
Feasibility-Preserving Crossover for
Maximum k-Coverage Problem

Yourim Yoon
School of Computer Science &

Engineering
Seoul National University
Sillim-dong, Gwanak-gu
Seoul, 151-744, Korea

yryoon@soar.snu.ac.kr

Yong-Hyuk Kim
Department of Computer
Science & Engineering
Kwangwoon University

Wolgye-dong, Nowon-gu
Seoul, 139-701, Korea
yhdfly@kw.ac.kr

Byung-Ro Moon
School of Computer Science &

Engineering
Seoul National University
Sillim-dong, Gwanak-gu
Seoul, 151-744, Korea

moon@soar.snu.ac.kr

ABSTRACT
The maximum k-coverage problem is a generalized version of
covering problems. We introduce the problem formally and
analyze its property in relation to the operators of genetic al-
gorithm. Based on the analysis, we propose a new crossover
tailored to the maximum k-coverage problem. While tradi-
tional n-point crossovers have a problem of requiring repair
steps, the proposed crossover has an additional advantage of
always producing feasible solutions. We give a comparative
analysis of the proposed crossover through experiments.

Categories and Subject Descriptors
G.2.3 [Discrete Mathematics]: Applications; G.4 [Math-

ematical Software]: Algorithm Design and Analysis

General Terms
Algorithms, Experimentation

Keywords
Maximum k-coverage, feasibility-preserving crossover, ge-
netic algorithms

1. INTRODUCTION
The maximum k-coverage problem (MKCP) can be con-

sidered as a generalized version of covering problems. It was
introduced in [9] and has a number of applications to com-
binatorial optimization problems such as covering graphs by
subgraphs, facility location problems, packing and circuit
layout design, and scheduling problems.

Let A = (aij) be an m×n zero-one matrix and weight wi

be given to the i-th row of A for each i. The object of MKCP
is to select k columns that cover rows for their weight sum
to be maximized. The problem is represented formally as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00. 

follows:

Maximize

m�
i=1

wi · I

�
n�

j=1

aijxj ≥ 1 �
subject to

n�
j=1

xj = k

xj ∈ {0, 1}, j = 1, 2, . . . , n,

where I(·) is an indicator function such that I(true) = 1
and I(false)=0.

The weight wi can be different according to i, however,
we will focus on the case that each wi is set to be the same
value in this paper. Then MKCP becomes the problem of
finding a solution that covers as many rows as possible using
a fixed number of columns.

The NP-hardness of MKCP can be easily induced from
the minimum set covering problem [7]. Although there have
been studies using genetic algorithms for the minimum set
covering problem [1, 4], MKCP has not been covered until
now. MKCP selects a fixed number of columns, and so it
is simpler than in other covering problems to represent a
solution. The problem not only matches well with genetic
algorithm, but also has an interesting inherent property. We
analyze the property of the problem and design a problem-
specific crossover for genetic algorithm in this paper.

The remainder of this paper is organized as follows. We
analyze the property of MKCP in Section 2 and propose a
new crossover based on this property in Section 3. In Sec-
tion 4, we explain an exceptional advantage of using this
crossover, i.e., feasibility-preserving. Finally, we present ex-
perimental results in Section 5 and make conclusions in Sec-
tion 6.

2. CHARACTERISTICS OF MKCP
We can consider as an encoding of the solution for MKCP

a length-k integer string whose elements are column indices
or a length-n binary string whose elements each represents
whether or not the corresponding column is selected. In this
study, we focus on the integer string encoding.

Each column of the given matrix A can be considered
as a subset composed of column indices with corresponding
element 1. For example, (1 0 0 1 0)T corresponds to {1, 4}.
In the following, we will also use this subset representation in
addition to the original vector representation. Each subset

593



element is a column index. Hence, the universal set becomes
{1, 2, . . . , n}.

In MKCP, we want to find a solution that covers as many
elements as possible using a fixed number of subsets. As a
property of MKCP, we can easily guess that a good solution
of MKCP is composed of subsets which do hardly have com-
mon elements each other. We will show this property more
clearly through the following simple example. Let k = 2,
m = 5, n = 4, and 5 × 4 matrix A be����� 1 0 0 0

1 0 0 1
0 1 0 1
0 0 1 0
0 1 1 0

�����	
.

