred to as Optimal Control or Coherent Control, aims at
altering the course of quantum dynamics phenomena for spe-
cific target realizations. There are two main threads within
Quantum Control, theoretical and experimental control.

Genetic Algorithms (GAs) are the most common opti-
mization routines in QC laboratories, likely due to historical
reasons [10]. ES are speculated to perform well on QC opti-
mization problems that possess continuous high dimensional
landscapes. This is due to their specific variation operators,
the self-adaptation of their mutation distribution as well as
to their high performance in continuous global optimization
in comparison to other methods on benchmark problems [2].

The goal of this work is to transfer specific derandomized
ES variants, that had been applied in the past to noise-free
QC landscapes, into QC experiments in the laboratory. The
study then presents experimental observation of ES perfor-
mance, and focuses on a comparison between first-order and
second-order derandomized ES, that correspond to employ-
ing a number of strategy parameters scaling linearly (in-
dividual step-sizes) versus quadratically (arbitrary normal
mutations, by means of a full covariance matrix) with the
search space dimensionality. As a reference, we examine the
performance behavior of the traditional GA, as typically em-
ployed in the laboratory. We discuss specific pulse shaping
aspects that require treatment upon the application of unre-
stricted ES. We then analyze the performance behavior, and
conduct additional simulations in order to investigate some
special features of the CMA, as observed in the laboratory
experiments.
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The paper is organized as follows. Section 2 lays out the
framework of Quantum Control and presents the specific
optimization problems studied. Section 3 reviews the algo-
rithms used in this study. Section 4 presents the experi-
mental procedure and results, followed by an analysis and
discussion in section 5. Finally, section 6 summarizes this
work and discusses possible future directions.

2. FRAMEWORK: QUANTUM CONTROL
Quantum Control Theory (QCT) [14, 18] aims at ma-

nipulating the quantum dynamics of a simulated system by
means of an external temporal control field, often arising
from a laser source. The objective to be met in this control
process is defined by means of a given physical observable,
whose yield is subject to maximization. A quantum control
landscape is thus defined as the functional dependence of
the physical observable on the control variables, and may be
visualized as a surface over the space of all possible controls.
A simulated QCT system is typically numerically modeled
with no physical constraints on the control field. Hence, such
systems play an important role in theoretical calculations,
but do not necessarily correspond to feasible real-world sys-
tems or controls.

Quantum Control Experiments (QCE) [11, 23], on the
other hand, implement the ideas of Quantum Control in the
laboratory and strive to alter the course of quantum dynam-
ics for specific target-applications by utilizing a closed-loop
learning algorithm. Here, the control yield, or success-rate,
is obtained by a physical measurement of the target appli-
cation. The nature of the optimization is fundamentally
different than in QCT, due to the posed experimental con-
straints.

Rabitz [10] introduced the important concept of feedback

control, where phase-, amplitude- and/or polarization shap-
ing of a control field are subject to a closed learning loop in
order to guide the quantum system toward a desired final
state. This approach has been successfully applied in nu-
merous applications and has become the common practical
experimental routine in the field.

From the optimization perspective, GAs have become the
most popular algorithmic component in the QCE learning
loop (see, e.g., [11]), likely due to historical reasons. We
would like to mention, however, two studies [24, 5] that ap-
plied Evolution Strategies to QCE, and explored a specific
QC system both in experiments and simulations. The latter
studies concluded that the employed Evolution Strategies
were promising optimization routines.

2.1 Quantum Control Landscapes
In the past twenty years, QCT has revealed remarkable

properties about its search landscapes. Among these results
is that for a controllable quantum system, there is always a
trap-free pathway to the top of the control landscape from
any initial point, which allows locating the global maximum
with first-order (gradient) information (see, e.g., [9]). This
result is valid for an unconstrained control field.

The realization of a quantum system in the laboratory,
however, inevitably places constraints on the quantum dy-
namics, and may lead to a tortuous path over the nominally
trap-free landscape. Such experimental constraints are lim-
ited bandwidth and fluence, control resolution, proper basis,
etc. One of the goals of this paper is to answer the question
whether the equivalent to first-order information in stochas-

tic algorithms is also sufficient for optimizing QCE land-
scapes in the laboratory.

2.2 Two-Photon Processes
The field of nonlinear optics describes optical phenomena

which are observed when high intensity light passes through
media. The nonlinearity is due to the interaction between
the light, typically a laser field, and a dielectric media, whose
field-induced polarization responds non-linearly to the inci-
dent electric field. The field of nonlinear optics offers a vari-
ety of popular Quantum Control applications. Second-order
variants, which correspond to two-photon processes, are par-
ticularly attractive because of their easy implementation in
the laboratory, as well as their known mathematical formu-
lation.

