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ABSTRACT
An open problem in multiobjective optimization using the
Pareto optimality criteria, is how to evaluate the perfor-
mance of different evolutionary algorithms that solve multi–
objective problems. As the output of these algorithms is
a non–dominated set (NS), this problem can be reduced
to evaluate what NS is better than the others based on
their projection on the objective space. In this work we
propose a new performance measure for the evaluation of
non–dominated sets, that ranks a set of NSs based on their
convergence and dispersion. Its evaluations of the NSs agree
with intuition. Also, we introduce a benchmark of test cases
to evaluate performance measures, that considers several
topologies of the Pareto Front.

Categories and Subject Descriptors
I.2.m [Artificial Inteligence]: Miscellaneous

General Terms
Measurement

Keywords
Multiobjective optimization, performance measures, Pareto
optimality

1. INTRODUCTION
Multiobjective optimization (MOO) consist on maximiz-

ing or minimizing (or a mixture) a vector of objective func-
tions F (x) = {f1(x), f2(x), . . . , fd(x)} subject to constraints.
The objective functions and constraints depend on a vector
of variables x ∈ Rn. The set Ω is defined as all vectors x that
do not violate the constraints. Without loss of generality,
we consider hereafter that we are minimizing the objective
functions.
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A popular way to deal with multiobjective problems is to
use the Pareto Optimality Criteria (POC ). POC is defined
through the relation between two vectors x, y ∈ Rn known
as Pareto dominance, or dominance. We have that x domi-
nates y (x º y) if ∀i ∈ {1, 2, . . . , d}, fi(x) ≤ fi(y) ∧ ∃j ∈
{1, 2, . . . , d} | fj(x) < fj(y). The goal of multiobjective op-
timization is to find a set of vectors known as the Pareto Set
(PS) defined as PS = {x ∈ Ω | ∀y ∈ Ω, y � x}. According to
POC, all elements of PS are optimal, because they represent
the different tradeoffs between the objective functions where
it is not possible to improve one objective without degrading
another. The projection of PS in objective functions space
is called the Pareto Front (PF ), and is usually described as
a surface that represents the best tradeoff possible between
the objective functions.

In recent years, many evolutionary algorithms based on
POC have been developed [4] [9] [3]. Instead of generating a
single solution, these algorithms generate a set X of vector
solutions x that approximate the PS. These approximation
sets have the characteristic that ∀x, y ∈ X, x � y ∧ y � x
and are usually called non–dominated sets (NS).

One of the most important difficulties about using the
POC is how to compare the performance of different algo-
rithms. Usually, this is done by comparing the NSs that
the algorithms generate, so it is necessary to have a criteria
(a performance measure, metric or comparison method) to
evaluate a NS. In order to create such a criteria we need to
decide what we want from a NS. Hereafter in the article we
locate points, sets, vectors, and solutions in the space of the
objective functions.

We focus on these two characteristics in order to decide
how good is a NS:

Convergence: it refers to how close is a NS to PF. It comes
directly from the definition of the Pareto’s optimality. It is
usual to use PF to evaluate this characteristic. When PF is
unknown it is used the best known Pareto Front.

Dispersion–Extension (DE): we are interested in the dif-
ferent tradeoffs of the objective functions in a multiobjective
problem. As the output of a multiobjective algorithm is a
finite set of solutions, it is desirable to maximize the infor-
mation these solutions provide. For this reason we expect
a good NS to be as uniformly distributed and extended as
possible. In order to avoid zones of the Pareto Front with
too many solution and zones with too few.

Convergence is considered the most important property,
because it is related with the optimality of the points in the
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NS. A lot of the research in performance measures for NSs is
focused on convergence. A classical work is that of Hansen
and Jaszkiewicz [7], where they define the three following
relationships between two NSs A and B.

Weak outperformance: A weakly outperforms B (A OW

B), if for every point b ∈ B there exists a point a ∈ A so
that a º b or a = b and there exists at least a point c ∈ A
so that c /∈ B.

