
Evolving Heuristics with Genetic Programming

Mohamed BaderElDen
Department of Computing and Electronic Systems

University of Essex
Wivenhoe Park, United Kingdom

mbbade@essex.ac.uk

Riccardo Poli
Department of Computing and Electronic Systems

University of Essex
Wivenhoe Park, United Kingdom

rpoli@essex.ac.uk

ABSTRACT

Hyper-Heuristics are methods to choose and combine heuristics to

generate new ones. In this work, we use a grammar-based genetic

programming system as a Hyper-Heuristic framework. The frame-

work is used for evolving effective incremental solvers for SAT

(Inc*). Tests against well-known local search heuristics on a va-

riety of benchmark problems reveal that the evolved heuristics are

superior.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,

and Search—Heuristic methods

General Terms

Algorithms, Experimentation.

Keywords

Genetic Programming, Hyper-Heuristic, Inc*, SAT, Heuristics.

1. INTRODUCTION
Heuristic methods have contributed to the solution of many com-

binatorial optimisation problems such as bin packing, the travelling

salesman problem, graph colouring, and the satisfiability problem

(SAT). The performance of heuristics on a problem varies from in-

stance to instance. Also, even on the same instance, randomised

heuristics may be able to provide good solutions on one occasion,

and bad on another. Hyper-heuristics (HHs) aim to provide a more

robust approach raising the level of generality at which optimisa-

tion methods operate. They can be defined as “heuristics to choose

heuristics” [4]. The main idea is to make use of different heuristic

during the search for a solution.

The target in SAT is to determine whether it is possible to set the

variables of a given Boolean expression in such a way to make the

expression true. The expression is said to be satisfiable if such an

assignment exists. If the expression is satisfiable, we often want to

know the assignment that satisfies it. The expression is typically

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

represented in Conjunctive Normal Form (CNF), i.e., as a conjunc-

tion of clauses, where each clause is a disjunction of variables or

negated variables.

Stochastic local-search heuristics have been widely used since

the early 90s for solving the SAT problem following the successes

of GSAT [6]. The main idea behind these heuristics is to try to

get an educated guess as to which variable will most likely, when

flipped, give us a solution or to move us one step closer to a solu-

tion. Normally the heuristic starts by randomly initialising all the

variables in the CNF formula. It then flips one variable at a time,

until either a solution is reached or the maximum number of flips

allowed has been exceeded.

2. EVOLVING INC* SAT HEURISTICS
SAT is one of the most studied combinatorial optimisation prob-

lems, and the first problem proved to be NP-Complete. In this

work we use genetic programming (GP) [5] in a HH framework

to solve SAT problems. In particular, we use GP to evolve local

search heuristics to be used within the Inc* algorithm. Inc* [3] is

a general algorithm that can be used in conjunction with any local

search heuristic and that has the potential to substantially improve

the overall performance of the heuristic. The general idea of the

algorithm is the following. Rather than attempting to directly solve

a difficult problem, the algorithm dynamically chooses a simpli-

fied instance of the problem, and tries to solve it. If the instance

is solved, Inc* increases the size of the instance, and repeats this

process until the full size of the problem is reached. The search is

not restarted when a new instance is presented to the solver. Thus,

the solver is progressively biased towards areas of the search space

where there is a higher chance of finding a solution to the original

problem.

Encouraged by the success of Inc*, here we take Inc* one step

further and evolve complete Inc*-type SAT heuristics, instead of

just evolving one or two control elements for the human-designed

version of Inc*. To do this, we use an extended version of the

grammar-based Hyper-Heuristic GP framework (GP-HH) we de-

veloped in [2, 1], the grammar is extended and modified to make

it more suitable for evolving effective Inc* heuristics. As one can

easily see inspecting standard local search heuristics, all the heuris-

tics share similar components, such as: variable score, selection of

a clause and conditional branching. By giving GP-HH the free-

dom to design completely new Inc*-type strategies, we hope to

find novel and even more powerful algorithms for the solution of

the SAT problem than Inc* or GP-HH alone.

3. EXPERIMENTAL SETUP
In evolving Inc* SAT heuristics we used a training set includ-

ing 50 SAT problems with different numbers of variables. The

601

Table 1: Comparison between average performance of WalkSat and WalkSat with Inc* and Inc* with the evolved heuristic (IncHH)

SR=success rate, AT = average tries, AF=average number of flips
WalkSat IncWalk IncHH

name no. clauses SR AF SR AF AT SR AF AT

uf20 91 1 104.43 1 136.32 1.13 1 98.54 0.96

uf50 218 1 673.17 1 702.52 4.25 1 723.52 3.13

uf75 325 1 1896.74 1 1970.59 8.15 1 1909.61 7.17

uf100 430 1 3747.32 1 3640.62 10.31 1 3769.42 9.07

uf150 645 0.97 15021.3 1 13526 15.44 1 6454.14 12.60

uf200 860 0.9 26639.2 0.92 27586.2 20.59 1 26340.8 19.09

uf225 960 0.87 29868.5 0.87 32258.8 21.27 1 34187.7 20.24

uf250 1065 0.81 38972.4 0.83 39303.5 25.15 0.93 39025.6 24.37

problems were taken from the widely used SATLIB benchmark li-

brary. All problems were randomly generated satisfiable instances

of 3-SAT. In total we used 50 instances: 10 with 100 variables, 15

with 150 variables and 25 with 250 variables. While strategies are

evolved using 50 fitness cases, the generality of best of run individ-

uals is then evaluated on an independent test set of SatLib.