The sets of covered rows for all possible solutions are shown
in the following.

solution coverage coverage size
(1, 2) {1, 2, 3, 5} 4
(1, 3) {1, 2, 4, 5} 4
(1, 4) {1, 2, 3} 3
(2, 3) {3, 4, 5} 3
(2, 4) {2, 3, 5} 3
(3, 4) {2, 3, 4, 5} 4

As expected, the columns of good solutions ((1, 2), (1, 3),
and (3, 4)) have fewer common elements than those of rela-
tively bad ones ((1, 4), (2, 3), and (2, 4)) as follows.

solution common element set coverage size
(1, 2) ∅ 4
(1, 3) ∅ 4
(1, 4) {2} 3
(2, 3) {5} 3
(2, 4) {3} 3
(3, 4) ∅ 4

When we are to solve MKCP using genetic algorithm, we
need to design genetic operators to produce chromosomes
that have as few common elements between genes as pos-
sible. We design a new crossover operator based on this
point of view. Consider a case that we apply traditional
one-point crossover with the first parent (1, 2) and the sec-
ond one (3, 4). If the cut-point lies between the first gene
and the second one, the offspring would be (1, 4). The solu-
tion (1, 4) covers the rows {1, 2, 3}. However, we rearrange
the second parent to be (4, 3), the offspring becomes (1, 3)
and then covers {1, 2, 4, 5}. The column 1 has no common
element with the column 3, but has one common element
with the column 4. So, it produces better offspring to lo-
cate at the same position with the column 1 the column 4
rather than the column 3. This leads that subsets forming
the offspring has fewer common elements. In this simple
example, we can obtain an intuition that rearranging gene
positions for similar genes, i.e., genes whose corresponding
columns have many common elements, to be at the same
position would be very helpful to solve MKCP using genetic
algorithms.

3. A NEW CROSSOVER
We consider the case of using integer representation as

an encoding of a solution. Although a gene has an integer

0   1   0   1
0   0   1   0

1   0   0   1

0   1   1   0

1   0   0   0

1 2 3 4
Given matrix A

0   0   1   0   11   1   0   0   0

0   0   0   1   1 0   1   1   0   0

1   1   0   0   0 0   0   1   0   1

1 2

0   1   1   0   0 0   0   0   1   1

4 3

2 + 2 = 4

1 2

3 4

4 2+ = 6Hamming Distance

Figure 1: Normalization by Hamming distance

value, the number itself is just a label. Each gene actually
indicates the column with the corresponding index. If we
use the column vector itself instead of the column index,
the solution becomes an m×k matrix with binary elements.
In the above example, the solution (1, 2) actually means����� 1 0

1 0
0 1
0 0
0 1

�����	
.

Both of encodings (1, 2) and (2, 1) represent the same so-
lution, so ����� 0 1

0 1
1 0
0 0
1 0

� ���	
represents the same solution as the above one. Having this
representation in mind will be helpful to understand the con-
cept of a new crossover that we are to define in the following.

Now we present a new crossover operator for MKCP ac-
cording to the property given in Section 2. In the previous
section, we inferred that the similarity between the genes
at the same position of two parents affects the performance
of genetic algorithms. We consider all the permutations of
columns for the second parent, and choose one that min-
imizes the sum of distances between pairs of genes with
the same indices. We used the Hamming distance H to
measure the similarity between two genes. Let the first
parent be x = (x1, x2, . . . , xk), and the second parent be
y = (y1, y2, . . . , yk). We choose the permutation σ∗ such
that

σ∗ = argmin
σ∈Σk

k�
i=1

H(xi, yσ(i)), (1)

where Σk denotes the set of all permutations of length k.
We provide an example in Figure 1. Suppose that the

chromosomes (1, 2) and (3, 4) are chosen as two parents.
We normalize the second parent (3, 4). Since k is 2, the
number of possible permutations is only 2! = 2. For each

594



3 95 6Parent 1

Parent 2

Offspring

= {3, 5, 6, 9}

= {1, 3, 5, 7}

= {3, 5, 7}

3 5 71

3 3 5 7

(A) Integer representation
(k = 4, n = 10)

