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ABSTRACT
We consider a formulation of the biobjective soft graph col-
oring problem so as to simultaneously minimize the number
of colors used as well as the number of edges that connect
vertices of the same color. We solve this problem using well-
known multiobjective evolutionary algorithms (MOEA), and
observe that they show good diversity and (local) conver-
gence. Then, we consider and adapt the single objective
heuristics to yield a Pareto-front and observe that the qual-
ity of solutions obtained by MOEAs is much inferior. We
incorporate the problem specific knowledge into representa-
tion and reproduction operators, in an incremental way, and
get good quality solutions using MOEAs too. The spin-off
point we stress with this work is that, for real world applica-
tions of unknown nature, it is indeed difficult to realize how
good/bad the quality of the solutions obtained is.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search—Heuristic Methods; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods and Sear-
ch—Graph and tree search strategies

General Terms
Algorithm, Design, Experimentation.

Keywords
Optimization methods, multi-objective optimization, genetic
algorithm, evolutionary algorithm, heuristics, combinatorial
optimization, soft graph coloring, Pareto front.
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1. INTRODUCTION
Graph coloring is a classic NP -Hard problem in graph

theory, which involves assigning colors to nodes of an undi-
rected graph with as few colors as possible, such that no
adjacent nodes share a color. Graph coloring has many ap-
plications, ranging from university timetabling to register
allocation used in compilers. It has applications in VLSI
CAD for logic synthesis, state minimization, routing, cellu-
lar networks and aircraft/crew scheduling.

Although graph coloring has widespread applications, even
the decision problem of determining whether a given graph
can be colored using k colors is NP -Complete [20]. More-
over, approximating the chromatic number of a graph is
NP -hard within |V |1−ε for any ε > 0, |V | being the number
of vertices, unless NP = P (Feige and Kilian [16], Zuck-
erman [32]). There exist many exact algorithms such as
specialized branch-and-bound algorithms (see for example
[4, 5]), general integer programming based approaches [25],
and modification of Randall-Brown’s algorithm by Brélaz
[4]. These are effective for small instances of graphs, or on
specific classes of graphs. For general graphs, other methods
are employed to obtain an approximate chromatic number.
Heuristics such as Largest Degree Ordering [31], Smallest
Last Ordering [24], Incidence Degree Ordering [1], Iterated
Greedy [7], and DSatur [4] have been used to solve graph
coloring problem, out of which DSatur is reported to give
the best results (see [2, 13]). A Backtracking Correction
heuristic has been used by Bhowmick et al. [2]. Approxi-
mation algorithms for graph colorings have been suggested
by Wigderson [28], Blum [3], and Karger [19].

Evolutionary/genetic algorithms have been widely used
for the standard graph coloring problem. Huang et al. [18],
Croitoru et al. [6], Galinier and Hao [17], and Drechsler et al.
[11] have used these approaches to solve the graph coloring
problem. EAs/GAs try to find a coloring of a graph using k

colors and try to reduce the number of constraint violations
(adjacent nodes having the same color) to zero in the k col-
oring. For finding the minimum number of colors required
to color the graph, k is iteratively decremented till no color-
ing for some k can be found. Jiaqi Yu and Songnian Yu [29]
used parallel genetic algorithm for graph coloring problem in
VLSI channel routing. Falkenauer [15] proposed a Grouping
GA, which can be used for grouping problems like graph col-
oring and bin packing. Eiben et al. [13] suggested an adap-
tive EA for graph coloring, where they dynamically assign
weights to vertices, and adapt these vertex weights in such a
way that superior results are obtained. They named this ap-
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proach the Stepwise Adaptation of Weights (SAW). Marino
et al. [23] tried to improve GAs with linear programming.

The two chromosome representations that have been used
widely for solving graph coloring using EA are the integer
representation [12] also known as the assignment represen-
tation [11, 17], and the order based representation [6]. In
the assignment approach, each gene of an individual repre-
sents a vertex of the graph, and its integral value represents
its color. In the order based approach, an individual is a
permutation of vertices representing the order in which they
are to be colored by a coloring scheme or decoder. A com-
parison of the two representations has been done by Eiben
et al. [12].