Strong outperformance: A strongly outperforms B (A OS

B), if for every point b ∈ B there exists a point a ∈ A so
that a º b or a = b and there exists at least a pair of points
r ∈ A and s ∈ B such that r º s.

Complete outperformance: A completly outperforms B
(A OC B), if for every point b ∈ B there exists at least one
point a ∈ A so that a º b.

It is clear that OC ⊂ OS ⊂ OW . These outperformance
relations are used to establish a minimum of what we expect
from a comparison method. It is easy to understand that
A OC B implies that A is a better than B, because for every
vector in B there is a better one in A. So, if we have a com-
parison method R, and it evaluates B as better than A, then
R is not reliable. We expect the same with respect to OS ,
but in this case we have a weaker criteria because A OS B
implies that not all vectors in B are dominated by vectors in
A and some of the vectors in B are also in A. The weakest
criteria comes from OW , because if A OW B, no vector in
B is dominated by vectors in A, and all vectors in B are in
A. With all this in mind, Hansen and Jaszkiewicz [7] also
define the property of compatibility with an outperformance
relation O, where O can be OW , OS or OC , as follows:

Compatibility. A comparison method R is (weakly) com-
patible with O if A O B implies that R will evaluate A as
(not worse) better than B.

The compatibility with the outperformance relations is
desirable because it makes a comparison method more ro-
bust to misleading cases, and with a behavior according to
intuition.

In this work we propose a performance measure that is
weakly compatible with the outperformance relations, needs
no parameter tuning and no extra information of the multi-
objective problem. It is an m–ary method, this means that
it takes m non–dominated sets as argument, and evaluates
them to decide which one is better.

The organization of the rest of the paper is as follows. In
Section 2 we review some of the performance measures avail-
able in the literature. In Section 3 we present our approach
with detailed descriptions of its elements. In Section 4 we
present several test cases we designed in order to test the
behavior of different performance measures, included ours,
and the result of the experiments. Finally, in Section 5 we
state our conclusions based on the result of the experiments.

2. RELATED WORK
Many performance measures have been proposed in the

past years in order to evaluate the quality of NSs. For exam-
ple the Error Ratio [11], Generational Distance [11], Schott’s
Spacing Metric [10], U–Measure [12], C–Metric [14], D1R

and R–Metrics [2], and others. Different measures have
different characteristics and some authors [8] [15] have ana-
lyzed their performance.

One of the most popular metrics available in the litera-
ture is the S–metric (S). Proposed by [13], the goal of this
metric is to calculate the size of the space enclosed by a

non–dominated set and a fixed reference point r∗. For a
minimization problem, the bigger the space the better the
NS. It is a unary metric, in the sense that it takes only one
set as an argument and assigns a real value to it. This value
is used to compare the set with others. The election of the
reference point is vital for the good behavior of the S–metric
because the evaluation of the S–metric can change depend-
ing on the position of r∗. Also, it is necessary to put r∗

in some position where it will be dominated by all the ele-
ments of all the possible NSs to compare, otherwise we can
have wrong results, such as negative values. Besides, it has
some bias toward the central zone and convex zones of the
Pareto Front. Its computational complexity is O(Nlog(N))

for 2 and 3 objective functions [6] and O(Nd/2) for more
objective functions [1], where N is the size of the NS. The
S–metric has many advantages. It is compatible with all the
outperformance relations, it is scale independent and has an
intuitive meaning.

Several methods (some versions of R, the Error Ratio,
Generational Distance and others), need a reference NS in
order to make its evaluations. This reference is usually the
PF or the best NS known. This dependence on a reference
can cause several problems, because if this information is
not available these methods can not be used. Besides its
evaluations can change depending on the reference chosen.
Another important remark is that other metrics (R–metrics,
S–metric), have parameters that need to be tuned in order to
work correctly. The evaluations of these methods depend on
the value of these parameters and usually it is necessary to
have information of the multiobjective problem in order to
establish proper values. For the general case, when the only
information we have is the NSs we are going to compare,
many of these methods can not be used. So, it is desirable
a performance measure able to work in the general case.

