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ABSTRACT
Evolutionary multi-objective optimization (EMO) method-
ologies, suggested in the beginning of Nineties, focussed on
the task of finding a set of well-converged and well-distributed
set of solutions using evolutionary optimization principles.
Of the EMO methodologies, the elitist non-dominated sort-
ing genetic algorithm or NSGA-II, suggested in 2000, is now
probably the most popularly used EMO procedure. NSGA-
II follows three independent principles – domination prin-
ciple, diversity preservation principle and elite preserving
principle – which make NSGA-II a flexible and robust EMO
procedure in the sense of solving various multi-objective op-
timization problems using a common framework. In this
paper, we describe NSGA-II through a functional decompo-
sition following the implementation of these three principles
and demonstrate how various multi-objective optimization
tasks can be achieved by simply modifying one of the three
principles. We argue that such a functionally decomposed
and modular implementation of NSGA-II is probably the
reason for it’s popularity and robustness in solving various
types of multi-objective optimization problems.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Problem Solving, Con-
trol Methods, and Search

General Terms
Algorithms

Keywords
Multi-objective optimization, Functional decomposition, Decision-
making, Evolutionary optimization.

1. INTRODUCTION
Evolutionary multi-objective optimization (EMO) method-

ologies are now being developed and applied for the past 15
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years [4, 5]. Besides finding a set of trade-off near-optimal
solutions, these methodologies are also applied to solve other
optimization problems (such as single-objective optimiza-
tion, goal programming problems) which are traditionally
not solved using a multi-objective optimization algorithm
[18]. The presence of multiple conflicting objectives and the
need of using decision-making principles cause a number of
different problem scenarios to emerge in practice. For ex-
ample, if the user is interested in finding a particular pre-
ferred region on the Pareto-optimal front, instead of the en-
tire frontier, or if the user is interested in finding a set of
Pareto-optimal solutions with certain pre-defined properties
in them, or if the user is interested in finding only ’knee’-like
points on the Pareto-optimal front, or if the user is inter-
ested in finding multi-modal Pareto-optimal solutions, what
changes the user must make to an existing EMO method-
ology? Could an existing methodology be used with some
simple change in its search, or an entirely new methodology
is called for? If one particular methodology can be modified
slightly to achieve many different problem-solving abilities,
it is probably the best and most desired for a user, as (s)he
is then required to know only one methodology for achieving
different tasks needed in multi-objective optimization.

In this paper, we analyze a popularly-used EMO method-
ology – the elitist non-dominated sorting genetic algorithm
or NSGA-II [6] – and discuss that the NSGA-II procedure
can be functionally decomposed into three main operations.
They are (i) elite preservation to achieve faster and reli-
able convergence towards better solutions, (ii) emphasis to
non-dominated solutions for achieving a progress towards
the entire Pareto-optimal front, and (iii) emphasis of less-
crowded solutions for maintaining a diversity in solutions.
These three operations are implemented in a modular man-
ner, so that each can be modified independently to allow the
NSGA-II to solve different types of multi-objective optimiza-
tion problems. In this paper, for the first time, we discuss
this functional decomposition aspect of NSGA-II and show
how, over the years, various extensions of NSGA-II through
a modification of each of these three aspects were able to
find a better distribution of solutions, a partial frontier, knee
points, global Pareto-optimal front, robust and reliable fron-
tiers, estimate the nadir point, and help choose a single so-
lution. This modular aspect makes NSGA-II framework a
useful tool for research in multi-objective optimization. This
aspect of modularity, along with NSGA-II’s need for no ad-
ditional parameter, is probably the reason for NSGA-II’s
popularity among EMO researchers and applicationists.
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2. EVOLUTIONARY MULTI-OBJECTIVE OP-
TIMIZATION (EMO)

EMO methodologies work with two main goals:

1. Find a set of Pareto-optimal solutions, and

2. find a set of diverse solutions to make a better repre-
sentation of the Pareto-optimal front.

