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ABSTRACT 
Recently a number of approaches have been proposed to improve 
the scalability of evolutionary multiobjective optimization (EMO) 
algorithms to many-objective problems. In this paper, we examine 
the effectiveness of those approaches through computational 
experiments on multiobjective knapsack problems with two, four, 
six, and eight objectives. First we briefly review related studies on 
evolutionary many-objective optimization. Next we explain why 
Pareto dominance-based EMO algorithms do not work well on 
many-objective optimization problems. Then we explain various 
scalability improvement approaches. We examine their effects on 
the performance of NSGA-II through computational experiments. 
Experimental results clearly show that the diversity of solutions is 
decreased by most scalability improvement approaches while the 
convergence of solutions to the Pareto front is improved. Finally 
we conclude this paper by pointing out future research directions.  

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Heuristic Methods. 

General Terms 
Algorithms. 

Keywords 
Evolutionary multiobjective optimization (EMO), many-objective 
optimization, Pareto dominance, crowding distance, knapsack 
problems, balance between diversity and convergence. 

1. INTRODUCTION 
Evolutionary multiobjective optimization (EMO) algorithms have 
been successfully used in a wide range of real-world application 
tasks [1], [5], [6], [8]. Whereas EMO algorithms usually work 
very well on two-objective problems, their search ability is 
severely deteriorated by the increase in the number of objectives. 

Well-known Pareto dominance-based EMO algorithms such as 
SPEA [33] and NSGA-II [9] do not work well on many-objective 
problems with four or more objectives. This is because almost all 
individuals in each population become non-dominated with each 
other when they are compared using many objectives. That is, 
almost all individuals have the same fitness with respect to Pareto 
dominance-based criteria. As a result, Pareto dominance-based 
EMO algorithms can not have a strong selection pressure toward 
the Pareto front of a many-objective optimization problem. 

A simple approach for increasing the selection pressure toward 
the Pareto front is to introduce different ranks to non-dominated 
solutions in each population. Another simple approach is to 
modify dominance relation in order to decrease the number of 
non-dominated solutions in each population. Almost the same 
effect can be obtained by the modification of objective functions 
to increase the correlation among them. In this paper, we examine 
the effectiveness of these approaches by incorporating them into 
NSGA-II. We also examine two simple tricks for decreasing the 
diversity maintenance effect in NSGA-II. One is to assign a zero 
distance instead of an infinity distance to extreme solutions as 
their crowding distance. The crowding distance of the other 
solutions is calculated in the same manner as NSGA-II. Another 
trick is to assign a random value to each solution as their 
crowding distance.  

Experimental results on many-objective knapsack problems show 
that all of these approaches significantly improve the performance 
of NSGA-II in terms of the convergence of solutions toward the 
Pareto front. These approaches, however, severely decrease the 
diversity of solutions. We also demonstrate that the hybridization 
of NSGA-II with local search clearly improves the diversity of 
solutions along the Pareto front while it slightly improves the 
convergence property of NSGA-II. 

In this paper, we briefly review related studies on evolutionary 
many-objective optimization in Section 2 (see [21] for a review 
on this area). Next we explain why EMO algorithms do not work 
well on many-objective problems in Section 3. Then we examine 
the effectiveness of scalability improvement approaches by 
combining them into NSGA-II in Section 4. Finally we conclude 
this paper by pointing out some future research directions in the 
field of evolutionary many-objective optimization in Section 5. 

2. RELATED STUDIES 
The deterioration of the search ability of EMO algorithms by the 
increase in the number of objectives has already been pointed out 
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in a number of studies. Examples of early studies are [24], [27]. It 
was clearly shown by [15], [23] that multiple runs of single-
objective evolutionary algorithms outperformed EMO algorithms 
when they were applied to many-objective problems. 

In Pareto dominance-based EMO algorithms such as SPEA [33] 
and NSGA-II [9], the fitness of each solution is usually evaluated 
by two criteria: a primary criterion based on the Pareto dominance 
relation and a secondary criterion based on the concept of 
crowding. A Pareto dominance-based primary criterion is used to 
generate a selection pressure toward the Pareto front while a 
crowding-based secondary criterion is used to increase the 
diversity of solutions along the Pareto front. 

As we have already explained, the increase in the number of 
objectives weakens the selection pressure toward the Pareto front 
in EMO algorithms through the increase in the number of non-
dominated solutions in each population. Thus the scalability 
improvement of EMO algorithms to many-objective problems can 
be realized by strengthening the selection pressure toward the 
Pareto front. One approach in this direction is to assign different 
ranks to non-dominated solutions [7], [13], [25], [26], [29]. 
Another approach in the same direction is to modify dominance 
relation to decrease the number of non-dominated solutions in 
each population [28]. Almost the same effect as the modification 
of dominance relation is obtained by the modification of objective 
functions to increase the correlation among them [2], [19]. 