1.1 Biobjective Graph Coloring Problem
A biobjective variant of the standard graph coloring prob-

lem is the graph coloring with rejections. Each vertex of the
graph is assigned a rejection cost. The objectives here are to
color a subset of vertices of the graph with minimum num-
ber of colors, and to minimize the total rejection cost of all
the vertices that have not been colored. Epstein et al. [14]
discussed the offline as well as the online versions of this
problem. Another biobjective variant of graph coloring is
the soft graph coloring. In soft graph coloring, the adjacent
vertices may be assigned the same color, but each such pair
of vertices will incur a penalty. The two objectives are to
minimize the total number of colors used for coloring the
graph, and the total penalty in the graph.

The ANTS Challenge 1 problem by Kestrel Institute deals
with applications of soft graph coloring to a resource schedul-
ing problem. The generalization of such a scheduling prob-
lem comprises of virtual resources, where each virtual re-
source consists of multiple physical resources (radars in case
of ANTS Challenge). Each virtual resource has to be uti-
lized for some duration in a cyclic manner. It is desirable
that all physical resources of a virtual resource be avail-
able when it is being utilized. Thus, simultaneously using
two virtual resources that share a common physical resource
should be avoided. On the other hand, if the time slots in
the cycle are increased to minimize conflicts of physical re-
sources, then the duration after which a physical resource
can be utilized again increases, which is also undesirable. In
the graph abstraction of this problem, vertices represent vir-
tual resources, and virtual resources that share a common
physical resource have an edge between their representative
vertices. The colors represent time slot for utilization of
resources, with resources of the same color being used to-
gether. Thus, it is necessary to minimize the number of
pairs of neighbors having the same color, which can be done
by increasing the number of colors. But the number of colors
also have to be minimized so that the waiting time between
utilization of a resource and its next utilization can be re-
duced. This poses an optimization problem with two con-
flicting objectives, namely the minimization of penalty in the
graph, and the minimization of the number of colors used
to color the graph. Although ANTS problem uses decen-
tralized algorithms to solve this problem, with three radars
to track a target consisting of a virtual resource, there are
many instances where such a resource scheduling model can
be applied in a centralized way. Such a model can be applied
in university timetabling and sensor networks.

1http://ants.kestrel.edu/challenge-
problem/index.html The ANTS Challenge Problem

Although a lot of work has been done on the ANTS Chal-
lenge problem, it is for a distributed real-time model, and
the problem has been investigated with a fixed number of
colors, thus making it a single objective problem. These
factors make the solutions for this problem infeasible for
the biobjective graph coloring problem. Moreover, hardly
any work has been reported in literature treating soft graph
coloring as a biobjective problem. The heuristics for the
standard single objective graph coloring cannot be used di-
rectly for this biobjective problem. Such heuristics would
yield a single optimal solution, one in each objective, and
may not yield many other equivalent solutions. With the
use of ε-constrained methods, most other solutions obtained
are located near the minimal region of the respective crite-
rion of the Pareto-front, and thus do not form the complete
Pareto-front.

However, the design problem considered in this paper is
essentially multiobjective in nature. A multiobjective opti-
mizer yields a set of all representative equivalent and diverse
solutions; the set of all optimal solutions is the Pareto-front.
In this work, we use evolutionary multiobjective optimizer
(EMO) to obtain a (near-) optimal Pareto-front. However,
black-box optimizers, e.g. EMOs, in solving such hard prob-
lems, have their own challenges and difficulties.

Since the problem is hard and the Pareto-front is un-
known, the main issues in such problem instances are: how
to assess the convergence, and how to obtain many represen-
tative diverse solutions across the Pareto-front. Most of the
strategies to assess the convergence need a reference solution
front which is not known for this problem. Moreover, most
diversity preserving strategies attempt to find a uniformly
distributed solution front, which may not be the case with
an unknown problem.