In this respect, EMO methodologies belong to the class
of a posteriori multiple criterion decision making (MCDM)
methods [21].

2.1 Elitist Non-Dominated Sorting GA (NSGA-
II)

The NSGA-II procedure [6] is one of the popularly used
EMO procedures which attempt to find multiple Pareto-
optimal solutions in a multi-objective optimization problem
and has the following three features:

1. It uses an elitist principle,

2. it uses an explicit diversity preserving mechanism, and

3. it emphasizes non-dominated solutions.

At any generation t, the offspring population (say, Qt) is
first created by using the parent population (say, Pt) and
the usual genetic operators. Thereafter, the two popula-
tions are combined together to form a new population (say,
Rt) of size 2N . Then, the population Rt classified into dif-
ferent non-domination classes, leading to a process called
non-dominated sorting. It begins by identifying solutions
which are not dominated by any other member of the popu-
lation. The domination between two solutions is defined as
follows [5, 21]:

Definition 1. A solution x(1) is said to dominate solu-
tion x(2), if both are true:

1. x(1) is no worse than x(2) in all objectives.

2. x(1) is strictly better than x(2) in at least one objective.

After solutions of the first non-dominated class are identi-
fied, they are discounted and another round of identification
of non-dominated solutions is made. The corresponding so-
lutions belong to second class of non-domination. This pro-
cess is continued till all solutions are classified into a non-
dominated class.

Once the non-domination sorting is over, the new popula-
tion is filled by points of different non-domination fronts, one
at a time. The filling starts with the first non-domination
front (of class one) and continues with points of the second
non-domination front, and so on. Since the overall popula-
tion size of Rt is 2N , not all fronts can be accommodated in
N slots available for the new population. All fronts which
could not be accommodated are deleted. When the last al-
lowed front is being considered, there may exist more points
in the front than the remaining slots in the new population.
This scenario is illustrated in Figure 1. Instead of arbitrar-
ily discarding some members from the last front, the points
which will make the diversity of the selected points the high-
est are chosen. The crowded-sorting of the points of the last
front which could not be accommodated fully is achieved
in the descending order of their crowding distance values
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Figure 1: Schematic of the NSGA-II procedure.

and points from the top of the ordered list are chosen. The
crowding distance di of point i is a measure of the objective
space around i which is not occupied by any other solution
in the population. Here, we simply calculate this quantity di

by estimating the perimeter of the cuboid (Figure 2) formed
by using the nearest neighbors in the objective space as the
vertices (we call this the crowding distance).
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Figure 2: The crowding distance calculation.

NSGA-II provides a flexible and modular framework which
is capable of solving various kinds of multi-objective op-
timization problems – (i) the emphasis of non-dominated
solutions allows convergence towards Pareto-optimal front,
(ii) the emphasis of least-crowded solutions allows NSGA-II
to find a diverse set of solutions, and (iii) the emphasis of
elite preservation allows a reliable and monotonically non-
decreasing performance of NSGA-II. It is worth mention-
ing here that despite the popularity of NSGA-II in scientific
and application-oriented applications, all EMO algorithms
including NSGA-II are not free from their weakness in deal-
ing with more than four objective optimization problems
[11]. With an increase in number of objectives, the number
of points needed to represent a higher-dimensional Pareto-
optimal front must be increased exponentially. Moreover,
the usual domination principle demands an exponentially
large population size to be effective [5]. However, EMO
methodologies can be effective if a preferred region on the
Pareto-optimal front is the target, rather than the entire
front, even in the case of 10 or 20 objectives [12].

In the following sections, we discuss how these three prin-
ciples of NSGA-II can be modified independently one at a
time to achieve different efficient algorithms for solving dif-
ferent types of multi-objective optimization tasks.
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3. MODIFYING DOMINATION PRINCIPLE
First, we describe modified NSGA-II procedures which

simply change the domination principle and keep the diver-
sity and elite preserving principles the same as before.