2.2.1 Control Definition
The control function in spectral modulation consists of the

spectral amplitude A(ω) and phase φ(ω) functions. Most
Quantum Control processes are sensitive to the phase, and
phase-only shaping is typically sufficient for attaining op-
timal control. Our experiments include phase modulation
only, where the spectral function A(ω) is fixed. The latter is
well-approximated by a Gaussian and determines the band-
width, or the pulse duration, accordingly. Note that shaping
the field with phase-only modulation guarantees conserva-
tion of the pulse energy.

The spectral phase φ(ω) is defined at n frequencies {ωi}
n
i=1

that are equally distributed across the bandwidth of the
pulse. These n values {φ(ωi)}

n
i=1 correspond to the n pixels

of the pulse shaper and are the decision parameters opti-
mized in the experimental learning loop:

φ(ω) = (φ(ω1), φ(ω2), ..., φ(ωn)) . (1)

Given a control phase, φ(ω), one may write the spectral field
of the control E1(ω) and second-harmonic E2(ω) pulses:

E1(ω) = A(ω) exp[iφ(ω)]

E2(ω) = E1(ω) ∗ E1(ω) =

Z

∞

−∞

E1(ω
′) · E1(ω − ω′)dω′

I2(ω) = |E2(ω)|2,
(2)

where I2(ω) is the spectral intensity of the second harmonic
field.

2.2.2 Second Harmonic Generation (Total-SHG)
Second harmonic generation (SHG) or frequency doubling

is a two-photon process in which an electric field interacts
nonlinearly with a material and generates a single output
photon with double the energy of two input photons. The
total energy of this up-converted light is proportional to the
integrated spectral intensity I2(ω) of the second harmonic
field.

The yield, subject to maximization, is defined as follows:

St =

Z

∞

−∞

I2(ω)dω. (3)

The SHG signal St is maximized by any linear phase func-
tion of frequency, and in particular by a constant phase, i.e.,
spectral phases of the form φ(ω) = α + βω. The SHG opti-
mization problem has been widely investigated in [16], and
it is known to have a landscape rich in structure [16].
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Figure 1: A spectral illustration for the Total-SHG
(left) versus the Filtered-SHG (right) signals. While
the Total-SHG integrates the spectral energy over
the entire spectrum, the Filtered-SHG considers the
integration in a specific narrow spectral window.

2.2.3 Filtered-SHG
We consider another second-order quantum optical sys-

tem, which is a filtered variation of the SHG system. It cor-
responds to a two photon absorption (TPA) process, whose
model describes, within the limits of second-order time de-
pendent perturbation theory, the probability of making a
transition from a system’s ground state |g〉 to an excited
state |e〉, upon activation of the laser field. Thus, a specific
transition frequency is considered here, ωeg, which practi-
cally filters the signal by means of the Dirac delta function:

Sf (ωeg) =

Z

∞

−∞

δ (ωeg − ω) I2(ω)dω =

=
˛

˛

˛

R

∞

−∞
E(ω)E (ωeg − ω) dω

˛

˛

˛

2

.

(4)

The filtered-SHG signal is maximized by any spectral phase
that is antisymmetric about

ωeg

2
, i.e., spectral phases of the

form φ(
ωeg

2
− ω) = −φ(

ωeg

2
+ ω).

Figure 1 provides an illustrative comparison between the
two second harmonic generation variants considered here.

2.2.4 Problem Difficulty: Numerical Assessment
In order to assess the optimization difficulty of these max-

imization problems, we considered numerical simulations of
the two SHG variants and conducted a simple statistical test.
It is similar to the statistical test reported in [19], which only
considered the total-SHG case and employed slightly differ-
ent numerical modeling. The numerical test considered here
pixelizes phase functions with n = 64 function values, which
are randomly initialized in the interval [0, 2π]64. We then
gradually transformed the given random phases into a zero-
phase by two different routines: (1) setting pixel values to
zero with consistent indexing from right to left, and (2) set-
ting function values to zero by random permutation of in-
dices, with no repetition. Both routines eventually obtain
zero-phases, which attain the maximal yield of 1.0 for both
SHG problem variants. These routines were run 100 times,
i.e., for 100 randomly initialized trial phases, while the yield
values were recorded at each index-step per routine. Figure
2 presents typical runs for the two routines when applied
to both SHG problem variants. It is observed in these plots
that approximately 50% of the function values must be set to
zero in order to enhance the yield value, for all cases. Once
this threshold is exceeded, the yield value increases until it
reaches a value of 1.0, while the profile is not necessarily

monotonic. The actual profiles of the different “phasing-up”
routines differ. More variables are required to be set to zero
in the random indexing routine, in comparison to the con-
sistent indexing. This is due to the shape of the weighting
function (i.e., a Gaussian), which limits the contribution to
the yield value from pixels which are not in the proximity of
the central frequency.