In this work, we use different multiobjective evolutionary
algorithms (MOEAs) and get the solution front. Then, in
order to validate the solutions, we recast some existing graph
coloring heuristics into our biobjective domain and observe
that the solutions obtained by MOEAs are superior to those
obtained by these heuristics. So, we designed two heuristics
that use the solutions obtained from the recast heuristics,
and improved upon their quality. We observe that the so-
lutions now obtained are far superior to those of MOEAs.
Therefore, we embed the knowledge of heuristics in the so-
lution evolving strategy of MOEAs and extend the solution
front towards the actual Pareto-front. The solutions ob-
tained finally by MOEAs are superior to those obtained by
heuristics.

The rest of the paper is organized as follows. In Sec-
tion 2, we present a brief overview of the issues and chal-
lenges in solving multiobjective real-world applications and
discuss the representation scheme for graph coloring, and
the genetic operators and evolutionary algorithms used. In
Section 3, we present the heuristics used to validate the solu-
tion front obtained from MOEAs. We describe, in Section 4,
the use of problem domain knowledge in MOEAs and design
a crossover operator for the representation scheme. In Sub-
Section 4.2, we change the representation scheme for our
problem on the basis of heuristics, and design a problem-
specific crossover operator for this representation. We in-
clude empirical results in Section 5 along with a comparison
with different approaches. Finally, we draw conclusions in
Section 6.
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2. EA: AS A BLACK-BOX OPTIMIZER
Problem Formulation: Given a simple graph G = (V, E),

we need to color the vertices of the graph such that the
number of pairs of adjacent vertices assigned the same color
is minimized while using as few colors as possible. Assign-
ing the same color to any two adjacent vertices incurs a
penalty. Thus, we have to simultaneously minimize both
the objectives, namely, the number of colors used and the
total penalty incurred for the given graph.

2.1 Issues and Challenges
Essentially, performance of the multiobjective optimiza-

tion (MOO) is measured for the following three characteris-
tics:

• Extent: Coverage of the solutions across the front;

• Diversity : Sampling of the solutions across the front;

• Convergence: Distance of the obtained solution-front
from the reference front.

In the multiobjective scenario, EAs often find effectively a
set of mutually competitive solutions without needing much
problem-specific information. However, achieving proper di-
versity in the solution-set while approaching convergence is a
challenge in MOO, especially for unknown problems. Many
techniques and operators have been proposed to achieve di-
versity. The commonly used techniques for preventing ge-
netic drift and promoting diversity are: sharing, mating
restrictions, density count (crowding), clustering and pre-
selection operators. However, it is a common experience of
many researchers that sharing can be beneficial for known
problems, but can also prove surprisingly ineffective if pa-
rameters are not properly tuned. Also, it is the experience
of almost all researchers that proper tuning of sharing pa-
rameters is necessary for effective performance.

A common metric for convergence is the distance metric,
which finds distance of the obtained solution front from the
true Pareto front; this is trivial for known problems. Such
a metric is based on a reference front. In real-world search
problems, location of the actual Pareto-front, by definition,
is unknown. A commonly practiced approach to determine
the reference front for unknown problems is to extract the
reference front from the best solutions obtained so far, and
the reference is incrementally updated with every generation
in iterative refinement based algorithms.

For solving unknown problems there is a common con-
cern whether or not the obtained solution set is close to
the true Pareto-front. Apparently, it seems that the EA
has converged to the Pareto front but conceivably it may
have got stuck at some sub-optimal point. Such a local min-
ima cannot be detected, for unknown problems, by most of
the known metrics because a local front obtained may give
excellent numerical values for extent, diversity and conver-
gence [22].

2.2 Algorithms and Operators
From the viewpoint of EMO, the optimization problem

attempted in this paper is characterized by the following
features:

• No a priori knowledge of the solution space is avail-
able.

• There exists no information regarding a reference front.

• No experimental result from any polynomial time good
approximation algorithm is available.