3.1 Guided Domination
In this approach [3], a weighted function of the objectives

is defined as follows:

Ωi(f(x)) = fi(x) +

M
X

j=1,j 6=i

aijfj(x), i = 1, 2, . . . , M. (1)

where aij is the amount of gain in the j-th objective function
for a loss of one unit in the i-th objective function. Now,
we define a different domination concept for minimization
problems as follows.

Definition 2. A solution x(1) dominates another solu-
tion x(2), if Ωi(f(x

(1))) ≤ Ωi(f(x
(2))) for all i = 1, 2, . . . , M

and the strict inequality is satisfied at least for one objective.

Figure 3(b) shows the contour lines corresponding to the
above two linear functions passing through a solution A in
the objective space. All solutions in the hatched region are
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Figure 3: (a) the dominated region using the usual
definition (b) the dominated region using guided
domination.

dominated by A according to the above definition of domi-
nation. It is interesting to note that when using the usual
definition of domination (Figure 3(a)), the region marked by
a horizontal and a vertical line will be dominated by A. Thus,
it is clear from these figures that the modified definition of
domination allows a larger region to become dominated by
any solution than the usual definition. Since a larger re-
gion is now dominated, the complete Pareto-optimal front
(as per the original domination definition) may not be non-
dominated according to this new definition of domination.
In order to demonstrate the working of the above procedure,
we apply an NSGA with the modified domination principle
to the SCH1 problem [5]. With a12 = a21 = 0.75, the ob-
tained partial front is shown in Figure 4. The complete
frontier is much wider, as shown with a dashed line.

3.2 Epsilon Domination
In the ǫ-MOEA proposed elsewhere [10], dominance def-

inition is changed to make sure a solution dominates an-
other solution with at least ǫi difference in i-th objective
[20]. A solution x(1) ǫ-dominates another solution x(2), if

fi(x
(1)) ≤ fi(x

(2)) + ǫi for all objectives and if the strict
inequality is true for at least one objective. Although such
a consideration requires users to set ǫi parameters, this pro-
vide a flexibility on the part of the user to find a well-
distributed set of Pareto-optimal solutions. This concept
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Figure 4: An intermediate portion of the Pareto-
optimal region for the problem SCH1.

also has a practical aspect in that the decision-maker can
now specify a minimum difference in objective values before
he or she is interested in evaluating two trade-off solutions.
To illustrate the effect of the ǫ-dominance, we show simu-
lation results on the three-objective DTLZ1 problem which
has a linear Pareto-optimal front. In comparison to a stan-
dard NSGA-II simulation run (Figure 5), the ǫ-MOEA with
ǫi = 0.2 (Figure 6) seems to find a better distribution of
points on the Pareto-optimal front.

3.3 Other Domination and Fuzzy Dominance
Other principles based on proper Pareto-optimality con-

ditions [15], fuzzy dominance [14] are certainly possible to
be implemented by simply replacing the usual domination
principle coded in NSGA-II.

For handling a large number of objectives, a study used
a simpler domination strategy in which a solution having
a larger number of better objective values is declared to
dominate the other solution. Thus, between two solutions
x(1) and x(2), if fi(x

(1)) < fi(x
(2)) for more objectives than

fi(x
(2)) < fi(x

(1)), then solution x(1) dominates solution

x(2). It is likely that this new definition will only identify in-
termediate solutions in a higher-dimensional Pareto-optimal
front. It is interesting to extrapolate the idea and include
some preference information in the comparison. Based on
a priori preference information about important objectives,
a hierarchy or more weightage can be allocated for pre-
ferred objectives. In this aspect, the weighted domination
approach [22] is interesting and can be tried to implement
with the NSGA-II procedure.