3. G-METRIC
In this paper we introduce the G–Metric (G), a m–ary

performance measure. This method takes m NSs as argu-
ment and assigns a real number to each of them based on
its convergence and DE. G is weakly compatible with all
outperformance relations (when comparing two NSs, it is
compatible). Besides, it needs no extra information or pa-
rameter tuning, it only uses the information provided by the
NSs to compare. Most important, the results of their evalu-
ations agrees with the general sense of when a NS is better
than another one.

From now, we refer to the known Pareto Front, in the con-
text of our comparison method, as the set of non–dominated
vectors from the union of the m NSs we are comparing.

In the following sections we describe the G–Metric algo-
rithm and its parts.

3.1 General Algorithm
The main idea of the G–Metric is to create a partial order

between the NSs we are comparing, based on the complete
outperformance, (like the first criterion in the NSGA–II [4]).
Then, it evaluates the non–comparable NSs based on their
DE.

The convergence of the NSs is evaluated grouping them by
levels of complete outperformance. The details of how this
grouping is done is given later. For now, we only state that a
NS in a level of complete outperformance is considered bet-
ter than a NS in an inferior level. The NSs in the same level
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do not complete outperform each other. We call this pro-
cedure the convergence component and we chose complete
outperformance instead of strong or weak, because it is the
strongest of the three relations.

Once separated by levels, we need to evaluate what NSs
in the same level are better than the others. For this we use
a procedure we call the DE component. In this component
we introduce a novel method to measure the DE. Based on
DE, this component assigns a real number (I, or IA) to each
NSs A. The bigger this number, the better DE of the NS.
We describe this component later.

After all this, we have that every NS has two values asso-
ciated, its level of complete outperformance and its value of
I. The next step is to combine this information in a single
number, so we can order them from the best to the worst.

As we see later, the DE component combines the values
of the different objective functions in a single number. This
makes the value of DE sensible to the scale of the func-
tions. To solve this problem we make a normalization of
all elements of the NSs. With all this in mind, the general
algorithm of G is as follows.

Let A1, A2, . . . , Am be m NSs to compare:

1. Scale the values of the vectors in the NSs (see Sec-
tion 3.2).

2. Group the NSs by levels of complete outperformance
(Convergence component, see Section 3.3).

3. For each level of complete outperformance and for ev-
ery Ai in the level, calculate the zone of influence IAi

(DE component, see Section 3.4).

4. For every Ai, combine its convergence and DE to cre-
ate a number that represents its relative performance
respect to the other NSs (see Section 3.5).

All parts of this algorithm will be explained in detail in
the following subsections.

3.2 Scale and normalization
A very important detail we must consider is the scale of

the objective functions. If an objective function has a bigger
scale than the others, its influence will be more important.
For this, the first step in our algorithm is a normalization.

For this normalization we do not use the maximum and
minimum value for all vector in all NSs for each objective
function. Instead, we use the maximum and minimum value
of the known Pareto Front. The reason for this is that
dominated vectors can have high values compared to non–
dominated ones, adding noise to the comparison if we use
them in the normalization.

The algorithm we use to normalize is the following:

1. Take the union of the m sets, C =
⋃m

i=1 Ai.

2. From C take its non-dominated elements. C∗ =ND(C).

3. Find maxj and minj as the max and min value re-
spectively, for the component j for all points p ∈ C∗.

4. Using maxj and minj make a linear normalization of
all points in all Ai.

The computational complexity for this normalization is
O(|⋃m

i=1 Ai|2), where m is the number of NSs. This com-
plexity is always less or equal than O(m2|Amax|2), where
Amax is the NS with more elements.

Note that this normalization do not need extra informa-
tion besides that provided by the NSs themselves.

 0
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Figure 1: Five NSs, three levels of dominance

3.3 Convergence Component
As mentioned before, convergence is the most important

characteristic of a NS. So, it is obligatory to include a mech-
anism to measure this property in a performance measure.