Another direction for the scalability improvement is the use of 
different fitness evaluation mechanisms (instead of Pareto 
dominance). One approach in this direction is the use of an 
indicator function such as hypervolume to evaluate the quality of 
solution sets [20], [31]. This class of EMO algorithms is often 
called IBEAs (indicator-based evolutionary algorithms). Another 
approach is to use a number of different scalarizing functions for 
fitness evaluation of each solution [15], [16], [18], [19], [23], [32]. 

In the above-mentioned approaches, EMO algorithms are applied 
to many-objective problems. On the other hand, the number of 
objectives is decreased in dimensionality reduction [3], [4], [10], 
[11]. It is much easier for EMO algorithms to search for Pareto-
optimal solutions with respect to a small number of selected 
objectives after dimensionality reduction than the search with 
respect to a large number of original objectives. 

The incorporation of preference of the decision maker into EMO 
algorithms has also been proposed to handle many-objective 
problems [12], [14], [30]. Preference information is used to 
concentrate the search by EMO algorithms on a small region of 
the Pareto front. 

3. MANY-OBJECTIVE OPTIMIZATION 
In this section, we explain why many-objective optimization is 
difficult for EMO algorithms through computational experiments 
on multiobjective knapsack problems. Throughout this paper, we 
use NSGA-II as a representative algorithm of Pareto dominance-
based EMO algorithms. 

3.1 Test Problems 
As test problems, we used 500-item knapsack problems with two, 
four, six and eight objectives. We denote each problem as a k-n 
test problem where k is the number of objectives and n is the 

number of items (i.e., 2-500, 4-500, 6-500, 8-500 test problems). 
The 2-500 and 4-500 test problems are exactly the same as those 
in Zitzler and Thiele [33]. On the other hand, we generated our 6-
500 and 8-500 test problems in the same manner as in [33].  

Our k-n test problem is written in a general form as follows: 

Maximize ))(...,),(),(()( 21 xxxxf kfff= ,        (1) 

subject to ∑
=

≤
n

j
ijij cxw

1
,  ki ...,,2,1= ,        (2) 

  =jx 0 or 1, nj ...,,2,1= ,        (3) 

where ∑
=

=
n

j
jiji xpf

1
)(x ,  ki ...,,2,1= .       (4) 

In this formulation, x is an n-dimensional binary vector, pij is the 
profit of item j according to knapsack i, wij is the weight of item j 
according to knapsack i, and ci is the capacity of knapsack i. Each 
solution x is handled as a binary string of length n (i.e., 500). 

3.2 Performance Measures 
We used the following three performance measures to monitor the 
convergence of solutions toward the Pareto front and their 
diversity along the Pareto front during the execution of NSGA-II: 

Maximum sum of the objective values: MaxSum 
In each generation, we calculated the maximum value of the sum 
of the objective functions as follows: 

∑
=Ψ∈

=Ψ
k

i
if

1
)(max)(MaxSum x

x
,         (5) 

where Ψ denotes the current population in each generation.  

This measure was used to evaluate the convergence of solutions 
toward the center region of the Pareto front in the objective space.  

Sum of the maximum objective values: SumMax 
The sum of the maximum value of each objective function was 
calculated in each generation as follows: 

∑
= Ψ∈

=Ψ
k

i
if

1
)(max)(SumMax x

x
.        (6) 

This measure was used to evaluate the convergence of solutions 
toward the k edges of the Pareto front in the objective space. 

Sum of the ranges of the objective values: Range 
The sum of the range of the objective values of each objective 
was calculated in each generation as follows: 

∑
= Ψ∈Ψ∈

−=Ψ
k

i
ii ff

1
])}({min)}({max[)(Range xx

xx
.       (7) 

This measure was used to evaluate the diversity of solutions in the 
objective space. 

We used these performance measures to examine the effect of 
scalability improvement approaches on the convergence property 
and the diversity maintenance ability of NSGA-II. The simplicity 
of the calculation is a large advantage of these performance 
measures over more sophisticated measures such as hypervolume 
especially when they are used for many-objective problems. 
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3.3 Conditions of Computational Experiments 
We applied NSGA-II [9] to each of our test problems using the 
following parameter specifications: 

Population size: 100, 
Crossover probability: 0.8 (Uniform crossover), 
Mutation probability: 1/500 (Bit-flip mutation), 
Stopping condition: 100,000 generations, 
Number of runs for each test problem: 10 runs. 