The fuzzy-dominance concept determines dominance of
a solution based on a fuzzy-logic based comparison scheme.
Thus, a solution winning with a larger margin can be sure of
being a non-dominated solution. A solution with marginally
better function values may dominate a solution or may get
dominated by another solution with a probability less than
one. The effect of such domination schemes is that the fi-
nal trade-off region is not crisp, but defined with a fuzzy
boundary [14].

3.4 Constrained Domination
The constraint handling method modifies the domination

definition to include feasibility of two comparing solutions.
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Figure 6: ǫ-MOEA distribution on
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Figure 7: C-NSGA-II distribution
on DTLZ1.

We simply redefine the domination principle as follows:

Definition 3. A solution x(i) is said to ‘constrained-dominate’
a solution x(j) (or x(i) �c x(j)), if any of the following con-
ditions are true:

1. Solution x(i) is feasible and solution x(j) is not.

2. Solutions x(i) and x(j) are both infeasible, but solu-
tion x(i) has a smaller constraint violation, which can
be computed by adding the normalized violation of all
constraints:

CV(x) =
J

X

j=1

〈ḡj(x)〉 +
K

X

k=1

abs(h̄k(x)),

where 〈α〉 is −α, if α < 0 and is zero, otherwise. The
normalization is achieved with the population mini-
mum (〈gj〉min) and maximum (〈gj〉max) constraint vio-
lations: ḡj(x) = (〈gj(x)〉−〈gj〉min)/(〈gj〉max−〈gj〉min).

3. Solutions x(i) and x(j) are feasible and solution x(i)

dominates solution x(j) in the usual sense (Definition 1).

The above change in the definition requires a minimal change
in the NSGA-II procedure described earlier. Figure 8 shows
the non-domination fronts on a six-membered population
due to the introduction of two constraints (the minimization
problem is described as CONSTR elsewhere [5]). In the ab-
sence of the constraints, the non-domination fronts (shown
by dashed lines) would have been ((1,3,5), (2,6), (4)),
but in their presence, the new fronts are ((4,5), (6), (2),

(1), (3)). Such a simple change in definition of domination
allows NSGA-II to make a proper emphasis among feasible
and infeasible solutions, so that feasible and optimal solu-
tions can be found using NSGA-II.

3.5 Robust Domination Handling Uncertain-
ties

In many applied multi-objective optimization problems,
problem parameters and decision variables can be uncer-
tain. In such scenarios, instead of finding the deterministic
Pareto-optimal front, a robust frontier, on which every solu-
tion is relatively insensitive to the uncertainties, is usually
the target. In such cases, instead of performing domination
on the objective function values, it can be performed on the
neighborhood-average function values. Since average values
are minimized, the obtained frontier is likely to be a robust
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Figure 8: Non-constrained-domination fronts.

frontier. Figure 9 shows the simulation result of NSGA-II
on a test problem. The modification has enabled NSGA-II
to find a different trade-off frontier (robust frontier) which
depends on the chosen neighborhood size (δ) and is different
from the original Pareto-optimal frontier.
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Figure 9: Robust solutions are found using NSGA-II
with modified dominance.
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4. MODIFYING DIVERSITY PRESERVING
PRINCIPLE

Next, we describe modified NSGA-II procedures which
changed the diversity preserving principle and kept domina-
tion and elite preserving principles the same. There exist
a number of modifications under this category, as by modi-
fying the diversity preserving principle, focus can be placed
in finding specific Pareto-optimal solutions, instead of the
complete Pareto-optimal frontier.

4.1 Clustered NSGA-II
In this approach, the crowding distance operator of NSGA-

II is replaced with a K-mean clustering approach [10]. Each
solution of the last front is first considered to lie on a sepa-
rate cluster. Thereafter, the inter-cluster Euclidean distance
is computed and the two clusters with the minimum dis-
tance are merged together. This process is repeated till the
required number of clusters remain. For a cluster having
multiple solutions, an average distance to another cluster
is computed. Finally, from each cluster a solution close to
the centroid of the cluster is chosen and others are deleted.
Although this requires a larger computational time, the clus-
tered NSGA-II is expected to find a better distributed set
of Pareto-optimal solutions than the original NSGA-II. Fig-
ure 7 shows a better distribution with this clustering ap-
proach than that obtained in Figure 5 with the original
NSGA-II.