Our convergence operator classifies the non–dominated
sets by levels, based on the complete outperformance be-
tween every NS and the rest of the them. If we have m sets,
the first level L1 includes those Ak so that ¬((

⋃m
i=1 Ai) OC

Ak). In other words, in L1 are those non–dominated sets
that are not complete outperformed by the union of the rest
of the NSs. The following levels include those sets that are
completely outperformed only by the union of sets in previ-
ous levels.

The idea is to put in the first level those NSs that con-
tribute to the known Pareto Front with at least one vector.
As the other NSs have all its elements dominated by the
known Pareto Front, we consider them less important be-
cause all their information is suboptimal. Then, we repeat
the process considering only the NSs not included in previ-
ous levels of complete outperformance. The algorithm is as
follows:

Given a set D = {A1, A2, ..., Am} where Ai is a NS.

1. Set j = 1.

2. Set Lj = {}
3. Extract from D and put in Lj , those Ai such that
¬((

⋃
Ak∈D Ak) OC Ai).

4. If D is not empty, make j = j +1 and return to step 2.

5. End.

Those Ai ∈ L1 are in the first level, those Ai ∈ L2 are in
the second level and so on. If A ∈ Lj , B ∈ Lk, and j < k we
consider A better than B (A is in a superior level than B).
As an example, in Figure 1, there are five NSs, A, B, C, D
and E. For this case, we have three levels, where L1 = {A},
L2 = {B, C} and L3 = {D, E}.

This convergence operator creates a partial order in the
NSs and it is compatible with OC , because if A OC B, then A
will be in a superior level than B. The computational com-
plexity of this component in the worst case is O(m3|Amax|2).
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Figure 2: An example of Ip

Figure 3: Size of I according to DE

3.4 Dispersion–Extension Component
A very difficult problem in multi–objective optimization is

how to measure the DE of a NS. In this work, we introduce
a novel method to measure the DE, that has an excellent
performance, as it is shown in Section 4.

Consider the region around every element p of a NS that
consists of all the points whose distance is inferior to a limit
U. For example, the sphere around p in Figure 2. Based on
this, we give the following definitions:

Zone of influence of point pi (Ipi). It is the set of points
whose distance from pi is equal or less than a real, positive
number U. We can consider U as a radius.

Zone of influence of the set S (IS). It is the union of the
Ipi for all pi ∈ S.

In general (for a point or for a set), we refer to a zone of
influence as I.

Measure of I (µ(I)). It is the measure of the zone of
influence of a point or NS. In 2d it means area, in 3d it
means volume, etc.

If the elements of S have a poor DE, many of them will be
near each other and the corresponding I’s will intersect (see
Figure 3, left). As a result, µ(IS) will be small. Suppose
now that we relocate the elements of S to improve the DE.
We do this by increasing the extension and distance between
elements, and/or making more uniform their distances (see
Figure 3, right). As we improve the DE, the intersections of
the Ipi ’s will decrease and, at the same time, both the DE
and µ(IS) will increase. So we have that µ(IS) is propor-
tional to DE and µ(IS) is a good DE indicator.

IS is inversely proportional to the overlap between the

Ipi . NSs with a good DE have less overlap than those with
a bad one. The explanation on how we calculate µ(IS) and
the radius U is given in Section 3.6, where it is also shown
that the computational complexity is O(m|Amax|2).

3.5 Computing the G–Metric
Once we have explained all the components of the G–

Metric, we give a more detailed description of the general
algorithm given in Section 3.1:

Given m non–dominated sets, A1, A2, ... , Am.

1. Normalize all sets as described before.

2. Classify all sets by levels Lk.

3. For k = 1 : Q, where Q is the number of levels.

(a) For every Ai ∈ Lk eliminate all points p ∈ Ai

dominated by another point q ∈ Aj for any Aj ∈
Lk.

(b) Calculate the radius U based on all Ai ∈ Lk (Sec-
tion 3.6.3).

(c) Calculate µ(IAi) for each Ai ∈ Lk (Section 3.6.2).

4. For k = 1 : Q− 1.
For all Ai ∈ Lk the value of the G–Metric is:

G(Ai) = µ(IAi) +

Q∑

j=k+1

µmax(Lj) . (1)

where µmax(Lj) is the max value of µ(IAi) for Ai ∈ Lj .