We performed computational experiments for an unusually large 
number of generations (i.e., 100,000 generations) to examine a 
long-term behavior of NSGA-II. Due to such a heavy computation 
load for each run, we applied NSGA-II to each test problem only 
ten times. Reported results in this paper are average results over 
those ten runs.  

In the execution of NSGA-II, infeasible solutions were often 
generated. In order to transform an infeasible solution into a 
feasible one, we used a repair procedure based on a maximum 
profit/weight ratio as in Zitzler and Thiele [33]. More specifically, 
we removed items from an infeasible solution in ascending order 
of the following maximum profit/weight ratio of each item until 
all the constraint conditions of each test problem were satisfied:  

}...,,2,1|max{ kiwpq ijijj == , nj ...,,2,1= .       (8)  

3.4 Experimental Results 
In Figs. 1-3, we show average results over ten runs of NSGA-II. 
Experimental results were normalized so that the average result of 
each measure at the initial generation becomes 100 for each test 
problem in Figs. 1-3. We always used this normalization 
procedure for the three performance measures throughout this 
paper (i.e., we always used the average result at the initial 
generation as the baseline value 100). 

The MaxSum measure in Fig. 1 shows the convergence property 
of NSGA-II toward the center region of the Pareto front. From Fig. 
1, we can see that the convergence of solutions to the Pareto front 
was slowed down by the increase in the number of objectives. 
One interesting observation is that the MaxSum measure first 
increased then decreased during the execution of NSGA-II for the 
4-500 and 6-500 test problems in Fig. 1.  

The SumMax measure in Fig. 2 shows the convergence property 
of NSGA-II toward the edges of the Pareto front. Of course, this 
measure implicitly shows the diversity of solutions. In Fig. 2, the 
average values of the SumMax measure were gradually improved 
during the execution of NSGA-II over a large number of 
generations. This observation suggests the difficulty in finding 
non-dominated solutions that cover the entire Pareto front within 
a small number of generations of NSGA-II. 

The Range measure in Fig. 3 shows the diversity of solutions. We 
can observe in Fig. 3 that the increase in the number of objectives 
led to the increase in the diversity of solutions. This is because the 
crowding distance-based secondary criterion instead of the Pareto 
sorting-based primary one had a dominant effect on the fitness 
evaluation of each solution when the number of objectives was 
large (i.e., when almost all solutions in each population were non-
dominated). The Pareto sorting-based primary criterion had a 
dominant effect on the fitness evaluation only in early generations 
where the diversity of solution was decreased. 
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Figure 1. Convergence toward the center region of the Pareto 

front (NSGA-II). 
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Figure 2. Convergence toward the edges of the Pareto front 

(NSGA-II). 
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Figure 3. Diversity of solutions (NSGA-II). 

 

To further examine the search behavior of NSGA-II in Figs. 1-3, 
we counted the number of non-dominated solutions in the current 
and offspring populations just before the generation update in 
each generation. Since we specified the population size as 100, 
100 offspring were generated from the current population of 100 
solutions in each generation. We counted the number of non-
dominated solutions among those 200 solutions in the current and 
offspring populations. Average results are shown in Fig. 4 in the 
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same manner as in Sato et al. [28]. In the generation update phase 
of NSGA-II, the best 100 solutions were chosen as the next 
population from 200 solutions in the current and offspring 
populations in each generation.  

In Fig. 4, we can see that almost all solutions after the generation 
update were non-dominated with each other except for very early 
generations. When the number of non-dominated solutions was 
smaller than 100 (i.e., smaller than the population size) in Fig. 4, 
the Pareto sorting-based primary criterion had a large effect on 
the fitness evaluation in both the parent selection phase and the 
generation update phase. As a result, the convergence was 
improved in Fig. 1 and the diversity was decreased in Fig. 3 in 
early generations. On the other hand, the parent selection phase 
was governed by only the crowding distance-based secondary 
criterion when the number of non-dominated solutions was larger 
than 100 in Fig. 4. As a result, the convergence improvement was 
slowed down in Fig. 1 and the diversity was increased in Fig. 3 in 
later generations.  
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Figure 4. Average number of non-dominated solutions in the 

current and offspring populations. 

4. SCALABILITY IMPROVEMENT 
In this section, we examine the effect of scalability improvement 
approaches on the performance of NSGA-II.  