Recently, pruning strategies are suggested in which in-
stead of selecting a block of solutions simultaneously by the
crowding distance operator, solutions are chosen one by one
and crowding distance values are re-computed after each up-
date [19]. This certainly resulted in finding a better distri-
bution of solutions.

4.2 Projection Based Diversity Preservation
In the projection-based diversity preservation method, a

biased crowding distance measure is used [1]:

Di = di

„

d′
i

di

«α

, (2)

where di and d′
i are the original crowding distance and the

crowding distance calculated based on the locations of the
individuals projected onto the (hyper-)plane with direction
vector η. Figure 10 illustrates the concept. As a result, for a
solution in a region of the Pareto-optimal front more or less

parallel to the projected plane (such as solution ’a’), the orig-
inal crowded distance da and projected crowding distance d′

a

are more or less the same, thereby making the ratio d′
a/da

close to one. Solutions in such regions will be preferred by
this biased NSGA-II. Figure 11 shows three different runs,
each simulated with a different plane indicated on the plot
with α = 100. Every time, the biased NSGA-II converges
to a different part of the non-convex Pareto-optimal front.

4.3 Distributed Domination
The cone dominance concept facilitates NSGA-II to be

used on a distributed computing platform to find the com-
plete frontier by distributing the task among multiple pro-
cessors. Each processor uses a different but non-overlapping
cone, so that the Pareto-optimality of each processor is dif-
ferent from others. By using occasional migration of individ-
uals from one processor to the other, an overall faster opti-
mization task is achieved in finding the complete frontier in
an adaptive manner. Figure 13 shows the results obtained by
three processors to find a three-dimensional Pareto-optimal
front.
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Figure 13: Parallel NSGA-II solutions with three
processors in solving DTLZ2.

4.4 Multi-modal Diversity Preservation
In some problems, one Pareto-optimal point in the objec-

tive space (f ∈ RM ) may correspond to a number of so-
lutions in the decision space (x ∈ Rn). In such problems,
a goal may be to find multiple solutions corresponding to
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each Pareto-optimal point. This task is similar to finding
multiple optimal solutions in a multi-modal single objective
optimization problem [16]. We extend the niching concept
for handling multi-modal problems for the multi-objective
optimization case here.

First, we delete the duplicate solutions from each non-
domination set in Rt. Thereafter, each set is accepted as
usual till the last front Fl which can be accommodated. Let
us say that solutions remaining to be filled before this last
front is considered is N ′ and the number of non-duplicate
solutions in the last front is Nl (> N ′). We also compute
the number of distinct objective solutions in the set Fl and
let us say it is nl (obviously, nl ≤ Nl). This procedure is
illustrated in Figure 14. If nl ≥ N ′ (the top case shown in
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Figure 14: Schematic of the multi-modal NSGA-II
procedure.

the figure), we use the usual crowding distance procedure to
choose N ′ most dispersed and distinct solutions from nl so-
lutions. Otherwise, we change the procedure as follows. We
choose a strategy in which every distinct objective solution
is allowed to have a proportionate number of multi-modal
solutions as they appear in Fl. To avoid loosing any distinct
objective solutions, we first allocate one copy of each distinct
objective solution, thereby allocating nl copies. Thereafter,
the proportionate rule is applied to the remaining solutions
(Nl − nl) to find the accepted number of solutions for the
i-th distinct objective solution as follows:

αi =
N ′ − nl

Nl − nl

(mi − 1), (3)

where mi is the number of multi-modal solutions of the i-th
distinct objective solution in Fl, such that

Pnl

i=1 mi = Nl.
The final task is to choose (αi + 1) multi-modal solutions
from mi copies for the i-th distinct objective solution. In
the rare occasions of having less than N non-duplicate so-
lutions in Rt, new random solutions are used to fill up the
population.