There are many MOEAs and their implementations. See-
ing the hardness of the problem, we select those MOEAs,
which are steady-state algorithms and use archives that can
be updated with the genetic evolutions. For this, among
the many such algorithms, we select NSGA-II [8], SPEA2
[8] and PCGA [21]. These algorithms do not need much
problem-dependent knowledge.

Chromosome Encoding: The efficiency of the evolutionary
search depends how a problem (in this case, a graph color-
ing) is represented in a chromosome and the reproduction
operators work on the encoding. There are many encod-
ing schemes to represent graph coloring - see [6, 12, 17] for
a detailed review and comparison. In the first phase, we
used the most intuitive encoding scheme among them, the
assignment approach [17]. In this approach, each allele in
the chromosome represents a vertex of the graph, and is as-
signed an integral value denoting the color of that vertex for
that particular instance of coloring.

Initial Population: We generated the initial population by
randomly assigning colors to the vertices in each individual
graph. We observed that the genetic operators used become
weak in distributing population along the end-point (the left
extreme in Fig. 1, where the number of colors used is very
small) of the solution-front. This is natural as we assign
uniformly distributed random colors, therefore, it is very
unlikely that individuals having very few distinct colors are
generated. Thus, the initial population is heavily skewed
towards the right side, i.e., in the region where number of
colors is large.
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Figure 1: Solutions by an EA for a 184 node graph.

To balance this skew, we injected a few individuals heavily
skewed towards the left side, i.e., where number of colors is
very small. With such specific chromosomes, we used EAs
again, and got solutions having better coverage across the
front, as shown in Fig. 1.

Genetic Operators: In this phase, we used simple genetic
operators. For crossover, we used the standard one-point
crossover. The mutation operator selects random alleles
from each chromosome and reassigns them random colors.
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3. HEURISTIC ALGORITHMS
Now that we have obtained a solution front, we wish to

assess its quality. For this we need some reference front, as
no knowledge of the actual solution front is available. We
use heuristic algorithms to get a reference front, which is at
least as good as the solution front that we obtained from the
EA.

Many heuristics have been designed for the classical single-
objective graph coloring problem, where the only objective
is to minimize the number of colors used to color the graph,
see for example Largest Degree First [31], Smallest Degree
Last [24], DSatur [4], Iterated Greedy [7] and Backtracking
Correction [2]. Most of these heuristics are based on the or-
dering of vertices for coloring. The ordered vertices are then
colored in a greedy manner, using the lowest color available
to color a vertex.

Recently, Hussein et al. [1] combined two heuristics for
obtaining a better ordering of vertices, by using the second
heuristic for tie-breaking in determining the order. They
combined Largest Degree Ordering (LDO) and Incidence
Degree Ordering (IDO), using the latter for tie-breaking to
obtain a new heuristic, and combined Saturation Degree Or-
dering (SDO or DSatur) and Largest Degree Ordering, using
LDO for tie-breaking to obtain another heuristic. Their re-
sults suggest the latter combination outperforms the other
heuristics used individually and in combination.

These heuristics are designed for the single-objective graph
coloring problem, and thus generate a single solution. To
map these heuristics to the biobjective domain, we use them
to obtain a coloring for the graph, but put an upper bound
on the total number of colors used. This process is repeated
with the upper bound on the number of colors used iterating
over integers starting from one to the value which yields a
solution with zero penalty. This zero-penalty solution corre-
sponds to the extreme case, with the number of colors used
being the same as that for the solution for the single objec-
tive graph coloring with that heuristic. The greedy coloring
scheme had to be accordingly modified, so that for every
vertex, the color which incurs the least penalty is chosen.

Algorithm 1 Heuristics in biobjective domain

Input: G = (V, E) - a simple uncolored graph
Output: S - Set of colorings of graph G

1: Initialize S ← φ, colour limit← 1, pty ← inf
2: while pty 6= 0 do
3: G′ ← single objective heuristic(color limit, G)
4: Add the colored graph G’ to S
5: pty ← penalty(G′)
6: color limit← color limit + 1
7: end while
8: Output S

3.1 Adapted Biobjective Heuristics
The heuristic frameworks that we used are listed below,

along with their performance analysis (Fig. 3).