0 0 1 0 1 1 0 00 0

0 1 1 101 0 0 0 0

0 0 1 0 1 1 0 0 1 0

1 2 3 4 5 6 7 8 9 10

Offspring

Parent 2

Parent 1

= {1, 3, 5, 7}

= {3, 5, 6}

= {3, 5, 6, 9}

(B) Binary representation
(k = 4, n = 10)

Figure 2: An example in which the feasibility is bro-

ken

permutation, we compute 
 k

i=1 H(xi, yσ(i)). For the first
permutation σ1 = (1, 2), the normalized second parent is,
as it is, (3, 4). Each gene indicates the column of the given
matrix A. Then H(x1, yσ1(1)) = 4 and H(x2, yσ1(2)) = 2.
Their sum is 6. For the second permutation σ2 = (2, 1), the
normalized second parent is (4, 3). Then H(x1, yσ2(1)) = 2
and H(x2, yσ2(2)) = 2. Since the sum 4 is smaller than 6,
σ2 = (2, 1) is the optimal permutation.

For this process, it is possible to enumerate all k! per-
mutations and find an optimal one among them. However,
for a large k, such a procedure is intractable. Fortunately,
Kuhn [10] proposed an efficient way to solve the problem. It
is called the Hungarian method. Roughly speaking, starting
from the initial unweighted bipartite graph with no edge, the
method iteratively modifies edge weights, adds new edges
into the bipartite graph, and applies the maximum match-
ing (or minimum covering) in the resultant bipartite graph.
It continues the above process until a perfect matching is
found. The Hungarian method gives an optimum assign-
ment and it can be implemented in O(k3) time [13]. Re-
gardless of the implementation of the Hungarian method, if
we see the Hungarian method as a black box, it just takes
a two-dimensional array whose elements are distances be-
tween two indices and outputs an optimal assignment which
gives the minimum sum.

After rearranging the second parent according to the per-
mutation σ∗, we apply a traditional crossover. This method
looks similar to normalization in k-ary encoding for grouping
problems [11], but their purposes are quite different. We call
this new crossover NH(Normalized by Hamming distance)-
Xover. We expect performance improvement through this
new crossover.

4. PRESERVATION OF FEASIBILITY
NH-Xover has another advantage in solving MKCP. Both

of the integer encoding and the binary one have the problem
of not preserving feasibility when using traditional crossover

operators such as one-point or two-point crossover. For each
type of encoding, an example that the feasibility is broken
by one-point crossover is given in Figure 2. In (A), the index
3 is duplicated in the offspring. The solution must contain
k = 4 column indices, but the offspring of (A) has only 3
indices because the index 3 occupies two genes. Also in (B),
the solution must contain four 1s, but the offspring has only
three 1s. This violates the condition of a feasible solution.

In general, a repairing step is required if we use traditional
crossovers. However, repairing has the effect of mutation so
that it may break the building blocks inherited from parents.

When we use NH-Xover instead of the traditional one-
point crossover, repairing is not necessary at all. In the case
of using integer encoding, the problem comes from the fact
that the common indices in two parents can be in different
positions. This fact leads that there can be two same indices
in the offspring. NH-Xover naturally makes offspring pre-
serve feasibility. If there are common indices in two parents,
the indices are certainly rearranged to be in the same posi-
tion by the permutation σ∗. The following theorem guaran-
tees this fact.

Theorem 1. If xp = yq, then σ∗(p) = q, where σ∗ is the
permutation in Equation (1) and p, q ∈ {1, 2, . . . , k}.

Proof. For the proof by contradiction we assume that
σ∗(p) 6= q. There exists an index r such that σ∗(r) = q. Let
σ′ be the permutation obtained by exchanging the value of
σ∗(p) and σ∗(r) from σ∗, i.e.,

σ′(i) = �� �� σ
∗(r) if i = p,

σ∗(p) if i = r,

σ∗(i) otherwise.

k�
i=1

H(xi, yσ′(i))

= H(xp, yσ′(p)) + H(xr, yσ′(r)) +
�

i6=p,i6=r

H(xi, yσ′(i))

= H(xp, yσ∗(r)) + H(xr, yσ∗(p)) +
�

i6=p,i6=r

H(xi, yσ∗(i))

