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ABSTRACT

We propose a Particle Filter model that incorporates Parti-
cle Swarm Optimization for predicting systems with multi-
plicative noise. The proposed model employs a conventional
multiobjective optimization approach to weight the likeli-
hood and prior of the filter in order to alleviate the particle
impoverishment problem. The resulting scheme is tested on
a well–known test problem with multiplicative noise. Re-
sults are promising, especially in cases of high system and
measurement noise levels.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization; G.3 [Proba-

bility and Statistics]; I.6.8 [Simulation and Modeling]:
Types of Simulation

General Terms

Algorithms

Keywords

Sequential Monte Carlo Simulation, Particle Filter, Particle
Swarm Optimization

1. INTRODUCTION
Particle Filters (PFs) are popular models for estimating

the state of a dynamical system as observations become
available on–line [1, 3, 6]. PFs generate a set of random
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samples, which is propagated and updated recursively in or-
der to approximate the state probability density function
(pdf) of the system. Therefore, they are capable of address-
ing any nonlinearity and noise distribution. PFs rely on im-
portance sampling, i.e., they use proposal distributions to
approximate the posterior distribution satisfactorily. The
most common choice of proposal distribution is the prob-
abilistic model of the states evolution, i.e., the transition
prior. This choice, however, fails if the likelihood is highly
peaked compared to the prior or if it lies in the tail of the
prior.

To overcome this problem several methods have been pro-
posed in the literature. A popular approach is the Unscented
Particle Filter (UPF) [16], which uses the Unscented Kalman
Filter [7] approximation as the proposal distribution of the
PF. This combination outperforms other existing filters but
it comes at the cost of heavy computational burden. Recent
approaches are based on optimization methods to avoid the
resampling stage by biasing the prior sample towards re-
gions of the state space with high likelihood [11, 15, 17]. An
approach that employs Particle Swarm Optimization (PSO)
for this purpose was recently proposed [14]. Although the
produced filter with PSO outperformed the generic PF and
UPF (in terms of computational load), the experiments were
conducted only for one system with very small observation
noise. Clearly, in such cases, the reliability of measurement
plays a crucial role in the performance of the algorithm.
Also, in all the aforementioned studies, additive noise was
considered solely.

In this paper, we propose a PF model with PSO for sys-
tems with multiplicative noise. The proposed approach at-
tempts to address the problem of biasing the sample sig-
nificantly towards either the prior or the likelihood. This
problem can be detrimental for the algorithm’s performance
in cases of highly noisy systems and measurements. The
problem is tackled by considering a conventional multiobjec-
tive optimization problem where the likelihood and the prior
distribution are aggregated into a single objective function.
Then, modifying the prior sample such that the resulting
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particles maximize the objective function, results in a new
sample that assumes a more balanced distribution between
the prior and the likelihood. The maximization of the cor-
responding objective function is performed using the PSO
algorithm, which has been shown to be very efficient in a
plethora of problems in science and engineering [5, 9, 10,
13]. The resulting scheme is tested on a well–known test
problem with multiplicative noise. The reported results are
promising, especially in cases of high system and measure-
ment noise levels.

The paper is organized as follows: in Section 2, we briefly
review PF and PSO, while, in Section 3, the proposed ap-
proach is presented. Section 4 is devoted to experimental
results and the paper concludes in Section 5.

2. BACKGROUND INFORMATION
In the following subsections we describe the basic concepts

of Particle Filtering (PF) as well as the PSO algorithm.

2.1 Particle Filtering
In this section we expose the basic concepts of PF, based

on the introduction provided in [6]. We consider the gen-
eral discrete–time, nonlinear, non–Gaussian state estimation
problem. The signal (state) vector,

xt ∈ R
nx , t > 0,

is assumed to evolve according to the system model

xt+1 = f(xt, wt),

where f : R
nx × R

nw → R
nx is the (known) system tran-

sition function and wt ∈ R
nw is a zero mean, white–noise

sequence of known pdf which is independent of past and
current states. At discrete time moments, measurements

yt ∈ R
ny , t > 1,

become available. These measurements are related to the
state vector via the observation equation

yt = h(xt, et),

where h : R
nx × R

ne → R
ny is the (known) measurement

function and et ∈ R
ne is a zero mean, white–noise sequence

of known pdf, independent of past and current states and
system noise.