This statistical test reveals that the SHG problems under
investigation are non-separable upon following the formal
definition.

3. ALGORITHMS
On the basis of earlier work that examined ES perfor-

mance on Quantum Control landscapes [21], we restrict our
study to specific ES state-of-the-art algorithms. We chose to
include the traditional GA as a reference algorithm, due to
the fact that it is commonly employed in QC laboratories.

The careful reader should note that we consider here first-
or second-order variation information in a stochastic evolu-
tionary algorithm (DES) as equivalent to first- or second-
order search information of a deterministic algorithm.

3.1 First-Order DES: The DR2 Algorithm
The second derandomized ES variant [13] aims to accu-

mulate information about the correlation or anti-correlation
of past mutation vectors in order to adapt the global step-

size as well as the individual step-sizes by introducing a
quasi-memory vector. This accumulated information allows
for omitting the stochastic element in the adaptation of the
strategy parameters - updating the strategy parameters only
by means of successful past mutations, rather than with
random steps. This method stores first-order information
by means of its O(n) strategy parameters, where n is the
search space dimensionality.

We follow the recommended population size for (1, λ) de-
randomized ES (see, e.g., [12]), and set λ = 10. By def-
inition, this strategy does not apply recombination. The
mutation step for the kth individual, k = 1 . . . λ, reads:

~x(g+1) = ~x(g) + δ(g)~δ
(g)
scal~zk ~zk ∼ ~N (0, 1) , (5)

where the evolving strategy parameters δ(g) and ~δ
(g)
scal are the

global step-size and the variation directional vector, respec-
tively. We refer the reader to [13] for the detailed description
of the defining update steps of the strategy parameters.

It should be noted that this specific DES variant has
shown particularly excellent behavior on a specific QC noise-
free problem, namely the dynamic molecular alignment (see,
e.g., [20]). Given the default parameterization of the align-
ment problem, the DR2 algorithm outperformed other al-
gorithms, including the CMA-ES (the algorithm to be dis-
cussed in the following section), and always obtained ex-
clusively the optimal family of solutions. That numerical
observation provides us with the motivation to employ it in
our QC experiments.

3.2 Second-Order DES: The (µW , λ) CMA
The (µW , λ)-CMA-ES algorithm [8, 7] applies principal

component analysis (PCA) to the selected mutations during
the evolution, also referred to as “the evolution path”, for the
adaptation of the covariance matrix of the distribution. The
concept of weighted recombination is introduced: applying
intermediate multi-recombination to the best µ out of λ off-
spring with given weights {wi}

µ

i=1. The result is denoted
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Figure 2: Transforming randomly-initialized phases into a zero-phase, pixel-by-pixel, either by (1) consistently
indexing the phase function from right to left, or (2) by randomly selecting phase function indices, without
repetition. The attained yield per index-step is recorded at every time step. Typical runs are presented
for the two routines applied to the SHG problem variants. Left: Filtered-SHG system; Right: Total-SHG
system.

with 〈~x〉W . C(g) ∈ R
n×n is the covariance matrix, which

is eigen-decomposed as C(g) = B(g)D(g)
“

B(g)D(g)
”T

. By

definition, this method stores second-order information by
means of its O(n2) strategy parameters. The characteristic
generation step for the kth individual, k = 1, . . . , λ, reads:

~x
(g+1)
k = 〈~x〉(g)

W + σ(g)B(g)D(g)~z
(g+1)
k (6)

We refer the reader to [7] for the detailed description of
the defining update steps of the strategy parameters. We set
the population size to the recommended values for n = 64,
which is the number of pixels used by the pulse shaper in
these experiments: µ = 8 and λ = 16.

3.3 Traditional GA
We use the traditional GA [6], with bitstring representa-

tion of l = 6 bit resolution per pixel. It employs a fixed
population of µ = 30 individuals. The mutation rate for a
bit-flip is pm = 0.005, and the selection mechanism is based
on the better half, while the single best individual is always
kept (elitism). These parameters were collectively optimized
to allow sufficient resolution so as to arrive at the highest
quality solution with the fastest convergence.