= H(xp, yq) + H(xr, yσ∗(p)) +
�

i 6=p,i6=r

H(xi, yσ∗(i))

= H(xr, yσ∗(p)) +
�

i6=p,i6=r

H(xi, yσ∗(i))

( � H(xp, yq) = 0 by assumption)

≤ H(xr, xp) + H(xp, yσ∗(p)) +
�

i 6=p,i6=r

H(xi, yσ∗(i))

( � triangular inequality)

= H(xr, yq) + H(xp, yσ∗(p)) +
�

i 6=p,i6=r

H(xi, yσ∗(i))

= H(xr, yσ∗(r)) + H(xp, yσ∗(p)) +
�

i6=p,i6=r

H(xi, yσ∗(i))

=

k�
i=1

H(xi, yσ∗(i)).

This contradicts the definition of the permutation σ∗ in
Equation (1). Hence, σ∗(p) = q. �

595



1x xp

yqy1

y *σ (r)*σ (p)y*σ (1)y

*σ (1)y y *σ (r) *σ (p)y

y permuted by σ*

...

...

......

...

...

...

...

y permuted by σ’... ......

1 p r... ... ... k

permuted by

x

y

Figure 3: Proof of Theorem 1

1   1   0   0   0 0   0   0   1   1

0   0   1   0   1 0   0   0   1   1

1

4 0+ = 4

3

2 3

(A) Sum of Hamming
distances

1   1   0   0   0 0   0   0   1   1

0   0   1   0   1 0   0   0   1   1

1

1 0+ = 1

3

2 3

(B) Sum of discrete
distances

Figure 4: Hamming distance vs. discrete distance

Figure 3 helps understanding the proof of Theorem 1 more
clearly.

In the proof of the above theorem, triangular inequality is
mainly used. Triangular inequality is an essential property
for the definition of the distance. NH-Xover uses Hamming
distance, but the above theorem still holds when other dis-
tances are used instead of Hamming distance. What will
happen if we use discrete distance instead of Hamming dis-
tance? Discrete distance becomes one if the two solutions is
the same, and zero otherwise. It is a very simple distance,
but it satisfies all the conditions for the distance includ-
ing triangular inequality. Interestingly, although discrete
distance seems to provide no great meaningful information
between two solutions, the feasibility-preserving effect still
holds when we use the distance. However, we cannot expect
any other effect except aligning the same indices to the same
position by using that crossover. Nevertheless, it is obvious
that the feasibility-preserving property of crossover is help-
ful to solve the problem using genetic algorithm. We also
implemented the crossover normalized by discrete distance
(ND-Xover) and will compare the crossover with NH-Xover
in the next section.

Figure 4 shows the difference between the normalization
by Hamming distance and that by discrete distance. In the
case of Hamming distance (see the left side (A)), the distance
between the genes 1 and 2 at the first position is equal to
the Hamming distance between the first column and the
second one. In the case of discrete distance (see the right
side (B)), the contents of column that each gene indicates
are ignored. It is just one if the two indices are the same,
and zero otherwise.

5. EXPERIMENTS

5.1 Genetic Framework
The basic evolutionary model we used is quite similar to

that of the CHC [6]. CHC has been applied to various prob-

Table 1: Test Instance Sets

Instance m n Density Number of
set (%) instances
I-4 200 1000 2 10
I-5 200 2000 2 10
I-6 200 1000 5 5
I-A 300 3000 2 5
I-B 300 3000 5 5
I-C 400 4000 2 5
I-D 400 4000 5 5
I-E 500 5000 10 5
I-F 500 5000 20 5
I-G 1000 10000 2 5
I-H 1000 10000 5 5

lems in the literature [2, 5, 8, 12, 14]. Let the population
size be N . A collection of N/2 pairs is randomly composed,
and crossover is then applied to each pair, generating N/2
offspring. Parents and newly generated offspring are ranked
and the best N individuals among them are selected for the
population in the next generation. In all our experiments,
a population size of 400 was used. If the population has no
change during k ∗ r ∗ (1.0− r) generations, it is reinitialized
except the best one individual. Here, r is a divergence rate
and we set the rate to 0.25. Our GA terminates after 500
generations and outputs the best solution found so far.