• Smallest Degree Last: Smallest Degree Last selects the
vertex having the least degree from the graph, and
sets this vertex to be colored last. It then remove this
vertex from the graph, and the process is repeated on
the remaining graph.

• DSatur-LDO: DSatur selects the vertex having the ma-
ximum number of differently colored neighbors, as the
next vertex to be colored. A tie in saturation degree
is resolved by using LDO, in which the vertex with
the largest degree is selected. This heuristic outper-
formed DSatur, IDO, LDO and the other combination
suggested by Hussein et al. [1], both in the single-
objective domain as reported by Hussein, and in our
biobjective domain. It also outperformed the Smallest
Degree Last heuristic in our biobjective domain.

• DSatur-IDO-LDO: Following a similar approach, we
introduced another heuristic in which we used IDO
as the primary tie-breaking criteria, and LDO as the
secondary tie-breaking criteria. Thus, in case of a tie
in the saturation degree, IDO selects the vertex with
the largest colored neighbors for coloring next. As in
the case of DSatur, IDO also uses information of the
colors of the neighbors, and was thus used before LDO.
Unresolved ties are resolved by LDO. This combination
outperformed all the other heuristics discussed so far.

Despite improvements over other heuristics, the solution
front generated by DSatur-IDO-LDO was still inferior to the
EA solution front (Fig. 3). Hence, we tried to improve the
performance of DSatur-IDO-LDO. The two improvements
we tried are discussed below:
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3(R) − 1(B) = 2
2(Y) − 1(B) = 1

Figure 2: G vertex inside square-box is under con-
sideration; its penalty is minimized by changing its
color to R or Y. (a) Penalty adjusting heuristic 1
selects either of R or Y randomly. (b) Penalty ad-
justing heuristic 2 computes the ranks of R and Y
colors and chooses the higher ranked R color.

Penalty Adjusting Heuristic 1
As we can see from Algorithm 1, we start by generating
a coloring which uses two colors and stop when we have
obtained a zero penalty coloring. These two solutions are
the extreme points of the solution-front. This ensures a
good extent of the solution-front. Also, as we iterate over
all the colors between these extremal points, we get good
diversity in the front. But the convergence of this front is
inferior to the front we obtained by using EA as a black-box
tool. Hence, we focus more on improving the convergence
by trying to reduce the penalty once we have obtained a
coloring.

In order to reduce the penalty for a given coloring, we
scan over all the vertices of the graph and reassign them a
color which minimizes the penalty for that vertex. In case
we have more than one color which minimizes the penalty
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for a vertex, we choose any of these colors randomly. This is
described in Algorithm 2. It ensures that the total number of
clashes, and hence penalty of the graph, does not increase
and has a good chance of decreasing. Indeed, the results
show that the front obtained has a better convergence than
that obtained by using EA (Fig. 3).

Algorithm 2 Penalty Adjusting Heuristic 1

Input: G = (V, E) - a simple uncolored graph
Output: Set S of 2-tuples (k, p), where k is the number of
colors used to color G and p is the penalty incurred for that
coloring

1: Initialize k ← 2, p←∞, S ← φ

2: while p 6= 0 do
3: Obtain a coloring fk(G) using the DSatur-IDO-LDO

heuristic, where fk : V (G) → Ck is a coloring of G
using k colors with |Ck| = k.

4: for all vertices u ε V (G) do
5: if ∃ v ε Neighbor(u), color(u) = color(v) then
6: Find a set of colors NC ⊂ Ck such that each color

in NC causes the minimum number of conflicts
with the colors of vertices in Neighbor(u)

7: Assign any random color c ε NC to the vertex u

8: end if
9: end for

10: p← total penalty in coloring fk(G)
11: Add (k, p) to set S

12: k ← k + 1
13: end while
14: Output S

Penalty Adjusting Heuristic 2
Here we propose a small modification to the Penalty Adjust-
ing Heuristic 1 proposed above. In Algorithm 2, line 7 states
that we select and assign any random color from the set NC

to the vertex u under consideration. Instead of selecting a
random color, we apply another heuristic to select a color
that is more likely to reduce the total penalty of the graph.
This heuristic for color selection is described in Algorithm 3
and demonstrated in Fig. 2.

