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ABSTRACT

An evolutionary algorithm for some instances of the single-
source capacitated plant location problem encodes candidate
solutions in two permutations, one of plant locations and
a second of customers, with an integer that indicates the
number of open locations. A greedy decoder identifies the
solution such a genotype represents, and the EA searches for
good solutions using only selection and mutation. In tests
on 36 problem instances, the EA is competitive with a re-
cent algorithm, though two superficially promising heuristic
extensions do not improve its performance. The results sup-
port the general effectiveness of permutation codings in EAs
that search for optimum subsets.

Categories and Subject Descriptors: G.2.1 [Mathemat-
ics of Computing]: Discrete Mathematics—Combinatorics;
1.2.8 [Problem Solving, Control Methods, and Search]: Heu-
ristic Methods

General Terms: Algorithms

Keywords: Plant location, warehouse location, facility lo-
cation, single-source, capacitated, permutation coding, evo-
lutionary algorithm

1. INTRODUCTION

In the single-source capacitated plant location problem
(SSCPLP), we are given n locations at which we may open
plants, each with a fixed cost ¢; and a capacity, and m cus-
tomers, each with a service cost s;; from each location and
a demand. Each customer will be served from exactly one
plant. We seek locations at which to open plants and an as-
signment of customers to them that minimizes the total cost
without the demands of any plant’s customers exceeding the
plant’s capacity. We consider instances of this problem in
which no customer’s demand is greater than the capacity of
any plant. Note that the SSCPLP is NP-Hard.

A recent algorithm by Cortinhal and Captivo’s [1], which
they called the Fourth Approach (The first three were GAs.)
maintains thirteen pairs of candidate solutions, organized
into a trinary tree of three levels. It obtains initial solu-
tions by Lagrangean relaxation and generates new solutions
by local search and by applying crossover and mutation to
current solutions.

An evolutionary algorithm for the problem encodes can-
didate solutions in two permutations, of plant locations and
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of customers. A greedy decoder identifies the open locations
and the assignment of customers to them that such a geno-
type represents. The EA applies mutation but not crossover.
In trials on 36 instances of the problem, the EA performed
about as well as the Fourth Approach of Cortinhal and Cap-
tivo. Two superficially promising heuristic extensions of the
EA did not improve its performance.

2. THE EVOLUTIONARY ALGORITHM

In the EA, a genotype consists of a permutation of length
n of the plant locations and a second permutation of length
m of the customers. In addition, a genotype includes an
integer /; the first ¢ locations in their permutation are open
and thus may have customers assigned to them.

A greedy decoder identifies the solution that a genotype
represents. It considers the customers in their permutation
order, assigning each to the open location that can satisfy its
demand at the lowest cost. If no location among the first ¢
can accommodate the customer, £ is incremented, indicating
the opening of a plant, and the customer is assigned to that
plant. Because every plant’s capacity is at least as large
as every customer’s demand, this next plant will be able to
handle the customer. Also, subsequent customers may now
be assigned to the newly-opened plant. A genotype’s fitness
is the sum of the costs of serving the customers from their
assigned plants and the fixed costs of those plants.

In early tests, a crossover operator did not advance the
EA’s search, so no crossover operator is used. Mutation
swaps two randomly selected locations a small, random num-
ber of times and similarly swaps two randomly selected cus-
tomers a small, random number of times. It also, with prob-
ability 0.2 in both cases, increments or decrements the num-
ber of included plant locations.

The coding and mutation were implemented in a genera-
tional evolutionary algorithm. The EA initializes its popu-
lation with genotypes whose permutations are random and
whose number £ of included plant locations is set to one;
evaluation increases ¢ as it includes locations to satisfy cus-
tomers’ demands. The EA selects genotypes to be parents
in 2-tournaments without replacement, and mutation gener-
ates each offspring. The EA is 1-elitist, and it runs through
a fixed number of generations.

In the trials below, on SSCPLP instances with up to
n = 50 plant locations and m = 50 customers, the EA’s
population contained 2(n+m) genotypes, mutation swapped
one pair of plant locations and up to four customer pairs,
and the EA ran through 5(n+m) generations. On instances
with n = 100 locations and m = 1000 customers, the EA’s



Table 1: Results of the Fourth Approach of Cortin-
hal and Captivo [1] and the EA on the 24 smaller
instances of the SSCPLP. For each instance, the ta-
ble lists its numbers n of plant locations and m of
customers, percent error of the Fourth Approach
(+%), and performance of the GA: the number of
trials out of 40 that found the optimum (“Hits”), the
best (Best+%) and mean (Mean+%) percent errors,
and the standard deviation s(%) of the excess per-
centages.