Note that in the calculation I (Step 3), we do not consider
vectors dominated by other vectors in the same level of com-
plete outperformance. This is because we want to calculate
I using only information of non–dominated vectors.

In step 4 we combine the convergence with the DE of the
NSs, using the levels of complete outperformance and µ(I).
The procedure is designed to assign a better value of G to
NSs in a better level. And, for the NSs in the same level,
to assign a better values of G to those with better DE. As
an example of how it works, we go back to the example in
Figure 1, where L1 = {A}, L2 = {B, C} and L3 = {D, E}.
Suppose that µ(IA) = 0.142, µ(IB) = 0.145, µ(IC) = 0.187,
µ(ID) = 0.583 and µ(IE) = 0.750. Because of the levels they
belong and their value of µ(I), the order from best to worst is
A, C, B, E, D. We make G(A) = µ(IA)+

∑3
j=2 µmax(Lj) =

µ(IA) + µ(IC) + µ(IE) = 0.142 + 0.187 + 0.750 = 1.079,
G(B) = µ(IB)+

∑3
j=3 µmax(Lj) = µ(IB)+µ(IE) = 0.145+

0.750 = 0.895, G(C) = µ(IC) + µ(IE) = 0.937, G(D) =
µ(ID) = 0.583 and G(D) = 0.75. So G(A) > G(C) >
G(B) > G(E) > G(D) as desired.

The computational complexity of the G–Metric is equal
to the sum of that of its parts (normalization, convergence
component and DE component). So, it is O(m2|Amax|2 +
m3|Amax|2 + m|Amax|2) ≈ O(m3|Amax|2).

3.6 Further Details About Computing the G–
Metric

Calculating IS is complex, especially for sets with many
elements in high spatial dimensions. In order to reduce the
complexity of this calculation, we first project the NS to a
lower dimension. As we show later, this projection makes
easier both the calculation of the IS and the demonstration
of its compatibility with the outperformance relations. The
projection we use is described in the next subsection.
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Figure 4: An example of Standard Projection in 2d

3.6.1 Standard Projection (SP)
Let the vector v ∈ Rn whose components are equal to

1, and the vectorial subspace P ∈ Rn with rank n − 1 and
whose null space is generated by v. Let the point p ∈ Rn

and the line Lp ∈ Rn which is parallel to v and pass through
p. We call the Standard Projection of p (SP (p)) to the point
of intersection of Lp with P. Note that SP : Rn → Rn.

An example in R2 is shown in Figure 4. The formula to

calculate p′ = SP (p) is p′ = p−Kv, where K = (p¦v)

|v|2 .

This is the projection we use before the computation of
I. As all points projected are in a same line (in 3d they
are in a plane, in more than 3d they are in a hyperplane,
etc.), the union of the Ip′ for the projected points p′ is eas-
ier to compute. We use µ(I) of the projected points as an
approximation of that of the original points.

3.6.2 Computing the Zone of Influence IS

After a SP, all projected points p′ are in the subspace
P (in 2d P is a line, in 3d it is a plane, etc.). To calculate
µ(IS), we define domains of integration in P for all projected
points and calculate the sub–µ(Ip′) as an integral in the cor-
responding domain. Finally, we sum the values of all these
integrals to obtain the total value of IS . The general algo-
rithm, where we represent the Euclidean distance between
two points, a and b, as d(a, b), is the following:

Given a set of points S and a radius U.

1. For each pi ∈ S calculate its projection p′i.
2. For each p′i calculate:

sub–µ(Ip′i) = 2

∫

Qi

√
U2 − d(u, p′i)2 dQi (2)

where Qi is the set of points q ∈ P so that d(p′i, q) ≤ U
and d(p′i, q) ≤ d(p′j , q) for j 6= i.