In other words, the signal, {xt}t>0, is an unobserved (hid-
den) Markov process of initial distribution p(x0) and prior
distribution p(xt+1 | xt). The observations, {yt}t>1, are
conditionally independent given the process {xt}t>0, and
their marginal distribution is p(yt | xt). This hidden Markov
model can be shortly described by p(x0) and p(xt+1 | xt) for
t > 0, and p(yt | xt) for t > 1.

The main goal in PF is the recursive estimation in time of
the filtering distribution p(xt | y1:t), i.e., the approximation
of the pdf of the current state xt, given all the measurements
up to time t. This pdf may be obtained recursively in two
stages: prediction and update.

Suppose that the required pdf, p(xt | y1:t), at time step t

is available. Then using the system model it is possible to
obtain the prior pdf of the state at time step t + 1 (predic-
tion):

p(xt+1 | y1:t) =

∫

Rnx

p(xt+1 | xt)p(xt | y1:t) dxt. (1)

The transition pdf, p(xt+1 | xt), is given by

p(xt+1 | xt) = pwt

(

f
−1(xt, xt+1)

)
∣

∣det(Jf−1)
∣

∣ . (2)

Then, at time step t + 1, a measurement, yt+1, becomes
available and may be used to update the prior via Bayes
rule (update):

p(xt+1 | y1:t+1) =
p(yt+1 | xt+1)p(xt+1 | y1:t)

p(yt+1 | y1:t)
. (3)

The likelihood function, p(yt+1 | xt+1), is given by

p(yt+1 | xt+1) = pet+1

(

h
−1(xt+1, yt+1)

)

|det(Jh−1)| . (4)

In Eqs. (2) and (4), |det(J)| denotes the absolute value of
the Jacobian determinant. The normalizing denominator
p(yt+1 | y1:t) in Eq. (3) is given by

p(yt+1 | y1:t) =

∫

Rnx

p(yt+1 | xt+1)p(xt+1 | y1:t) dxt+1,

and it is usually unknown. However, it is sufficient to eval-
uate:

p(xt+1 | y1:t+1) ∝ p(yt+1 | xt+1)p(xt+1 | y1:t).

Let {x
(i)
t }i=1,2,...,N be a set of random samples from the

pdf p(xt | y1:t). PF constitutes an algorithm for propa-
gating and updating these samples to obtain a set of val-

ues {x
(i)
t+1}i=1,2,...,N , distributed approximately as p(xt+1 |

y1:t+1). Thus, the filter is an approximation mechanism
(simulation) of the relations in Eqs. (1) and (3). Let us now
illustrate the prediction and update phase in the simulation.

Prediction: Each sample, x
(i)
t , is passed through the sys-

tem model to obtain samples, x
(i)∗
t+1, i = 1, 2, . . . , N , from the

prior at time step t + 1, i.e., x
(i)∗
t+1 = f(x

(i)
t , w

(i)
t ), where w

(i)
t

is a sample drawn from the pdf of the system noise p(wt).
Update: On receipt of the measurement yt+1, evaluate the

likelihood p(yt+1 | x
(i)∗
t+1) of each prior sample and obtain a

normalized weight q
(i)
t+1 for each sample, i.e.,

q
(i)
t+1 =

p(yt+1 | x
(i)∗
t+1)

∑N

j=1 p(yt+1 | x
(j)∗
t+1 )

, i = 1, 2, . . . , N.

Thus, a discrete distribution over {x
(i)∗
t+1}i=1,2,...,N , with prob-

ability mass q
(i)
t+1 for each i, is defined. Next, resampling

takes place N times from this (discrete) distribution to gen-

erate samples {x
(i)
t+1}i=1,2,...,N , so that for any j = 1, 2, . . . , N ,

it holds that

P(x
(j)
t+1 = x

(i)∗
t+1) = q

(i)
t+1, i = 1, 2, . . . , N.