C&C Evolutionary Algorithm
Inst. n m| +% |Hits Best+% Mean+% s(%)
cap6l 16 50 (| 0.00 | 40 0.000 0.000  0.000
cap62 16 50 (| 0.00 | 40 0.000 0.000  0.000
cap63 16 50| 0.01 0 0.004 0.004 0.000
cap64 16 50| 0.05 | O 0.722 0.722  0.000
cap71 16 50 (| 0.00 | 40 0.000 0.000 0.000
cap72 16 50 (| 0.00 | 40 0.000 0.000  0.000
cap73 16 50( 0.00 | 40 0.000 0.000  0.000
cap74 16 50 (| 0.00 | 40 0.000 0.000  0.000
cap91 25 50 (| 0.00 | 40 0.000 0.000  0.000
cap92 25 50| 0.00 0 0.278 0.286 0.023
cap93 25 50| 0.22 | O 0.462 0.462  0.000
cap94 25 50| 0.21 0 0.482 0.485  0.013
cap101 25 50 (| 0.00 | 40 0.000 0.000  0.000
cap102 25 50 (| 0.00 | 40 0.000 0.000  0.000
cap103 25 50 (| 0.00 | 40 0.000 0.000 0.000
cap104 25 50 (| 0.00 | 40 0.000 0.000  0.000
cap121 50 50 (| 0.00 | 29 0.000 0.108  0.093
cap122 50 50| 0.00 | O 0.279 0.286  0.021
cap123 50 50| 0.02 | O 0.331 0.331  0.000
capl24 50 50| 0.19 0 0.482 0.485 0.001
cap131 50 50 (| 0.00 | 24 0.000 0.043 0.054
cap132 50 50 (| 0.00 | 40 0.000 0.000  0.000
cap133 50 50 (| 0.00 | 28 0.000 0.033  0.053
cap134 50 50 (| 0.00 | 40 0.000 0.000  0.000

population contained 200 genotypes, mutation swapped one
or two pairs of locations and up to ten pairs of customers,
and the EA ran through 500 generations. The EA was im-
plemented in C++ and executed on a Pentium 4 processor
running at 2.53GHz under Red Hat Linux 9.0.

3. PERFORMANCE

The EA was run 40 independent times on each of 36 in-
stances of the restricted SSCPLP. These instances are found
in Beasley’s OR-Library' [2]. The smaller of them have
n = 16, 25, or 50 locations and m = 50 customers, and
the larger have n = 100 locations and m = 1000 customers.
Among the latter, there are only three sets of costs; we ob-
tain twelve problem instances by assigning four different lo-
cation capacities, uniform across the locations, to each set
of costs. The values of optimum solutions of these instances
are known, and the EA’s results were compared with those
of the Fourth Approach, which was also tested on these in-
stances [1].

On the smaller instances, the performance of the EA did
not, with one exception, surpass that of the Fourth Ap-
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Table 2: Results of the Fourth Approach of Cortin-
hal and Captivo [1] and the EA on the twelve larger
(n =100 and m = 1000) instances of the SSCPLP, as
in Table 1. The table also lists the common plant
capacity for each instance.

C&C Evolutionary Algorithm
Inst. Capacity || +% |Hits Best+% Mean+% s(%)
capa 8000 028 | 0 0.063 0.521  0.514
10000 012 | 0 0.064 0.549  0.246
12000 0.29 | 21 0.000 1.104  0.933
14000 0.00 | O 0.002 0.423  1.147
capb 5000 0.01] O 0.193 1.231  0.957
6000 2871 0 0.268 1.268  0.728
7000 204 0 0.366 1.203  0.499
8000 047 | 0 0.565 1.059  0.410
capc 5000 0.70 | O 0.063 0.832  0.607
5750 0.65| 0 0.001 0.205  0.243
6500 1.15| 0 0.042 0.392  0.230
7250 0.09 | 0O 0.001 0.196  0.203

proach. Throughout, both algorithms performed well, and
the differences between them were small. The worst perfor-
mance was that of the EA on instance cap64, but its solution
costs were, on average, always within 0.75% of optimum.
The appearance of non-zero mean errors with zero standard
deviations (cap64, cap93, and cap123) suggests that the EA
is sometimes drawn into local optima.

On the larger instances, the EA fared better: on nine in-
stances of the twelve, the EA’s best result was better than
the Fourth Approach’s. On one instance, the EA found an
optimum solution on 21 trials out of 40, and on five in-
stances, the EA’s mean results were better than the Fourth
Approach’s, though more often, the Fourth Approach’s re-
sults were better than the EA’s mean results. Overall, both
again did well, with the Fourth Approach’s error never ex-
ceeding 2.9% and the EA’s mean error always less than 1.3%.

4. TWO FAILED HEURISTICS

Seeding the population with one or several genotypes in
which the customers were arranged in decreasing order of
demand did not improve the EA’s performance and on some
instances made it worse. The interactions between the selec-
tion of locations and the assignments of customers to them
are apparently too complex to be exploited by a simple or-
dering mechanism.

Similarly, reexamining customer assignments when new
locations were opened did not change the EA’s performance.
Once new locations have been opened, later evaluations of
descendants of that genotype, will consider those locations;
re-scanning is redundant.
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