We performed the experiments by changing only crossover
operator under the same genetic framework. The crossovers
that were used in experiments are NH-Xover and ND-Xover.

5.2 Results
Our experiments were conducted on 11 classes of set cover-

ing test instances (a total of 65 instances) with various sizes
and densities from OR-library [3]. These test instance sets
were originally generated for the set covering problems, but
they can also be used for the maximum k-coverage problems.
The details of these test instances are given in Table 1. Note
that the density is the percentage of 1s in the given matrix
A in the MKCP instance.

We made our experiments on two cases that k = 10 and
k = 20. As a measure of performance, we used the percent-
age gap 100×|best−output|/best, where the best means the
best value found by the authors and the output means the
result by the experiment for the instance. The smaller the
value is, the smaller the difference from the optimum is, i.e.,
the smaller, the better.

We compared NH-Xover with ND-Xover. Genetic algo-
rithms using NH-Xover and ND-Xover were performed 30
times. Each GA uses the same population size and termi-
nates after the same number of generations, hence GAs using
NH-Xover and ND-Xover perform the same number of eval-
uations. We show the qualities of the best solutions and the
average qualities in Table 1-4. The best, average values and
%-gaps in the tables are the averages over the corresponding
instance sets.1

Table 2 and Table 3 show the best results and the average
ones with k = 10. NH-Xover outperformed ND-Xover for
all instance sets in both tables.

1The best/average values and their %-gaps can sometimes
be inconsistent.

596



Table 2: Best Results with k = 10
Instance NH-Xover ND-Xover

set Best %-gap Best %-gap

I-4 84.4 0.00 83.4 0.12
I-5 88.9 0.11 87.0 0.78
I-6 141.0 0.43 137.8 0.42
I-A 130.0 0.15 127.6 0.47
I-B 207.8 0.00 202.7 0.58
I-C 161.5 0.12 156.9 0.62
I-D 259.4 0.15 253.8 0.15
I-E 424.6 0.00 417.2 0.89
I-F 494.6 0.00 491.4 0.32
I-G 329.2 0.06 320.4 0.36
I-H 560.4 0.14 550.4 0.28

Average − 0.11 − 0.45

Best results and their average %-gaps from 30 trials.

Table 3: Average Results with k = 10
Instance NH-Xover ND-Xover

set Ave %-gap Ave %-gap

I-4 84.3 1.12 83.0 1.64
I-5 88.3 2.31 86.1 3.23
I-6 141.0 2.70 137.1 3.15
I-A 129.6 2.94 126.1 3.11
I-B 206.6 2.44 200.4 3.57
I-C 160.4 2.79 156.2 3.23
I-D 259.4 2.31 251.7 3.12
I-E 420.8 1.75 413.1 2.70
I-F 493.0 0.66 488.5 1.13
I-G 328.2 2.73 319.0 3.15
I-H 559.6 1.92 547.6 2.43

Average − 2.15 − 2.77

Average results and their average %-gaps from 30 trials.

Table 4 and Table 5 show the best results and the average
ones with k = 20. For I-F, the solutions found by NH-Xover
and ND-Xover always cover all the rows. This is because
the density of I-F is too high. So, just with a few number of
columns we could easily cover all the rows.

In the results with k = 20, NH-Xover could not domi-
nate ND-Xover only for three instance sets I-A, I-C and I-G
among 11 sets. For I-A, NH-Xover was not good for the
average results, but better for the best results. We guess
that larger search space than in the case that k = 10 may
influence to this inconsistency. However, for both of the best
and average, average values (see the rows named “Average”
in tables) of %-gaps of NH-Xover over all instance sets were
better than those of ND-Xover. We can conclude that NH-
Xover shows better performance than ND-Xover from the
experimental results.

6. CONCLUDING REMARKS
In this paper we introduced the maximum k-coverage prob-

lem and analyzed the property of the problem. Based on
the observed property, we proposed a new crossover that
produces offspring which have as few common elements as

Table 4: Best Results with k = 20
Instance NH-Xover ND-Xover

set Best %-gap Best %-gap

I-4 139.00 0.29 133.33 0.79
I-5 142.20 0.07 137.23 0.77
I-6 191.00 0.00 186.17 0.63
I-A 203.80 0.29 196.50 0.68
I-B 278.80 0.07 272.59 0.79
I-C 254.00 0.55 246.75 0.16

I-D 357.60 0.11 351.10 0.28
I-E 496.20 0.00 491.97 0.20
I-F 500.00 0.00 500.00 0.00
I-G 533.00 0.63 517.94 0.00

I-H 812.20 0.05 799.73 0.49
Average − 0.19 − 0.44

Best results and their average %-gaps from 30 trials.