The above steps of prediction and update form a single iter-
ation of the recursive algorithm, which is initialized using N

samples, {x
(i)
0 }i=1,2,...,N , drawn from the known initial pdf

p(x0). The samples, {x
(i)
t+1}i=1,2,...,N , are approximately dis-

tributed as the required pdf p(xt+1 | y1:t+1) [6].

2.2 Particle Swarm Optimization
PSO is a stochastic, population–based optimization al-

gorithm. Since 1995 when it was originally proposed by
Eberhart and Kennedy [4], PSO has been shown to be very
efficient in a plethora of applications [5, 9, 13]. Its efficiency,
simplicity as well as adaptability to different problems has
rendered PSO as a very attractive approach for solving nu-
merical optimization problems.
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Let S ⊂ R
D be a D–dimensional search space and f :

S → R be the objective function under minimization. PSO
employs a population, S, called swarm, that consists of N

search points called particles,

S = {x(1)
, x

(2)
, . . . , x

(N)}.

Each particle is a D–dimensional vector, x(i) ∈ S, i =
1, 2, . . . , N , and it moves with an adaptive velocity, v(i), in
S. Also, it has a memory where it stores the best position
it has ever visited, b(i) ∈ S.

An iteration of the algorithm corresponds to an update
of the positions of all particles. The update for each parti-
cle, x(i), is performed by computing the new velocity of the
particle, taking into account both its own experience as well
as the experience of some other particles that constitute its
neighborhood, NB(i) [8]. The most common neighborhood
scheme is the ring topology, where the particles are assumed
to be organized on a ring, communicating with their im-
mediate neighbors. Under this topology, a neighborhood of
radius r of x(i) is defined as the set

NB
(i)
r = {x(i−r)

, . . . , x
(i)

, . . . , x
(i+r)},

where x(1) follows immediately after x(N). We denote with
gi the index of the best particle in NB(i), i.e., the particle
that has visited the best position in S in terms of its function
value:

f(b(gi)) 6 f(b(j)),

for all j such that xj ∈ NB(i). Let t to be the iteration
counter. Then, the swarm is updated using the equations [2],

v
(i)
t+1 = χ

[

v
(i)
t + c1R1(b

(i)
t − x

(i)
t ) + c2R2(b

(gi)
t − x

(i)
t )

]

,

x
(i)
t+1 = x

(i)
t + v

(i)
t+1,

where i = 1, 2, . . . , N (all vector operations are performed
componentwise). The parameter χ is called the constric-
tion coefficient and it is used to constrain the magnitude of
the velocities during the search. The positive constants c1

and c2 are referred to as the cognitive and social parameter,
respectively; while R1, R2 are random vectors with compo-
nents uniformly distributed in [0, 1]. Default values for χ,
c1 and c2 are determined in the theoretical analysis of Clerc
and Kennedy [2]. The best positions of the particles are
updated at each iteration according to

b
(i)
t+1 =







x
(i)
t+1, if f(x

(i)
t+1) < f(b

(i)
t ),

b
(i)
t , otherwise,

i = 1, 2, . . . , N.

In the next section, we describe the proposed approach that
incorporates PSO in PF.

3. THE PROPOSED APPROACH
The main disadvantage of PF is the particle impoverish-

ment problem, which is a direct consequence of the resam-
pling stage of the algorithm. This problem appears in cases
where the region of the state space where the likelihood,

p(yt+1 | x
(i)∗
t+1), is significant is small, compared to the re-

gion where the prior, p(xt+1 | y1:t), is significant. As a result,

many of the samples, x
(i)∗
t+1, i = 1, 2, . . . , N , assume small

weights, q
(i)
t+1, and they are not selected in the resampling

stage. The effect is more intense if the narrow likelihood

falls in a region of low prior density, i.e., in the tail(s) of the

prior, where the samples x
(i)∗
t+1 are few.