3. Finally, calculate µ(IS) as:

µ(IS) =

|S|∑
i=1

sub–µ(Ip′i) (3)

In Figure 5 we see three projected points in 2d, were
P has been rotated to make it horizontal, so we can con-
sider pi as points in 1d. Q1 = [a, b], Q2 = [c, d] and Q3 =

[d, e]. So, we have that µ(IS) =
∫ b

a

√
U2 − (p′1 − x)2 dx +∫ d

c

√
U2 − (p′2 − x)2 dx +

∫ e

d

√
U2 − (p′3 − x)2 dx. For three

dimensions, all projected points are in a plane. So, in order
to define the domains of integration, we can calculate the
Voronoi diagram for the projected points and use the poly-
gons of Voronoi to establish the domains. For more than

Figure 5: Domains of integration in 2d

Figure 6: When a new point p is added to a NS, the
I of the former increases

three dimension we recommend the use of a Monte Carlo
method for the calculation of µ(IS).

It is important to note that this approximation of I implies
that every different point adds at least a small amount to
the size of I, as seen in Figure 6, where the A′ is equal
to A ∪ p. µ(IA′) > µ(IA) because of the contribution of
p. Besides, the standard projection guaranties that every
different point have a different projection (see Section 3.7),
so µ(IA) increases its values as we add more points to A.

3.6.3 The radius U
As we mentioned before, the overlap between Ip is very

important to the good behavior of I as a DE measure. At
the same time, the overlap depends on the parameter U, so
the numeric value of U must be chosen carefully. It is impor-
tant to allow some level of overlap, so we can discriminate
between sets with bad and good DE. If U is too small the
overlap will be zero and the value of I will not be related to
the distribution of the points. In this work we propose the
following value of U for m NSs Sj :

U = 0.5

∑m
j=1

∑|Sj |
i=1 rij∑m

j=1 |Sj | (4)

where rij is the mean of the distance between pi ∈ Sj and its
nearest neighbors. This value of U produces at least a small
amount of overlap in the Ip of the NS with the worst DE.
It is important to note that U depends on all the m sets, if
a NS is added or eliminated, it must be recalculated. The
definition of nearest neighbors we use is that given in [12].

3.6.4 Computational Complexity
The computational complexity of this component depends

on that of its different parts. The standard projection has
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a linear cost for every NSs. The parameter U has a cost of
O(m|Amax|2), where m is the number of NSs, and Amax is
the NS with more elements. The cost of the integral 2 is
O(m|Amax|log(|Amax|)) for 2d and 3d (because of the cost
of sorting |Amax| points and the cost of the construction of
a Voronoi diagram). We do not consider in this analysis the
cost of a Monte Carlo integration. So the maximum cost of
the DE component is O(m|Amax|2).
3.7 Compatibility with Ow, Os and Oc

Now, we demonstrate the compatibility of the G–Metric
with the outperformance relations. We demonstrate that
our approach is compatible with OW , OS and OC when
comparing only two NSs, (as a binary measure). After, we
demonstrate its weak compatibility with OW and OS for
more than two NSs.

First we prove that the standard projection(Section 3.6.1)
is an injection when its domain is a non–dominated set.

Lemma 1. Let a, b ∈ A, where A is a NS, a′ = SP (a), b′ =
SP (b) and a 6= b. Then a′ 6= b′.

Proof. We prove this by contradiction. Let suppose that
a′ = b′, then:

a′ = b′

a−K1v = b−K2v
a = b + (K1 −K2)v
a = b + Kv

where K = (K1 − K2). As K is a real number, we have
three cases, K > 0, K < 0 and K = 0. If K > 0 then we
have ai = bi + K for i = 1 : n (remember, all elements of
v are equal to one), so bi < ai, but this implies that b º a,
a contradiction to the premise A is a NS. If K < 0 then we
have ai + K = bi for i = 1 : n, so ai < bi, but this implies
that a º b, a contradiction to the premise A is a NS. If
K = 0 then we have a = b, a contradiction to the premise
a 6= b. As a result a′ 6= b′.

The importance of this theorem is that every different
point p ∈ A will apport at least a small quantity to the
value of IA. This is because its projection p′ will be different
to those of other points, and, as discussed in Section 3.6.2,
every different point apport at least a small amount to I.

