Greedy Heuristics and Evolutionary Algorithms for
the Bounded Minimum-Label Spanning Tree Problem

Arindam Khaled and Bryant A. Julstrom
Dept. of Computer Science, St. Cloud State University
t. Cloud, MN 56301 USA
khar0001 @stcloudstate edu, julstrom@stcloudstate.edu

ABSTRACT

Given an edge-labeled, connected, undirected graph G and
a bound r > 1, the bounded minimum-label spanning tree
problem seeks a spanning tree on G whose edges carry the
fewest possible labels and in which no label appears more
than r times. Two greedy heuristics for the unbounded ver-
sion of the problem are adapted to the bounded version.
Two genetic algorithms for the problem encode labeled span-
ning trees as permutations of G’s edges. A simple GA per-
forms poorly, but the addition of local search enables con-
sistently good results.

Categories and Subject Descriptors: G.2.1 [Mathemat-
ics of Computing]: Discrete Mathematics—Combinatorics;
1.2.8 [Problem Solving, Control Methods, and Search]: Heu-
ristic Methods

General Terms: Algorithms

Keywords: Labeled spanning trees, bounded labels, greedy
heuristics, genetic algorithms, local search

1. INTRODUCTION

Let G be a connected, undirected graph, each of whose
edges bears a label. The labels are not in general unique;
each label may be attached to several edges. A minimum-
label spanning tree (MLST) on G is one whose edges carry
the smallest possible number of labels; the minimum-label
spanning tree problem seeks a MLST on G. If no label
may be used more than r > 1 times, we have the bounded
minimum-label spanning tree (BMLST) problem. Figure 1
shows a labeled graph and a BMLST on it with bound r = 3.

Chang and Leu [2] described the MLST problem, showed
that it is NP-hard, and described an A* algorithm and two
heuristics for it. The Maximum Vertex Covering Algorithm
was particularly effective. An evolutionary algorithm by
Xiong, Golden, and Wasil [6] encoded solutions as sets of
labels. It implemented a local search step that added a ran-
dom label and removed redundant labels. Another, by Num-
mela and Julstrom [4], encoded solutions as permutations of
the labels and implemented several heuristic steps.

Briiggemann, Monnot, and Woeginger [1] described the
bounded problem and showed that it is NP-hard for r > 3.
To our knowledge, the evolutionary algorithm below is the
first for the BMLST problem. Like the MLST problem, the
bounded problem finds applications in network design.

Copyright is held by the author/owner(s).
GECCO'08, July 12-16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

611

Figure 1: A labeled graph (left) and a bounded
minimum-label spanning tree on the graph corre-
sponding to the bound r = 3 (right).

2. TWO GREEDY HEURISTICS

Chang and Leu [2] proposed two greedy heuristics for the
MLST problem that we adapt to the bounded problem. The
Edge Replacement Algorithm (ERA) begins with an arbi-
trary spanning tree and swaps edges into and out of the
tree. One step considers an edge e not in the tree and its la-
bel ¢(e). It identifies the cycle created by including e in the
tree and within that cycle, an edge e’ whose label appears
least often. If £(e’) # £(e) and if £(e)’s count in the tree is
between 1 and r — 1, e replaces €’ in the tree.

The maximum-vertex covering algorithm (MVCA) begins
with an empty tree. At each step, it identifies a label whose
edges cover the largest number of uncovered vertices; it in-
cludes these edges in the tree. If more than r edges carry
the chosen label, r of them are selected at random.

3. TWO GENETIC ALGORITHMS

Permutations of G’s edges can represent bounded-label
spanning trees via a Kruskal-based [3] decoder. Given a
chromosome c[-], the decoder examines G’s edges in their
order in c[-]. It builds a tree by including each edge e unless
e completes a cycle or the tree already contains r edges with
e’s label. The chromosome’s fitness is the number of labels
on the tree’s edges, which we seek to minimize. If no tree is
identified, fitness is an arbitrarily large value.