We address this problem by intervening at PF after the

generation of the prior samples, x
(i)∗
t+1, i = 1, 2, . . . , N , in

the prediction phase and before resampling. The aim is
to move these samples towards regions of the state space
where the likelihood is significant, without allowing them to
go far away from the region of significant prior. Therefore,
a multiobjective problem arises, with two competing objec-
tives. The first objective consists of a function, F1, that is
maximized at regions of high likelihood, while the second
objective, F2, is maximized at regions of high prior. Assum-
ing that the two objective functions are known, the simplest
approach for solving the multiobjective problem is through
a conventional weighted aggregation (CWA) approach that
combines the two objectives into a single one, resulting in
the maximization problem:

max
x∈S

F (x) = α1F1(x) + α2F2(x), (5)

where α1 and α2 are non–negative weights with α1+α2 = 1,
and S being the state (search) space of the prior samples.

Thus, the generated prior samples, x
(i)∗
t+1, i = 1, 2, . . . , N , are

considered as the initial swarm in PSO, and they are let
to move in order to maximize the objective function F (x).
The resulting samples, after maximization, consist of the
best positions ever achieved by the PSO particles during
the search. These best positions are now considered as the
sample that will undergo resampling from the PF. The rest
of the procedure from this point is the same as for the plain
PF. Therefore, at each iteration of the PF, an optimization
phase intervenes between prediction and update.

The CWA approach is selected due to its straightforward
applicability, simplicity, and its ability in tackling multiob-
jective problems with PSO satisfactorily [12, 13]. More-
over, CWA allows the user to modify the weights as de-
sired in cases where special attention must be paid to either
the system model (prior) or to the observation (likelihood).
Obviously, the objective functions F1 and F2 are problem–
dependent, since they are intimately related to the likelihood
and prior of the system at hand. In the following paragraphs,
we illustrate the derivation of these objective functions for
the studied test problem.

We considered the following nonlinear model [6] with mul-
tiplicative noise:

xt+1 = s(xt, wt) = f(xt)(1 + wt), (6)

yt = m(xt, et) = h(xt)(1 + et), (7)

where,

f(xt) = 0.5xt +
25xt

1 + x2
t

+ 8 cos(1.2t),

and

h(xt) =
x2

t

20
,

where wt, et, are zero–mean Gaussian white noises with vari-
ances Q and R, respectively. In order to avoid singularities
in computations, we will assume hereafter that f , h, as well
as a sample point, x, cannot be exactly zero. According to
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Table 1: The two objective functions.

F1

(

x
(i),PSO
t+1

)

=

∣

∣

∣

∣

1

h
(

x
(i)∗
t+1

)

∣

∣

∣

∣

1√
2πR

exp

{

− 1
2R

[

yt+1−h
(

x
(i)∗
t+1

)

h
(

x
(i)∗
t+1

)

]2
}

F2

(

x
(i),PSO
t+1

)

= 1√
2πQ

exp

{

− 1
2Q

[

x
(i),PSO
t+1 −x

(i)∗
t+1

x
(i)∗
t+1

]2
}

Eq. (6), it holds that

xt+1 = f(xt) + f(xt)wt ⇒

wt =
xt+1 − f(xt)

f(xt)
= s

−1(xt, xt+1).

Similarly, from Eq. (7) we have

yt = h(xt) + h(xt)et ⇒

et =
yt − h(xt)

h(xt)
= m

−1(xt, yt).

Thus, the transition pdf is given by

p(xt+1 | xt) = pwt

(

s
−1(xt, xt+1)

)

∣

∣

∣

∣

d

dxt+1
s
−1

∣

∣

∣

∣

=

∣

∣

∣

∣

1

f(xt)

∣

∣

∣

∣

pwt

(

xt+1 − f(xt)

f(xt)

)

,

and the likelihood is given by

p(yt | xt) = pet

(

m
−1(xt, yt)

)

∣

∣

∣

∣

d

dyt

m
−1

∣

∣

∣

∣

=

∣

∣

∣

∣

1

h(xt)

∣

∣

∣

∣

pet

(

yt − h(xt)

h(xt)

)

,

with pwt(·), pet(·), being Gaussian pdfs. Therefore, the re-
sulting objective functions that will be used in Eq. (5) are

reported in Table 1, where x
(i),PSO
t+1 is the i–th particle of

the swarm in PSO, x
(i)∗
t+1 is the corresponding sample point

where x
(i),PSO
t+1 was initialized at, and yt+1 is the observation.

Note that the time index t refers to the PF system iteration
and not to the PSO iteration.