Continuing with our explanation of the compatibility of
our approach with the outperformance relations, we define
the following subsets of index for two NSs, A and B:

J : it is the set of index of the vectors aj ∈ A so that
aj = br for some vector br ∈ B.

K: it is the set of index of the vectors ak ∈ A so that ak

is dominated by some vector b ∈ B.
L: it is the set of index of the vectors al ∈ A so that al is

not in B and al is not dominated by any vector in B.
R: it is the set of index of the vectors br ∈ B so that

br = aj for some aj ∈ A.
S: it is the set of index of the vectors bs ∈ B so that bs is

dominated by some vector a ∈ A.
T : it is the set of index of the vectors bt ∈ B so that bt is

not in A and bt is not dominated by any vector in A.
As an example, for A and B in Figure 7, J = {3, 4},

because a3 = b4 and a4 = b5, K = {5} because a5 is dom-
inated by elements of B, L = {1, 2} because a1 and a2 are

Figure 7: Two non-dominated sets.

elements of A not present in B and they are not dominated
by elements of B. Similarly R = {4, 5}, S = {1, 2, 3} and
T = {6, 7}.

In order to simplify the following explanations we intro-
duce some terminology. We represent an element of the sets
just described, with the corresponding lower case. For ex-
ample j represents an element of J . Also, we represent the
union of the I ′s for all elements of A that are also present in
B (vectors in A whose index are in J) as

⋃
Iaj , according to

the example in Figure 7,
⋃

Iaj = Ia3 ∪Ia4 . The union of Ip

for the elements of B that are dominated by some element in
A (vectors in B whose index are in S) is

⋃
Ibs and according

to the example in Figure 7,
⋃

Ibs = Ib1 ∪ Ib2∪Ib3 . It is clear
that

⋃
Iaj =

⋃
Ibr .

According to the nomenclature just described, IA =
(⋃

Iaj

)
∪ (

⋃
Ial). Similarly, IB = (

⋃
Iar ) ∪ (

⋃
Iat).

The sets K and S are not used, because they contain
the index of dominated elements. Now we demonstrate the
following themorem.

Theorem 1. When comparing two NS, A and B, G is
compatible with OC , OS and OW .

Proof. If A OC B, this implies that A is in a better level
of complete outperformance than B because of the conver-
gence component of G (see Section 3.3), so A is always eval-
uated as better than B. If A OS B, then T is an empty set
and L contains at least one element, so:

µ(
(⋃

Iaj

) ∪ (
⋃

Ial)) > µ(
⋃

Ibr )
µ(IA) > µ(IB)

The inequality comes from the fact that every different point
apport at least a small amount to the total I of a NS.

If A OW B, then T is again empty and L contains at least
one element, so this case is reduced to the previous one.

This proves that G is compatible with the outperformance
relations when it evaluates two NSs. Now, respect to more
than two, the G–Metric is compatible with OC , this is be-
cause of the convergence operator. Respect to OS and OW ,
G is weakly compatible, because suppose that there are three
NSs A, B and C in the same level of complete outperfor-
mance and that A OS B or A OW B. If we only consider A
and B, this means that T is empty and L has at least one
element, so µ(IA) > µ(IB). But when we consider C, it is
possible that all al are dominated by some elements in C, so
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Table 1: Results of Experiment 1
2d 3d

Set G S G S
A 1.079 0.967 1.680 0.995
B 0.895 0.452 0.615 0.368
C 0.937 0.566 0.643 0.496
D 0.583 0.065 0.347 0.059
E 0.750 0.067 0.572 0.094

the elements in L are not considered and µ(IA) = µ(IB). It
does not matter how many NSs we add to the comparison,
if an element of A whose index is in J is dominated, the cor-
responding element in B whose index is in R is dominated
too and the equality holds. As a consequence µ(IA) will not
be smallest than µ(IB), so the weak compatibility with OS

and OW is guaranteed.