4.1 Modification of Crowding Distance 
As we have already explained, the increase in the number of 
objectives biases the convergence-diversity balance toward the 
increase in the diversity of solutions. Thus the decrease in the 
diversity maintenance effect may have a positive effect on the 
performance of NSGA-II on many-objective problems. A simple 
way is to assign a zero distance (instead of an infinity distance) to 
extreme solutions with maximum or minimum objective values as 
the crowding distance, which was suggested in [31]. We also 
examined the random assignment of the crowding distance to 
each solution. This has the same effect on the performance of 
NSGA-II as the assignment of the same crowding distance to all 
solutions.  

In Figs. 5-7, we show experimental results with the assignment of 
a zero distance as the crowding distance to extreme solutions. For 
the sake of comparison, we show the corresponding results at the 

100,000th generation of NSGA-II on the right side of each figure 
by short horizontal lines. We can see from Fig. 5 that the 
convergence of solutions toward the Pareto front was improved 
by the assignment of a zero distance to extreme solutions. On the 
other hand, the diversity of solutions was severely decreased in 
Fig. 7. As a result, the convergence toward the edge of the Pareto 
front in Fig. 6 was also severely degraded. This means that good 
solutions were not obtained along a wide range of the Pareto front 
(i.e., good solutions were obtained only around its center region). 
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Figure 5. Convergence toward the center (Zero distance). 
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Figure 6. Convergence toward the edges (Zero distance). 
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Figure 7. Diversity of solutions (Zero distance). 

In Fig. 8 and Fig. 9, we show experimental results with the 
random assignment of the crowding distance to all solutions. In 
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this case, solutions with the same rank (with respect to Pareto 
sorting) were randomly ordered in their fitness evaluation for 
parent selection and generation update. Since we totally removed 
the crowding distance calculation (i.e., we removed the crowding 
distance-based secondary criterion) from NSGA-II, the diversity 
of solutions could not be maintained in Fig. 9 while the 
convergence toward the Pareto front was improved in Fig. 8 for 
many-objective problems. 
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Figure 8. Convergence toward the center (Random distance). 
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Figure 9. Diversity of solutions (Random distance). 

4.2 Introduction of Different Ranks 
Let us assume that the shaded region of each pentagon in Fig. 10 
is an objective vector of a five-objective maximization problem. 
These three objective vectors are non-dominated with each other. 
Whereas the Pareto sorting-based primary criterion assigns the 
same rank to these three objective vectors, one may think that 
Solution A (and Solution B) seems to be better than Solution C. A 
number of ranking methods have been proposed to assign 
different ranks to non-dominated solutions in the literature. 

Drechsler et al. [13] proposed the use of a relation called favour to 
differentiate between non-dominated solutions for the handling of 
many-objective problems. They defined the relation favour based 
on the number of objectives for which one solution is better than 
the other. More specifically, a solution z is viewed as being better 
than another solution y under the relation favour when the 
following relation holds: 

|||| }1),()(:{}1),()(:{ kiffikjffj iijj ≤≤<≤≤< < zyyz .    (9) 

The relation favour was modified in Sülflow et al. [29] by taking 
into account not only the number of objectives for which one 
solution is better than the other but also the difference in objective 
values between the two solutions. 

Various ranking methods were compared with each other in [7], 
[25], [26]. For example, Corne and Knowles [7] reported that the 
best results were obtained from a simple average ranking method 
than more complicated ranking schemes. In the average ranking 
method, first a rank for each objective is assigned to each solution 
based on the ranking of its objective value among non-dominated 
solutions in the current population. Thus each solution has k ranks, 
each of which is based on one of the k objectives. Then the 
average rank is calculated for each solution as its overall rank. In 
Kukkonen and Lampinen [26], the average and minimum ranking 
methods were examined. Köppen and Yoshida [25] examined 
more complicated ranking methods based on ε -dominance and 
fuzzy Pareto dominance. 

Experimental results with the average ranking method in [7] are 
shown in Fig. 11 and Fig. 12. The convergence of solutions 
toward the Pareto front was improved by the use of the average 
ranking method in Fig. 11. The diversity of solutions, however, 
was severely decreased in Fig. 12. As a result, the SumMax 
measure was also severely deteriorated. Similar results were 
reported for the minimum ranking method in Kukkonen and 
Lampinen [26]. They suggested the use of an additional scheme 
for diversity improvement together with a ranking method. 
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    (a) Solution A.            (b) Solution B.             (c) Solution C. 

Figure 10. Three non-dominated objective vectors. 
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Figure 11. Convergence toward the center (Average rank). 
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Figure 12. Diversity of solutions (Average rank). 