4. EXPERIMENTAL PROCEDURE
We describe here the experimental procedure, where we

applied the specified algorithms to the laboratory quantum
control systems.

All algorithms were coded in LabView1. Regarding the
technical specification of the laboratory, the laser source is
a Ti:sapphire femtosecond system with 1.8 mJ pulses gener-
ated at 1 kHz. The pulses are centered at ∼ 800 nm, with
a bandwidth of ∆λ ∼ 10 nm, yielding ∆τ ∼ 100 fs pulses,

1Code is available from the authors upon request.

FWHM. The employed spatial light modulator (SLM) con-
sists of 128 liquid crystal pixels, but the experiments used
only 64 pixels by coupling together pairs of adjacent pixels.
Thus, here we set n = 64.

For total SHG St, the amplified pulses are delivered to a
100 µm type-I BBO crystal, and the time integrated SHG
signal is recorded with a photodiode and boxcar integrator.
For the filtered SHG signal Sf , unamplified seed pulses are
focused onto a 100 µm type-I BBO crystal, and the resultant
up-converted light is analyzed with a spectrometer.

For the two DES variants employed, initial step sizes are
set to 1

4
of the object variables initialization intervals.

4.1 Preliminary ES Failure: Stretched Phases
When applied to the experimental setup, the derandom-

ized ES variants initially suffered from pre-mature conver-
gence to sub-optimal solutions of yield ≈ 0.75, where the
maximum value is 1.0. Upon examination of the attained
optimized phases in the decision space, they were always
observed to be highly sloped linear phases. We offer the fol-
lowing explanation for the suboptimal convergence.

In practice, the use of a pixel-based pulse shaper rep-
resents a desired spectral phase φ(ω) with an appropriate
staircase-approximation. The result of this spectral domain
pixelization is a temporal electric field of the form

e(t) =
X

n

ẽ(t − nτ )sinc

„

πt

τ

«

, (7)

with ẽ(t) as the desired electric field, and where τ = 1
∆ν

is the inverse frequency spacing per pixel. The result of
pixelization is the creation of a series of replica pulses, co-
incidentally positioned at the zeros of the sinc envelope
function. Application of a significant linear phase, which
corresponds to a temporal shift of the pulse (see, e.g., [4]),
increases the influence of the replica pulses by shifting them
away from the zeros. Thus, excessively steep linear phases
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Table 1: QCE Algorithms: Performance

Routine Filtered-SHG Total-SHG
Avg. Yield 0.9 Eval Avg. Yield 0.9 Eval

GA 0.95 4665 0.95 5557
DR2 0.93 2159 0.72 NA
CMA 0.95 841 0.98 766

breakup the pulse energy into multiple parasitic replica pulses
and result in suboptimal yields [17].

Phases that differ by 2π radians are mathematically equiv-
alent. This periodic nature of the phase in [0, 2π] practically
poses periodic boundary conditions on the shaping modula-
tor. Given 0 < ε ≤ 2π, the so-called phase wrapping opera-
tor is implemented as follows:

φi = 2π + ε −→ φ̃i := ε

φj = −ε −→ φ̃j := 2π − ε
(8)

or simply as φ̃i := φi mod 2π. From an optimization per-
spective, this means that the search space is an n-dimensional
hypercube spanning a length of 2π in each dimension.

The GA, which is traditionally employed in the labora-
tory, is less likely to locate highly-steep linear phases since
the [0, 2π] boundaries are implicitly implemented by means
of the phenotypic mapping. It seems that a search in an unre-
stricted domain, as employed by the ES variants in hand, is
likely to irreversibly stretch the candidate phases and suffer
accordingly from convergence to highly sloped linear phases
with sub-optimal yield.

The implementation of periodic boundary conditions into
the ES algorithms, by means of coupling the phase wrapping

operator to the mutation operator, alleviated this subopti-
mal convergence. It should be noted that the restriction of
the search domain by means of the phase wrapping opera-
tor does not in any way restrict the quality or diversity of
attainable solutions.

4.2 Performance Evaluations
Table 1 presents the results of the two reported systems,

averaged over 10 experiments. We consider the final yield
(averaged over the last 50 iterations), as well as the number
of evaluations required to cross a yield threshold of 0.90, as
the performance criteria per experiment. Figure 3 presents
an averaging of the runs, with attained yield as a function of
the required number of function evaluations. Note that this
averaging procedure takes into account all 10 runs, whereas
the convergence data shown in Table 1 considers only the
relevant runs that exceeded the 0.90 yield threshold. Figure
4 presents histograms for the different algorithms with final
yield versus the number of runs.