Cycle crossover [5] divides the symbols in two parent chro-
mosomes into two groups whose sets of positions are disjoint.
It copies the first group into the same positions in the off-
spring, then fills the offspring with the symbols in the second
group, in order. This operator tends to preserve parental
symbol positions and thus is appropriate here. Mutation
swaps two symbols at random adjacent positions.

A local search operator scans the graph’s edges in chromo-
some order to identify the first edge e whose label appears
once in the tree and other labels whose counts in the tree
are non-zero but less than r. It examines the non-tree edges

Table 1: Results of the trials of the five algorithms on the 27 BMLST problem instances: For each instance,
its number of vertices n, density d, number of edges |E|, and number of labels |L|; for the A* algorithm, ERA,
and MVCA on each instance, the numbers of labels in the trees they identified and the times ¢ in seconds
they required to find them; for GA and HGA on each instance, the best and mean numbers of labels in 30
trials, the standard deviation s of these values, and the mean time ¢ that each ran.

Instance A* ERA MVCA GA HGA

n d |[E| |L] || Labels t Best t Best t Best Mean s t Best Mean s t

10 04 20 5 2 0.1 3 0.01 4 0.0002 2 2.7 0.4 6.3 2 2.0 0.0 8.1
10 0.6 30 5 2 0.1 2 0.01 4 0.0010 2 2.6 0.5 8.6 2 2.0 0.0 9.4
10 0.8 40 5 2 0.1 3 0.02 3 0.0003 2 2.5 0.5 11.1 2 2.0 0.0 12.4
15 04 45 8 3 0.2 5 0.05 4 0.0004 4 4.5 0.5 15.0 3 3.0 0.0 17.1
15 0.6 67 8 3 0.2 5 0.09 4 0.0005 3 4.2 0.5 226 3 3.0 0.0 27.1
15 0.8 90 8 3 0.3 4 0.12 5 0.0056 4 4.1 0.2 293 3 3.0 0.0 40
20 04 80 10 4 2.3 6 0.12 5 0.0020 5 6.1 04 316 4 4.0 0.2 40.7
20 06 120 10 4 2.8 6 0.18 4 0.0007 5 5.9 0.5 454 4 4.0 0.0 67
20 0.8 160 10 4 3.3 5 0.23 4 0.0035 5 5.7 0.5 56.5 4 4.0 0.0 100.1
25 04 125 12 6 6729.5 10 0.20 7 0.0031 7 7.9 0.3 63.1 6 6.0 0.2 94.3
25 06 187 12 6 6695.6 9 0.23 7 0.0015 7 7.9 0.5 76.9 6 6.0 0.0 146.8
25 0.8 250 12 6 6643.3 9 0.43 7 0.0017 7 8.0 0.5 88.2 6 6.0 0.0 216.7
30 04 180 15 11 0.30 8 0.0091 9 103 0.6 835 8 8.0 0.0 1424
30 06 270 15 12 0.57 8 0.0030 8 10.2 0.8 106.8 8 8.0 0.0 2476
30 0.8 360 15 13 0.91 8 0.0028 8 10.7 0.8 118.6 8 8.0 0.0 365
35 04 245 18 12 0.49 10 0.0025 11 12.5 0.7 118.5 9 9.1 0.2 228.7
35 06 367 18 13 1.05 9 0.0019 11 13.0 09 144.0 9 9.1 0.2 4014
35 0.8 490 18 13 1.74 10 0.0060 12 14.0 0.8 170.5 9 9.1 0.3 623.1
40 0.4 320 20 14 0.83 11 0.0171 13 14.7 1.0 160.6 10 109 04 3479
40 0.6 480 20 15 1.75 11 0.0023 14 159 09 202.2 10 10.5 0.5 598.7
40 0.8 640 20 12 2.58 10 0.0143 14 16.3 1.1 1523 10 10.6 0.6 9029
45 0.4 405 25 17 1.39 12 0.0074 17 18.7 1.0 211.1 12 12.7 0.6 512.1
45 0.6 607 25 18 2.42 12 0.0381 17 19.2 1.1 283.5 11 12.5 0.8 866.1
45 0.8 810 25 19 4.17 12 0.0208 18 20.0 1.0 316.5 12 12.7 0.6 1321.8
50 04 500 28 19 1.95 13 0.0111 19 21.3 1.0 270.6 13 144 08 6794
50 0.6 750 28 19 3.82 13 0.0130 20 22.2 1.2 328.0 13 14.4 0.8 1190.6
50 0.8 1000 28 18 6.41 13 0.0140 21 23.0 1.3 418.0 13 14.5 0.9 18115