4.3 Modification of Pareto Dominance 
Sato et al. [28] proposed the modification of Pareto dominance 
relation to adjust the diversity-convergence balance in EMO 
algorithms. We illustrate their idea in Fig. 13 where the shaded 
region in each plot shows the dominated region by Solution A. 
The dominated region is widened in Fig. 13 (a). In this case, more 
solutions are dominated by other solutions. Thus the number of 
non-dominated solutions is decreased. On the other hand, the 
dominated region is narrowed in Fig. 13 (b). In this case, fewer 
solutions are dominated by other solutions. As a result, the 
number of non-dominated solutions is increased. Whereas the 
modification of Pareto dominance relation had already been 
proposed in the literature (e.g., [2], [17]), Sato et al. [28] is one of 
the first studies that clearly demonstrated the effectiveness of this 
idea on many-objective problems. They also proposed that the 
dominated region should be narrowed for two-objective problems 
as in Fig. 13 (b) while it should be widened for many-objective 
problems as in Fig. 13 (a) using a parameter S. As shown in Fig. 
13, S >0.5 means narrowed dominated regions while S <0.5 
means widened ones (for details, see Sato et al. [28]). 
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A
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f1(x)

f2(x)

0  
(a) Widened region (S=0.45).     (b) Narrowed region (S=0.65). 

Figure 13. Illustration of modified dominated regions. 

 
In Fig. 14 and Fig. 15, we show experimental results with a 
widened dominated region in Fig. 13 (a). The value of the 
parameter S in Sato et al. [28] was specified as S = 0.45 for all the 
four test problems for the sake of convenience in this paper. As 
we have already explained, the use of the widened dominated 
region decreases the number of non-dominated solutions in each 
generation. This leads to the increase in the selection pressure 

toward the Pareto front. As a result, the convergence property of 
NSGA-II is improved. Actually we obtained improved results in 
Fig. 14 with respect to the convergence of solutions toward the 
center region of the Pareto front. At the same time, the diversity 
of solutions was decreased in Fig. 15.  
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Figure 14. Convergence toward the center (Modified 

dominance). 
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Figure 15. Diversity of solutions (Modified dominance). 

4.4 Modification of Objective Functions 
Almost the same effect as the modification of Pareto dominance 
in the previous subsection can be realized by linear transformation 
of objective functions [2], [19]. Let us consider the following 
simple linear transformation: 

∑
=

×+=
k

j
jii xfxfxg

1
)()()( β , i =1, 2, ..., k,      (10) 

where β  is a prespecified constant (β = 1 in this paper). 

Experimental results are shown in Fig. 16 where the convergence 
of solutions toward the center region of the Pareto front was 
clearly improved by the linear transformation for many-objective 
problems. The diversity of solutions, however, was decreased by 
the linear transformation as in the case of the widened dominated 
region in Fig. 15. (Experimental results are not shown due to the 
page limitation for the case of the linear transformation.) It should 
be noted that the diversity-convergence balance can be adjusted 
by the value of β in the case of the linear transformation (as S in 
the dominance modification in [28]). 
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Figure 16. Convergence toward the center (Linear 

transformation of objective functions). 

4.5 Hybridization with Local Search 
We also examined a hybrid algorithm of NSGA-II with a 
weighted sum-based local search scheme of Jaszkiewicz [22]. 
Experimental results are shown in Figs. 17-19. Contrary to the 
above-mentioned results, local search significantly improved the 
diversity (Fig. 19) and slightly improved the convergence (Fig. 
17) for many-objective problems. Better solutions around the 
edges of the Pareto fronts were also obtained by the hybrid 
algorithm (Fig. 18). 
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Figure 17. Convergence toward the center (Local search). 
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Figure 18. Convergence toward the edges (Local search). 
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Figure 19. Diversity of solutions (Local search). 

5. CONCLUDING REMARKS 
We showed that scalability improvement approaches improved 
the convergence property of NSGA-II for knapsack problems with 
many objectives. Most of them, however, had a severe side-effect 
on the diversity of solutions. IBEAs (indicator-based evolutionary 
algorithms) have a potential ability to find good solution sets for 
many-objective problems with respect to both the convergence 
and the diversity of solutions [31]. The main difficulty in the 
application of IBEAs to many-objective problems is their heavy 
computation load. Another promising approach is the utilization 
of scalarizing functions [16], [18], [19], [32] including the 
hybridization with local search. As we have explained, local 
search has a potential ability to improve the performance of EMO 
algorithms for many-objective problems. One clear advantage of 
the use of scalarizing functions is their computational efficiency. 
Comparison among Pareto dominance-based EMO algorithms, 
IBEAs and scalarizing function-based algorithms for many-
objective problems is left for future research.  
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