The multi-modal NSGA-II is applied to a bioinformatics
problem of identifying gene classifiers for achieving minimum
number of mismatches in classification of training samples
of microarray data on two types of leukemia samples and si-
multaneously achieving the task with the smallest classifier
size. In this task, 50 genes are considered and the objec-
tive space is discrete. Weak Pareto-optimal solutions are at-
tempted to find for getting a comprehensive idea of optimal
classifiers. Figure 15 shows a part of the feasible objective

space and the obtained Pareto-optimal front. Multiplicities
of the solutions with no mismatches in classification are also
shown. Such a consideration brings out important insights
about the problem: (i) There are eight different five-gene
classifiers which cause 100% correct classification, (ii) only
five to 10-gene classifiers are capable of making 100% correct
classifications.
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Figure 15: Multiple weak Pareto-optimal solutions
found for the 50-gene leukemia problem.

4.5 Omni-optimizer
In this extension of NSGA-II, the crowding distance mea-

sure is computed in both objective and decision variable
spaces and a combined method is suggested [13]. As ex-
pected, such an implementation was able to find a well-
distributed set of solutions in both spaces thereby solving
multi-modal problems in single and multi-objective opti-
mization problems alike. In single objective problems, this
means finding multiple global optimal solutions simultane-
ously and in multi-objective optimization problems this means
simultaneously finding multiple solutions corresponding a
single Pareto-optimal point. Due to space restrictions, we
do not show the results here.

4.6 Extreme Point Preference for Nadir Point
Estimation

Nadir point corresponds to the worst objective values of
the Pareto-optimal front. Nadir point is important to know
in a multi-objective optimization problem solving task be-
cause of a number of reasons. Together with the ideal point,
it provides a way to normalize the objectives so certain
multi-objective optimization algorithms can be used. In an
earlier study [7], NSGA-II’s diversity preservation operator
is modified to find only extreme points in a Pareto-optimal
front so that the nadir point can be estimated. The crowd-
ing distance measure is replaced with a ranking scheme in
which solutions having the best and worst individual objec-
tive values are given the highest rank and the importance
gets less for intermediate solutions. With such a strategy
applied to NSGA-II resulted in a population shown in Fig-
ure 12 with circles, whereas the original NSGA-II resulted in
the population marked with diamonds. Since the modified
NSGA-II can find only extreme solutions, the estimation of
the nadir point becomes an easier and quicker task using
this approach.
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Figure 16: Knee based NSGA-II
finds solutions near knee points.
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Figure 18: LBS based NSGA-II on
ZDT3.

4.7 Knee Point Preference
Knee points refer to points from which a small gain in

one objective requires a large sacrifice in at least one other
objective. Knee points are important in multi-objective op-
timization, as once found there is not much motivation for
a decision-maker to move out of these points. If knee points
exist in a problem, it may be desirable to find only these
points. For this task, we can again modify NSGA-II’s crowd-
ing distance operator and aim at emphasizing solutions por-
traying knee-like properties [2]. A previous study consid-
ered two different implementations for this purpose. Simply
stated, in the utility function based approach, several linear
utility functions are chosen and solutions corresponding to
the maximum values of more utility functions are empha-
sized in the population. Since knee points will correspond
to optimum of many linear utility functions, such a strategy
ends up finding only the knee points, as shown in Figure 16.