Table 5: Average Results with k = 20
Instance NH-Xover ND-Xover

set Ave %-gap Ave %-gap

I-4 137.30 3.65 132.80 4.04
I-5 141.20 3.56 136.22 4.27
I-6 189.80 2.53 185.37 2.94
I-A 203.00 3.85 196.53 3.84

I-B 276.80 2.30 270.56 3.02
I-C 255.00 3.38 247.08 3.25

I-D 357.00 1.93 349.77 2.49
I-E 495.20 0.85 490.97 1.05
I-F 500.00 0.00 500.00 0.00
I-G 536.40 3.44 518.78 3.28

I-H 808.60 1.58 796.04 2.04
Average − 2.46 − 2.75

Average results and their average %-gaps from 30 trials.

possible. The proposed crossover is easily implemented us-
ing Hungarian method and has an additional good property
of not being necessary to repair for feasibility. We made ex-
periments and compared the results with another feasibility-
preserving crossover. Our new crossover showed better per-
formance for almost all instances.

It is expected that the proposed crossover will show bet-
ter performance when compared with the genetic algorithms
using traditional crossovers combined with repair operation
since it is hard to preserve the inherent good building blocks.
More investigation about such comparison and analysis through
experiments are left for further study.

7. REFERENCES
[1] U. Aickelin. An indirect genetic algorithm for set

covering problems. Journal of the Operational
Research Society, 53(10):1118–1126, 2002.

[2] E. Alba, G. Luque, and L. Araujo. Natural language
tagging with genetic algorithms. Information
Processing Letters, 100(5):173–182, 2006.

[3] J. E. Beasley. OR-library: Distributing test problems
by electronic mail. Journal of the Operational
Research Society, 41:1069–1072, 1990.

597



[4] J. E. Beasley and P. C. Chu. A genetic algorithm for
the set covering problem. European Journal of
Operational Research, 94:392–404, 1996.

[5] O. Cordón, S. Damasb, and J. Santamaŕıa.
Feature-based image registration by means of the
CHC evolutionary algorithm. Image and Vision
Computing, 24(5):525–533, 2006.

[6] L. J. Eshelman. The CHC adaptive search algorithm:
how to have safe search when engaging in
nontraditional genetic recombination. In Foundations
of Genetic Algorithms, pages 265–283. Morgan
Kaufmann, 1991.

[7] M. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, 1979.

[8] C. Guerra-Salcedo and D. Whitley. Genetic search for
feature subset selection: A comparison between CHC
and GENESIS. In Proceedings of the Third Annual
Conference on Genetic Programming, pages 504–509.
Morgan Kaufmann, 1998.

[9] D. S. Hochbaum and A. Pathria. Analysis of the
greedy approach in problems of maximum k-coverage.
Naval Research Logistics, 45(6):615–627, 1998.

[10] H. W. Kuhn. The Hungarian method for the
assignment problem. Naval Research Logistic
Quarterly, 2:83–97, 1955.

[11] A. Moraglio, Y.-H. Kim, Y. Yoon, and B.-R. Moon.
Geometric crossovers for multiway graph partitioning.
Evolutionary Computation, 15(4):445–474, 2007.

[12] A. J. Nebro, E. Alba, G. Molina, F. Chicano, F. Luna,
and J. J. Durillo. Optimal antenna placement using a
new multi-objective CHC algorithm. In Proceedings of
the 9th annual conference on Genetic and evolutionary
computation, pages 876–883. ACM, 2007.

[13] C. H. Papadimitriou and K.Steiglitz. Combinatorial
Optimization: Algorithms and Complexity.
Prentice-Hall, 1955.

[14] S. Tsutsui and D. E. Goldberg. Search space boundary
extension method in real-coded genetic algorithms.
Information Sciences, 133(3-4):229–247, 2001.

598