4. EXPERIMENTS AND RESULTS
In order to evaluate the performance of our approach, we

designed some experiments that consider various topologies
of the Pareto Front. We compare our results with those of
the S-metric, described in section 2. We chose the S–metric
because it stands out as one of the most popular in literature.
We used as r∗ the max value of all sets in all dimensions.

We designed our test cases so it is evident which NS is
better than the others, so it is possible to decide the right
order from the best to the worst. The challenge for the
performance measures is to evaluate the NSs in such a way
that we can construct the right order.

In the Tables, we show the numeric value of G-Metric and
S–metric in the column G and S respectively. We made a
2d and a 3d version of each experiment.

Experiment 1. In this experiment (Figure 1) we combine
complete outperformance with extension. There are five NSs
A, B, C, D and E, where A OC B, C, D and E. Besides B
and C OC D and E. B and C have the same convergence,
but C has a better extension than B. D and E have the
same convergence, but E has a better extension than D. We
conclude that, from the best to the worst, the order of the
sets is A, C, B, E, D.

Both the G and S passed the test finding the correct order
of the sets, as it can be seen in Table 1.

Experiment 2. In this problem the Pareto Front consists
of all the points p with components pi ≥ 0 and

∑d
i=1 pi =

0.5 [5]. There are five NSs, where A has the best dispersion.
The other NSs were obtained adding different levels of noise
to the positions of the points in A. We consider that the
bigger of the noise in the NS, the worse its dispersion. Fig-
ure 8 shows four of the five NSs in 3d. The convergence for
all NSs is the same. From the best to the worst, the order
of the sets is A, B, C, D, E.

The result of the experiment is shown in Table 2. Again,
G and S passed the test.

Experiment 3. The goal of this experiment is to evaluate
the sensibility of the measures to the convexity of the Pareto
Front. Both A and B (Figure 9) have the same DE and
convergence, but A is on a non-convex zone while B is on a
convex zone. We expect the same value for both NSs.

It is clear, according to Table 3, that S-metric has a bias
towards the convex zones of the Pareto’s Front thus it failed
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Figure 8: Experiment 2

Table 2: Results of Experiment 2
2d 3d

Set G S G S
A 0.107 0.464 0.0212 0.795
B 0.096 0.460 0.0177 0.785
C 0.068 0.421 0.0172 0.784
D 0.064 0.322 0.0134 0.780
E 0.035 0.262 0.0110 0.769
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Figure 9: Experiment 3
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Table 3: Results of Experiment 3
2d 3d

Set G S G S
A 0.0256 0.298 0.0111 0.174
B 0.0256 0.440 0.0111 0.364
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Figure 10: Experiment 4

the test. The G-Inidicator is not affected by the convexity
of the sets, so it gave the same value to both NSs passing
the test.

Experiment 4. To evaluate the sensibility of the perfor-
mance measures to the relative position of the different NSs,
we create five NSs with the same convergence and DE but
with different positions on the Pareto Front. An image of
the 3d version is shown in Figure 10.

As it is clear from Table 4, S gave different values to dif-
ferent NS, so it failed the test. G gave the same value to all
NSs, so it was the only method that passed the test.

5. CONCLUSIONS
We presented the G–Metric, an m–ary performance mea-

sure for non–dominated sets. It does not need any extra
information, neither it needs further parameter tuning. Be-
sides, it combines successfully convergence and diversity in a
single number, and its evaluations agree with intuition giv-
ing better scores to NSs with better convergence, extension
and dispersion. It is weakly compatible with the ourperfor-
mance relations. It is robust in misleading cases, like NSs
with convex and non–convex zones. In order to evaluate G,

Table 4: Results of Experiment 4
2d 3d

Set G S G S
A 0.0041 0.167 7.08e-5 0.195
B 0.0041 0.287 7.08e-5 0.251
C 0.0041 0.327 7.08e-5 0.211
D 0.0041 0.287 7.08e-5 0.123
E 0.0041 0.167 7.08e-5 0.035

we created several test cases. In all of them our approach
gave the correct answer showing a better performance than
the S-measure another performance measure very popular
in the literature.
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