for an edge that bears a different label found in the tree
and that can replace e. Swapping such an edge with e in
the chromosome reduces the tree’s label count by one. If
the tree contains no appropriate edges, the chromosome is
unchanged.

Two versions of a generational genetic algorithm apply
the coding and operators above. The GA initializes its pop-
ulation with random permutations of the graph’s edges. It
selects chromosomes to be parents in 2-tournaments, and it
generates each offspring by applying crossover or mutation.
It is 1-elitist and runs through a fixed number of generations.
The simple GA (SGA) does not use local search; the heuris-
tic GA (HGA) applies local search to every new chromosome
after the initial population.

SGA and HGA were implemented in C++ and executed
on a Pentium 4 processor running at 2.4GHz under Fedora
Core 2.6.19. In the comparisons below, their population
sizes were 250, and the probability that crossover generated
each offspring was 0.85, that of mutation 0.15.

4. COMPARISONS AND CONCLUSION

An exact A* algorithm, the two greedy heuristics, and the
two GAs were run on 27 instances of the BMLST problem
with from 10 to 50 vertices and densities—the proportion of
all possible edges—of 40%, 60%, and 80%. Their numbers
of labels ranged from five to 28. The A* algorithm was run
once and the remaining algorithms 30 independent times
on each BLMST problem instance. ERA and MVCA were
run multiple times because they involve random choices, but

their results never varied, so only their single results are
reported. Note that A* becomes intractable as n grows.
ERA performs well on the smaller instances, but on the
larger instances, it is inferior to MVCA, which always does
well. SGA also does well when n is small, but it is slower
than the non-evolutionary heuristics, and as n grows, it re-
turns poorer results even than ERA. Of the heuristics, HGA
returns the best results. It finds optimum solutions where
A* finds them, and does at least as well as MVCA. The local
search is effective, though it increases the GA’s time.

5. REFERENCES

[1] T. Briiggemann, J. Monnot, and G. J. Woeginger. Local search
for the minimum label spanning tree problem with bounded
color classes. Operations Research Letters, 31:195—-201, 2003.

[2] R.-S. Chang and S.-J. Leu. The minimum labeling spanning
trees. Information Processing Letters, 63:277-282, 1997.

[3] J. B. Kruskal. On the shortest spanning subtree and the
traveling salesman problem. Proceedings of the American
Mathematical Society, 7:48-50, 1956.

[4] J. Nummela and B. A. Julstrom. An effective genetic algorithm
for the minimum-label spanning tree problem. In M. Keijzer
et al., editors, Proceedings of the 2006 Genetic and
Evolutionary Computation Conference, volume 1, pages
553-557, New York, 2006. ACM Press.

[5] I. M. Oliver, D. J. Smith, and J. R. C. Holland. A study of
permutation operators on the Traveling Salesman Problem. In
J. J. Grefenstette, editor, Proceedings of the Second
International Conference on Genetic Algorithms, pages
224-230, Hillsdale, NJ, 1987. Lawrence Erlbaum.

[6] Y. Xiong, B. Golden, and E. Wasil. A one-parameter genetic
algorithm for the minimum labeling spanning tree problem.
IEEE Transactions on Evolutionary Computation, 9(1):55-60,
2005.

612