4.8 Reference Point Based NSGA-II
In an effort to combine EMO procedures with a multi-

criterion decision-making aid for choosing a single preferred
Pareto-optimal solution, an earlier study proposed a hybrid
reference point based NSGA-II [12]. Instead of finding the
entire Pareto-optimal front, the focus is to find the region
(through a set of points) which corresponds to the optimum
of the achievement scalarizing function formed with one or
more reference points. Again, NSGA-II’s crowding distance
operator is changed to emphasize solutions with larger val-
ues of the achievement scalarizing function. Thereafter, to
maintain a range of solutions, an ǫ-dominance principle is
incorporated to further emphasize which are at least ǫ dis-
tance away from each other. The rest of NSGA-II implemen-
tation remains the same. Figure 17 shows that this reference
point based NSGA-II is able to find three different regions
on the Pareto-optimal front corresponding to the three dif-
ferent reference points supplied by the user. More results
can be found in the original study [12].

4.9 Light Beam Search Based NSGA-II
In another study [9], the classical light beam search ap-

proach [17] is combined with NSGA-II so as to find only a
part of the Pareto-optimal front lighted by a beam. Usually,
the beam is started from the ideal point or a desired refer-

ence point and aimed towards the nadir point. The diverg-
ing angle of the beam gets determined by the shape of the
Pareto-optimal frontier and a number of user-defined trade-
off parameter, called veto thresholds. By modifying the
crowding distance operator to emphasize solutions near the
augmented achievement scalarizing function solution, this
task can be achieved easily, even for multiple light beams.

Figure 18 shows the result on ZDT3 having a disconnected
Pareto-optimal frontier. One side of the beam does not light
up any part of the Pareto-optimal front in this problem. The
modified NSGA-II is able to display this fact by finding only
the lighted side of the Pareto-optimal frontier. More results
can be found in the original study [9].

5. MODIFYING ELITE PRESERVING PRIN-
CIPLE

The elite preserving principle can be modified to empha-
size or de-emphasize solutions on the best non-dominated
frontier. There is at least one such implementation which
we describe in the next subsection.

5.1 Controlled NSGA-II
Most studies in EMO concentrated on emphasizing diver-

sity preservation along the current non-dominated frontier.
However, the lateral diversity is also an important matter
which may enhance the performance of an EMO particu-
larly in difficult optimization problems. In an earlier study
[8], non-dominated fronts of second, third and higher levels
(which are worse than the first-level non-dominated solu-
tions) are deliberately kept in the population in a geomet-
rically reduced manner. In ZDT4 problem which has many
local Pareto-optimal frontiers, such a reduced and controlled
elite preservation helped find better non-dominated fron-
tiers, as shown in Figure 19. In this problem, the smaller
the value of g(), the closer is the frontier to the true Pareto-
optimal frontier. It is clear that the original NSGA-II was
equipped with a too strong an elite preservation and as the
emphasis on higher-level frontiers are made by increasing
the geometric progression parameter r, the performance gets
better. At around r = 0.65, the performance of controlled
NSGA-II is the best.
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Figure 19: The controlled elite-preserving proce-
dure in NSGA-II.

6. CONCLUSIONS
In this paper, we have functionally decomposed a well-

known evolutionary multi-objective optimization algorithm
(NSGA-II) for its three main aspects: elite preservation,
dominance consideration and diversity preservation. NSGA-
II algorithm was suggested in 2000 and since then the pro-
cedure has been modified to solve various multi-objective
problem solving tasks by simply modifying the one or more
of these three aspects. In this paper, for the first time, we
have demonstrated how each of these extensions was made
possible. This suggests that NSGA-II framework is modular
and is an ideal platform to extend to achieve different goals
by understanding each of the three functionalities. Such a
flexible framework makes NSGA-II an ideal candidate to be
coded in a software which can turn itself into several multi-
objective optimizers by a simple modification to one or more
of its operations. It will also be interesting to investigate
other popular EMO algorithms (such as SPEA2, PESA and
others) for their modularity and ability to provide a similar
flexibility as demonstrated in this paper with NSGA-II in
solving different types of multi-objective optimization prob-
lems. Other extensions than what has been discussed here
are certainly possible and this paper should provide a mo-
tivation for readers to try other ideas, may be by changing
more than one aspects at a time, with NSGA-II and other
EMO methodologies.
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