We observe that this does not significantly improve upon
the convergence obtained from Penalty Adjusting Heuristic
1, but is still much better in terms of convergence than the
other heuristics (Fig. 3).

4. EA: USING PROBLEM KNOWLEDGE
Now we have obtained reference fronts for our biobjectve

problem using both EA and heuristics. So we aim to im-
prove upon these reference fronts by incorporating specific
problem domain knowledge in the EA. We do this in two
stages. In the first stage, we re-design the evolutionary op-
erators for the representation used in Section 2. Next, we
change the representation scheme, to an order-based rep-
resentation and design evolutionary operators better suited
for this representation.

4.1 Problem Knowledge in Evo. Operators
Here we use the same assignment based chromosome rep-

resentation as used in Section 2, where a color is assigned
to each vertex. The initial population is also biased in the
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Algorithm 3 Penalty Adjusting Heuristic 2 :: Modifica-
tions over Heuristic 1 for selecting colors

Input: G = (V, E) - a simple uncolored graph, a vertex u,
and set NC of colors
Output: Selected color for vertex u

1: if NC consists of only one color then
2: Assign that color to vertex u

3: else
4: for ∀ color c ε NC do
5: color rank(c)← 0
6: for ∀ v ε Neighbor(u) do
7: if color(v) = c then
8: Construct a set Fk containing sizes of color

classes for all colors in Ck, with each class con-
taining the vertices in Neighbor(v)− {u}

9: color rank(c)← colour rank(c) + (Number of
vertices w ε Neighbor(v)−{u} having color c)−
(size of minimum color class in Fk)

10: end if
11: end for
12: end for
13: Assign a color c to vertex u, such that c ε NC and

colour rank(c) ≤ color rank(c′)∀c′ ε NC

14: end if
15: Output c

same way as in Section 2. We design a crossover operator
that uses problem domain knowledge.

Genetic Operators: The crossover operator that we used is
an adaptation of the Greedy Partition Crossover (GPX) de-
signed by Galinier and Hao [17]. The GPX was designed for
the standard single objective graph coloring problem, and
tries to achieve a k-coloring of the graph, when the number
of colors k is fixed a priori. In GPX, the two parents are
considered alternately, and vertices in the color class with
the maximal number of unassigned vertices in the consid-
ered parent are assigned an unused common color in the
child, and deleted from both the parents. Galinier and Hao
try to obtain the minimum value of k for which a k-coloring
is obtained.

In our biobjective problem, we extract only those vertices
from the largest color partition in the parent under consid-
eration, which incur minimum penalty among all vertices
in that partition, and assign these vertices an unused com-
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mon color in the child. When any other vertices from this
color partition of the parent are selected in a later iteration,
they are assigned the same color as that assigned earlier
to other vertices from this partition. This Penalty based
Color Partitioning crossover (PCPX) algorithm is described
in Algorithm 4. We used the polynomial mutation operator
suggested by Deb [8]. Real values of colors obtained after
mutation were rounded off to the nearest integer.

We observe that the solution front obtained using Penalty
based Color Partitioning crossover has slightly better con-
vergence than EA used as a black-box tool for large values
of number of colors. That is, when more colors are available,
it gives a lower penalty coloring than by EA. For small num-
ber of colors, EA gives lower penalty coloring. Nevertheless,
the best results from heuristics (obtained by using Penalty
adjustment) have better convergence than both of them.
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Algorithm 4 Penalty based Color Partitioning crossover
(PCPX)

Input: Parents P1 and P2
Output: T - Offspring

1: Initialize selected parent P = P1
2: while any vertex in T still not assigned a color do
3: Obtain largest color partition C from P