4. EXPERIMENTAL ANALYSIS
The proposed approach was applied for the model defined

by Eqs. (6) and (7) for different system and measurement
noise levels,

Q,R ∈ {0.01, 0.05, 0.1, 0.3, 0.5} ,

that correspond to a disruption of 1%, 5%, 10%, 30% and
50% of the system or measurement value, respectively. The
particle filter was used for 60 time steps, i.e., t = 1, 2, . . . , 60.
At each time step, an optimization phase was triggered after
generating the sample from the prior. Two sample sizes
were considered in our experiments, namely N = 20 and
N = 50 particles. The sample was passed as initial swarm
to the PSO, which performed 50 iterations and returned the
best positions as the final sample. The PSO parameters
were the typical χ = 0.729, c1 = c2 = 2.05, in all cases,
while the selected variant was the global one, in order to

speed up the swarm’s convergence. The objective function
defined by Eq. (5) was used in the optimization phase for
three different levels of α1 (α2 is simply computed as 1−α1),
namely 0.2 (more important prior), 0.5 (equal importance)
and 0.8 (more important likelihood).

For each parameter level, 100 independent experiments
were performed. At each experiment, the Root Mean Squa-
red (RMS) error was computed for the 60 system time steps.
These RMS errors were averaged over all experiments, and
the mean number as well as the corresponding variance was
recorded, both for the plain PF approach as well as for the
proposed approach that will be denoted PSO–PF hereafter.
Moreover, the Wilcoxon Rank Sum test was applied to com-
pute the statistical significance between each PSO–PF case
and the plain PF, with p–values under 0.05 being considered
as statistically significant.

All the obtained results are reported in Tables 2 and 3,
for the case of sample size N = 20 and N = 50, respectively.
More specifically, the first two columns of the tables de-
termine the corresponding system and measurement noise
level. The rest of the columns contain the mean number
and variance (in parenthesis) of the plain PF as well as the
three PSO–PF approaches, along with their corresponding
p–values. The cases where PSO–PF outperformed PF are
either boldfaced, if the corresponding p–value was less or
equal to 0.05, or emphasized, if the corresponding p–value
was larger than 0.05. In the rest of the cases, plain PF
outperformed PSO–PF (with or without statistical signifi-
cance).

For the case of N = 20 particles and system noise level
equal to 0.01, we observe in Table 2 that PF outperforms in
almost all cases PSO–PF. However, the picture changes as
system noise increases. For system noise level 0.05, PSO–PF
outperforms marginally the plain PF, although without sta-
tistical significance in most cases. The differences between
the different variants of PSO–PF with respect to the value
of α1 are negligible. Further increase in the system noise
level, especially from 0.3 and higher, results in clear out-
performance of the plain PF by all PSO–PF variants, with
statistical significance in almost all cases. In these cases, the
smaller values of α1 exhibited the best results, i.e., the small-
est mean averaged RMS, while, increasing the measurement
noise level resulted (as expected) to an increase in error.

Similar observations can be made also for the case of N =
50 particles. However, as expected, the higher number of
particles improved the performance of the plain PF. Thus,
in cases of both high system and measurement noise level,
the plain PF had no statistically significant differences from
PSO–PF. Again, we can notice that α1 = 0.2 was, overall,
the most promising setting. The obtained results indicate
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Table 2: Results for the case of N = 20 particles.

syst. meas. PSO–PF

noise noise PF α1 = 0.2 p-value α1 = 0.5 p-value α1 = 0.8 p-value

0.01 0.01 1.720 (4.169) 2.164 (3.886) 3.5e-4 3.115 (6.389) 3.5e-8 3.008 (4.473) 1.3e-9

0.05 2.739 (4.763) 2.560 (3.284) 3.8e-1 2.999 (3.473) 5.3e-2 3.622 (3.941) 3.9e-4

0.1 2.191 (3.658) 2.917 (3.531) 1.7e-4 3.182 (4.503) 1.1e-6 3.386 (2.976) 2.8e-9

0.3 2.590 (3.507) 3.682 (3.580) 8.0e-7 3.663 (2.729) 1.2e-7 4.113 (2.568) 4.5e-10