As reflected from the experimental results, the CMA per-
formed best on the given experimental systems, both in
terms of final yield as well as convergence speed. We would
like to emphasize the extraordinary boost of convergence
speed provided by the CMA relative to the GA, which is sig-
nificant in the laboratory. Moreover, the CMA has a sharp
and rapid convergence profile, in contrast to the inefficient
hill-climbing capability of the GA. This profile is easy to
identify as there is no ambiguity about convergence, and
thus it is another attractive feature for the laboratory user.

5. ANALYSIS AND DISCUSSION
We discuss here the experimental results and the algorith-

mic behavior.

5.1 Diversity of Solutions
As mentioned earlier in section 2.2, the filtered SHG sys-

tem possess a family of nontrivial phases that correspond to
global maxima. Interestingly, each run for the filtered SHG
case converged to a distinct antisymmetric phase. This col-
lection of different solutions provided a practical perspective
concerning the richness of QC landscapes and their under-
lying level sets.

5.2 Sensitivity to Noise
The CMA-ES and the GA performed in a satisfactory

manner on the given control problems and did not seem to
be significantly impaired by the existence of noise in the ex-
perimental system. The DR2, on the other hand, suffered
from high-sensitivity to the initial step-size: the default set-
ting failed to obtain satisfying results, and a fine-tuning pro-
cess obtained a narrow range of initial values that obtained
fine results. Generally speaking, the DR2 performance was
disappointing, particularly in comparison to noise-free cal-
culations that were reported in the past [20]. A proposed
explanation for this behavior could be the lack of recombi-
nation, which has been shown to be a crucial ES component
in noisy environments (see, e.g., [1]).

5.3 Covariance Learning
Recording the CMA data during the optimizations al-

lows an analysis of the evolutionary search process. It was
found that the covariance matrix remains diagonal during
the search, or equivalently, the CMA does not use its second-
order information (i.e., rotations) when climbing up the land-
scape. This observation seems to be consistent with the
QCT landscape analysis outlined in section 2.1.

Figure 5 presents a typical CMA run for the optimiza-
tion of total-SHG in the laboratory and shows the yield and
step-size verses function evaluations. Figure 6 presents the
square-root of the covariance matrix eigenvalues as a func-
tion of the number of experiments as well as the Euclidean
distances between the best phase variables of successive it-
erations, i.e.,

d(g+1) = ‖~φ
(g+1)
best (ω) − ~φ

(g)
best(ω)‖, (9)

where ~φbest(ω) is as in Eq. 1.
We conducted an equivalent test in a noise-free simu-

lator for the total-SHG problem2. The convergence profile
on the simulator is observed to be similar to the laboratory
experiment, i.e., rapid climbing-up of the landscape without
using second-order information. Figure 7 presents a typi-
cal CMA run on the simulator. However, upon approach-
ing the top of the landscape, one of the covariance matrix
eigenvalues dramatically grows, as shown in Figure 8. This
behavior was observed to be typical in all runs. The corre-
sponding eigenvector is always a flat phase, suggesting that
the CMA discovers the invariance of a constant phase on
the SHG signal. The phase Euclidean trajectories are plot-
ted as well in Figure 8, showing some minor activity during
this growth stage, corresponding to super-fine tuning of the
spectral phase. The yield values, nonetheless, do not seem

2The simulator was implemented in LabView with Lab2.
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Figure 3: Averaged runs of the algorithms over 10 runs. Left: Filtered-SHG system; Right: Total-SHG
system.

Figure 4: Success-rate (yield) histograms. Left: Filtered-SHG system; Right: Total-SHG system.

Figure 5: CMA optimization of the Total-SHG in
the laboratory. Yield (solid line, left axis) and step-
size (dashed line, right log-scaled axis), versus func-
tion evaluations.

Figure 6: CMA optimization of the Total-SHG in
the laboratory. Square-root of the 64 eigenvalues
of the covariance matrix (solid thin lines, left axis),
and phase Euclidean trajectories (bold points, right
log-scaled axis), versus function evaluations. Miss-
ing trajectory points correspond to zero values.
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Figure 7: CMA optimization of the Total-SHG on a
noise-free simulator. Yield (solid line, left axis) and
step-size (dashed line, right log-scaled axis), versus
function evaluations.