4: Extract set of vertices minP from C which incur min-
imum penalty among vertices in C

5: if color of C not mapped to a color in T then
6: Assign a new color mapping in T for this color of C

7: end if
8: Assign mapped color of C to vertices of minP in T

9: Remove all vertices of minP from both parents P1
and P2

10: Swap selected parent P from P1 to P2 or from P2 to
P1

11: end while
12: Output T

4.2 Order Based Representation Scheme
Most of the heuristics for graph coloring are based on the

ordering of vertices. We incorporate this in our chromosome

encoding scheme to make it an order based representation.
This representation scheme has been widely used for solv-
ing graph coloring problems using EA (see [6]) and has been
generally found to give good results in the single objective
domain. As an ordering is essentially a permutation of ver-
tices, we designed some crossover operators for permutations
while also incorporating problem domain knowledge.

Chromosome Encoding: The order-based encoding was
used. The value assigned to the ith allele in the chromo-
some indicates the vertex that will be the ith vertex to be
colored. There is another allele that stores an integer repre-
senting the maximum number of colors k that can be used
to color the graph. This allele is necessary to decide the
upper bound on the number of colors to be used to color the
graph.

Initial Population: The initial population consists of indi-
viduals having random permutations of the vertices.

Coloring Scheme: We need to color the vertices in the
order provided by the chromosome in order to compute the
total penalty incurred for that ordering of vertices. We use
the greedy coloring scheme for coloring. Each vertex is as-
signed the color which incurs the least penalty in the current
coloring of the graph, and the number of colors used does
not exceed the maximum number of colors k allowed for that
individual.

Genetic Operators: We first used the order-based crossover
described in [6] and named as Permutation One Point Crosso-
ver (POP) [26]. Next, we incorporate problem knowledge in
the crossover by using ideas from some of the heuristics we
used. The Largest Degree Ordering (LDO) heuristic dis-
cussed in Section 3 suggests that the vertices having large
degree should be colored first. Our Degree Based Crossover
operator gives a preference to vertices having large degree in
the ordering sequence. This Degree Based Crossover (DBX)
operator is given in Algorithm 5. We used the swap muta-
tion [27] on the ordering of vertices.

Algorithm 5 Degree Based Crossover (DBX)

Input: Parents P1 and P2
Output: T - Offspring

1: Choose a random mating point m

2: Assign vertices having order 1 to m in P1 the same order
in T , that is, copy vertices from 1 to m from P1 to T

3: for all vertices u in P2 starting from order 1 in P2 do
4: if u not assigned an order in T then
5: if there exists some vertex v in the ordering in T

having degree lesser than degree of u then
6: Find the vertex v having minimum order in T

and with degree less than degree of u

7: Increment by one the order of all vertices having
current order greater than or equal to that of v

8: Assign the original order of v to u

9: else
10: Assign the lowest available order to u

11: end if
12: end if
13: end for
14: Output T

The allele representing the number of colors k that can
be used for coloring does not take part in the Degree Based
Crossover. As this is a single element, we cannot use simple
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one-point crossover operator. For this, we used the Simu-
lated Binary Crossover (SBX) [9] and polynomial mutation
proposed by Deb et al. [8].
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Figure 5: Degree based crossover for order based
representation compared with best heuristic results
and assignment based representation

The order-based representation scheme vastly improved
the solution quality. Incorporating problem knowledge in
the crossover further improved the results, which are shown
in Fig. 5 along with the results of the best heuristic and the
assignment based EA.

5. RESULTS AND DISCUSSIONS
We tested our heuristics and evolutionary algorithms for

the biobjective graph coloring problem on the benchmark
data taken from the DIMACS Graph Coloring Challenge2.
The DIMACS data is a collection of test data sets obtained
from various sources for a variety of problems requiring graph
coloring. We considered graphs of varying densities having
120, 128, 184, 450, 496 and 864 nodes. Here, we discuss the
results obtained for coloring the mulsol.i.3.col graph having
184 nodes and 3916 edges. The algorithms that we used
give a similar performance for the other graphs as well . We
observe the results after 3000 generations, starting with an
initial population of 1000 individuals. We keep the crossover
probability as 0.8 and mutation probability as 0.01.