In these experiments we used a population of 500 individuals.

The GP system initialises the population by randomly drawing

nodes from the function and terminal sets. This is done uniformly

at random using the GROW method, except that the selection of the

function Flip is forced for the root node and is not allowed else-

where. The reproduction rate is 0.1. Individuals that have not af-

fected by any genetic operator are not evaluated again to reduce the

computation cost. The crossover rate is 0.8. Offspring are created

using a specialised form of crossover. A random crossover point

is selected in the first parent, then the grammar is used to select

the crossover point from the second parent. It is randomly selected

from all valid crossover points. If no point is available, the process

is repeated again from the beginning until crossover is successful.

Mutation is applied with a rate of 0.1. This is done by selecting a

random node from the parent (including the root of the tree), delet-

ing the sub-tree rooted there, and then regenerating it randomly as

in the initialisation phase.

For the Inc* algorithm we allowed 1000 flips to start with. Upon

failure, the number of flips is incremented by 20%. We allow a

maximum total number of flips of 100,000. We evolved Inc* SAT

heuristics for one simple Inc* strategies which adds 15% of the

of the total number of clauses after each success and remove 10%

after each failure.

4. RESULTS
We start by showing a typical example of the Inc* heuristics

evolved using the GP Hyper-Heuristics framework. Figure 1 shows

one of the best performing heuristics evolved for the Inc* strategy

description of the grammar basic components is presented in [2].

As one can see evolved heuristics are significantly more com-

plicated than the standard heuristics we started from (e.g., GSat,

WalkSat, Novelty). So, a manual analysis of how the component

steps of an evolved heuristic contribute to its overall performance

is difficult.

Table 1 shows the results of a set of experiments comparing the

performance of the following algorithms: WalkSat alone, WalkSat

with the Inc* (IncWalk) and the GPHH evolved heuristic with the

Inc* (IncHH). IncHH outperforms the other algorithms.

5. CONCLUSIONS
We have used the GP-HH framework for evolving customised

SAT heuristics which is used within the Inc* algorithm. GP has

been able to evolve heuristics with high performance on different

benchmark SAT problems.

6. ACKNOWLEDGMENTS
The authors acknowledge financial support from EPSRC (grants

EP/C523377/1 and EP/C523385/1).

7. REFERENCES
[1] M. B. Bader-El-Den and R. Poli. A GP-based hyper-heuristic

framework for evolving 3-SAT heuristics. In GECCO ’07:

Proceedings of the 9th annual conference on Genetic and

evolutionary computation, volume 2, pages 1749–1749,

London, 7-11 July 2007. ACM Press.

[2] M. B. Bader-El-Din and R. Poli. Generating SAT local-search

heuristics using a GP hyper-heuristic framework. Proceedings

of the 8th International Conference on Artificial Evolution,

36(1):141–152, 2007.

[3] M. B. Bader-El-Din and R. Poli. Inc*: An incremental

approach to improving local search heuristics. In EvoCOP

2008. Springer, March 2008. (to appear).

[4] E. K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and

S. Schulenburg. Hyper-heuristics: an emerging direction in

modern search technology. In F. Glover and G. Kochenberger,

editors, Handbook of Metaheuristics, pages 457–474. Kluwer

Academic Publishers, 2003.

[5] R. Poli, W. B. Langdon, and N. F. McPhee. A field guide to

genetic programming. Published by lulu.com. Freely

available at http://www.gp-field-guide.org.uk, 2008.

[6] B. Selman, H. J. Levesque, and D. Mitchell. A new method

for solving hard satisfiability problems. In P. Rosenbloom and

P. Szolovits, editors, Proceedings of the Tenth National

Conference on Artificial Intelligence, pages 440–446, Menlo

Park, California, 1992. AAAI Press.

Flip (ifv(30, If v (NotZeroAge ,

MacScr(, ifl(20, AllUC, UC), TieRand),

Ifv (40, ScndMacScr (

Ifl(Small, AllUC, UC), TieAge),

Ifv(ZeroBreak, UC, MaxScr(AllUC, TieAge))),

Ifv(90, If v (NotMinAge , MacScr(UC, TieRand),

If (70, ScndMacScr(UC, TieAge) , Rand(UC)),

Ifv (ZeroBreak, Ifl(Small, AllUC, UC),

Ifv (40, ifl(20, AllUC, UC), Rand(UC)))

Figure 1: Best evolved heuristics for Inc* SAT

602