0.5 2.598 (3.906) 3.715 (3.968) 1.3e-6 4.356 (3.245) 6.2e-12 4.366 (2.490) 3.6e-12

0.05 0.01 2.438 (4.554) 3.065 (4.420) 1.4e-3 2.826 (4.039) 6.3e-3 3.059 (3.038) 1.5e-3

0.05 3.831 (5.667) 2.797 (3.240) 1.0e-2 3.537 (2.454) 8.9e-1 3.324 (2.438) 4.1e-1

0.1 3.811 (4.902) 3.000 (2.299) 7.7e-2 3.167 (3.104) 9.8e-2 3.447 (2.026) 7.8e-1

0.3 4.128 (3.928) 4.218 (2.979) 4.2e-1 3.984 (2.684) 9.4e-1 4.298 (1.728) 8.9e-2

0.5 3.712 (3.117) 4.543 (3.475) 2.7e-4 4.403 (2.464) 5.9e-4 4.634 (2.029) 1.1e-5

0.1 0.01 2.674 (4.855) 3.179 (4.049) 3.5e-3 3.273 (4.059) 3.4e-3 3.823 (4.100) 1.2e-5

0.05 4.033 (7.261) 3.249 (3.489) 2.3e-1 3.338 (2.556) 4.8e-1 3.799 (4.019) 8.7e-1

0.1 4.447 (5.756) 3.498 (2.643) 1.3e-2 3.748 (2.691) 9.1e-2 3.964 (2.181) 3.6e-1

0.3 5.159 (4.520) 4.609 (3.342) 9.4e-2 4.577 (2.926) 6.2e-2 5.254 (2.802) 4.8e-1

0.5 5.294 (4.673) 4.927 (2.499) 3.2e-1 4.889 (2.792) 2.5e-1 5.061 (2.341) 6.6e-1

0.3 0.01 7.350 (11.255) 5.250 (7.008) 4.2e-6 5.219 (7.256) 1.4e-6 6.224 (6.367) 5.1e-3

0.05 7.297 (10.408) 5.112 (6.191) 8.9e-7 4.934 (5.651) 4.4e-8 5.824 (7.388) 5.9e-4

0.1 6.933 (9.041) 4.987 (5.070) 2.8e-7 5.244 (4.901) 2.5e-5 5.756 (5.004) 2.9e-3

0.3 7.967 (6.530) 6.230 (5.416) 7.0e-7 6.078 (5.157) 3.5e-8 6.835 (4.659) 8.7e-4

0.5 7.628 (7.151) 6.604 (3.545) 9.4e-3 6.961 (6.489) 3.7e-2 7.019 (5.373) 1.1e-1

0.5 0.01 9.537 (7.172) 6.532 (11.582) 2.3e-11 7.152 (9.116) 5.1e-9 8.203 (7.997) 1.1e-3

0.05 8.434 (9.217) 6.866 (9.879) 8.4e-5 6.989 (8.242) 2.1e-4 7.404 (7.850) 5.0e-3

0.1 8.628 (10.319) 7.364 (11.084) 2.2e-3 7.112 (5.715) 7.7e-4 7.477 (8.023) 6.5e-3

0.3 8.923 (8.451) 8.096 (6.871) 2.7e-2 8.038 (5.859) 3.1e-2 8.635 (9.104) 3.0e-1

0.5 9.135 (7.197) 8.255 (6.600) 1.5e-2 8.256 (6.868) 1.1e-2 8.540 (5.375) 1.0e-1

that PSO–PF can be considered as a promising alternative
in cases of systems with multiplicative noise, especially in
high noise levels and small sample sizes.

5. CONCLUSIONS
We proposed a PF model with PSO for systems with mul-

tiplicative noise. The proposed model employs a multiobjec-
tive optimization approach to weight the likelihood and the
prior, which is maximized through PSO. The resulting sam-
ples are more balanced in terms of their prior and likelihood
values.

The resulting scheme is tested on a well–known test prob-
lem, with multiplicative noise. Results are promising, espe-
cially in cases of high system and measurement noise levels
and small sample sizes. Further work is needed to unveil
the potential of the algorithm as well as the effect of the
multiobjective function to the performance of the PF.
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