We quantitatively evaluate the solution fronts obtained
from the algorithms we have used. We compute C-measure
[30], convergence [10], spread [8] and hypervolume (S mea-
sure) [30] for the basic MOEA, best heuristic result, and
the two hybridized MOEAs. The convergence metric mea-
sures the convergence of the obtained solution set against a
reference set. In the case of unknown problems, approxima-
tion sets of all the considered algorithms are combined and
non-dominated approximation set is computed to act as a
reference set. A lower value of the metric indicates better
convergence. Ideally, this should be zero. The spread metric
also uses a reference set to measure the average distribution
of points in obtained solution set and the distance between
the extreme solutions in obtained solution set in compari-
son to extreme solutions in reference set. Here also, a lower

2http://mat.gsia.cmu.edu/COLOR/instances.html has
the graph coloring instances

Table 1: C-measure, Convergence, Spread and Hy-
pervolume (S-measure) metric values for a graph of
184 nodes and 3916 edges.
Algorithm Basic EA Best Heur PCPX DBX
C-measure 1.0000 0.5667 1.0000 0.0000
Convergence 0.0902 0.0218 0.0596 0.0000
Spread 1.8111 1.2903 1.5987 1.3329
Hypervolume 90938 92336 89324 93059

value of the metric indicates better spread. The hypervol-
ume metric provides the volume of search space covered by
the obtained set of solutions with reference to a reference
point. Hence, a higher value indicates superiority of solu-
tion (better solution). The computed values shown in the
Table 1 are for a typical case. A total of 10 runs were made
on each test graph for the EAs, and the results shown are
for one representative run. It was observed that for each
of the benchmark test graphs, the minimum number of col-
ors required for exact coloring was equal to the best known
coloring for the graph, when using the order based represen-
tation with DBX.

As can be seen from Table 1, the order-based represen-
tation used with a Degree based Crossover gives the best
convergence, for both the C-measure and convergence met-
rics. The heuristic C-measure and convergence are better
than both the basic EA and Penalty based Color Parti-
tioning Crossover for the assignment based representation,
which were both completely dominated by the order based
representation. The heuristic gives the best spread, as we
iterate over all values of the number of colors k used for col-
oring. Thus, the solutions are uniformly spaced between the
heuristics. The EA with order based representation using
DBX crossover follows the heuristic in the spread metric.
The solutions from all EA based algorithms tend to give
slightly poorer spread than most heuristics as they generate
solutions stochastically, and some solutions along the front
may not be generated. For example, in our case, there may
arise gaps in the solution front for some runs of the algo-
rithm, where the soft coloring of the graph for some value k

of colors is not generated in the solution set. In the hypervol-
ume measure, the EA with order-based representation with
DBX crossover again performs the best, with the heuristic
following closely behind.

6. CONCLUSIONS
We observe that MOEAs perform poorly when used with-

out any problem knowledge. Incorporating problem knowl-
edge in the crossover (PCPX) slightly improved the per-
formance. But the heuristics outperform both of them in
all the metrics that we used. This indicates that the prob-
lem knowledge must be introduced in some other aspects
of the EA strategy. Changing the chromosome representa-
tion scheme to an order based representation drastically im-
proved the performance. Further improvement was achieved
by modeling the crossover (DBX) on heuristics. Moreover,
the poor performance of the assignment based representa-
tion may be due to the symmetry in the solution space,
where coloring may be different but the color classes may
still be the same, leading to the same objective values. This
symmetry tends to increase the size of the search space ex-
ponentially.
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Hybridizing the EA by changing the representation to an
order based representation made use of a very common tech-
nique used by graph coloring heuristic algorithms. Also, de-
signing a problem specific crossover operator based on some
of the heuristics, gave superior results than both the heuris-
tics and MOEAs.
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