Figure 8: CMA optimization of the Total-SHG on a
noise-free simulator. Square-root of the 64 eigenval-
ues of the covariance matrix (solid thin lines, left log-
scaled axis), and phase Euclidean trajectories (bold
points, right log-scaled axis), versus function evalua-
tions. Missing trajectory points correspond to zero
values. The single exploding eigenvalue can easily
be identified in this scale.

to be further improved during this process, at least in the
precision available. In practice, the parameter adaptation
during this fine-tuning stage produces fitness variations be-
low that of the system noise in the laboratory, which explains
its absence in laboratory optimizations.

5.4 Simulations: Zeroth-Order CMA
Given the experimental observation reported in the pre-

vious section, we were interested in testing the CMA while
removing its covariance learning components. In essence, we
leave the CMA only with the step-size as a strategy param-
eter, and fix the covariance matrix as an identity matrix.
This is a zeroth-order ES with normal mutations subject to
hyperspheres as the equi-density probability surfaces. In or-
der to assess the zeroth-order CMA behavior on the given
QC systems, we conducted additional simulations with two
variants of the algorithm:

• (µW , λ)-CMA with C = I.

• (1, λ)-CMA with C = I.

The simulations were conducted for both systems - total-
SHG as well as filtered-SHG; we considered both a noise-free
simulator as well as a simulator with noise.

The results of the simulations show that the CMA perfor-
mance is not hampered at all on both systems when remov-
ing its covariance learning components: the (µW , λ)-CMA
with C = I performs as well as the original CMA, in terms
of final attained yield and convergence speed. This obser-
vation is valid for noise-free as well as for noisy simulations,
and has also been confirmed by additional laboratory
experiments. However, when the weighted recombination
operator was removed, the (1, λ)-CMA with C = I did not
converge, nor did it even climb-up from the initial yield at
the bottom of the landscape. We thus conclude that it is
possible to optimize the given simulated QC landscapes by

a zeroth order ES, as long as the weighted-recombination
operator is kept.

6. SUMMARY AND OUTLOOK
We presented a survey of derandomized Evolution Strate-

gies and a Genetic Algorithm to a set of Quantum Control
systems in the laboratory.

While the QC systems examined here possess easily under-
stood global optima, the search is conducted over a highly
complex, curvilinear control landscape. This can be assessed
by examining the covariance matrix of the actual decision
parameters of the recorded evolving control phases, in con-
trast to the obtained covariance matrix of the CMA-ES,
which attempts to learn successful search variations.

We found that employing the ES variants with default set-
tings unrestrictedly on the given QC landscapes resulted in
pre-mature convergence to sub-optimal phases with highly
sloped linear profiles. We analyzed this effect, and intro-
duced the wrapping operator into the ES framework. The
latter solved the observed problem.

The CMA-ES significantly outperformed the other algo-
rithms in terms of final yield as well as in convergence speed.
It introduced a significant increase in convergence speed to
the typical performance of the GA in the laboratory and is
a promising tool for future laboratory experiments. While
analyzing its behavior, it was experimentally confirmed that
its second-order information was not used when climbing-up
the landscape. It is crucial to note that this behavior is not
isolated to the SHG systems. Rather the same CMA behav-
ior has additionally been observed during optimizations of
atomic Rubidium, which relies upon strong-field, dynamic
Stark shifting and exhibits a complex, nontrivial optimal
solution. We also conducted noise-free simulations of the
CMA-ES applied to the systems. The latter calculations re-
vealed interesting behavior of the covariance matrix, upon

525



approaching the top of the landscape. A single eigenvalue
consistently explodes with a corresponding eigenvector of
flat phase. We suggest that this is due to the fact that the
CMA successfully learned the invariance of a constant phase
in these problems. Furthermore, we considered zeroth-order
versions of the CMA in simulation, where the covariance
learning component was removed. The latter performed ex-
tremely well, as long as the weighted-recombination operator
was kept.

As future research, we would like to consider the following:

1. Investigating the DR2 sensitivity to the noise.

2. Extending the set of QC experimental systems, to par-
ticularly difficult problems with unknown solutions.

3. Extracting landscape info from evolutionary pathways.
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[19] O. M. Shir and T. Bäck. The Second Harmonic
Generation Case Study as a Gateway for ES to
Quantum Control Problems. In Proceedings of the

Genetic and Evolutionary Computation Conference,

GECCO-2007, pages 713–721, New York, NY, USA,
2007. ACM Press.

[20] O. M. Shir, J. N. Kok, M. J. Vrakking, and T. Bäck.
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