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ABSTRACT
The overproduce-and-choose strategy involves the genera-
tion of an initial large pool of candidate classifiers and it is
intended to test different candidate ensembles in order to se-
lect the best performing solution. The ensemble’s error rate,
ensemble size and diversity measures are the most frequent
search criteria employed to guide this selection. By apply-
ing the error rate, we may accomplish the main objective in
Pattern Recognition and Machine Learning, which is to find
high-performance predictors. In terms of ensemble size, the
hope is to increase the recognition rate while minimizing the
number of classifiers in order to meet both the performance
and low ensemble size requirements. Finally, ensembles can
be more accurate than individual classifiers only when clas-
sifier members present diversity among themselves. In this
paper we apply two Pareto front spread quality measures
to analyze the relationship between the three main search
criteria used in the overproduce-and-choose strategy. Exper-
imental results conducted demonstrate that the combination
of ensemble size and diversity does not produce conflicting
multi-objective optimization problems. Moreover, we can-
not decrease the generalization error rate by combining this
pair of search criteria. However, when the error rate is com-
bined with diversity or the ensemble size, we found that
these measures are conflicting objective functions and that
the performances of the solutions are much higher.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology

General Terms
Experimentation

Keywords
Classifier ensembles, ensemble selection, Pareto analysis, di-
versity measures
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1. INTRODUCTION
Diversity is considered the key issue for employing classi-

fier ensembles successfully [6]. It is intuitively accepted that
ensemble members must be different from each other, ex-
hibiting especially diverse errors [3]. Although the concept
of diversity is still considered an ill-defined concept [3], there
are several measures of diversity reported in the literature
[7]. Moreover, the most widely used ensemble creation tech-
niques, bagging, boosting and the random subspace method
are focused on incorporating the concept of diversity into
the construction of effective ensembles.

Another approach to explicitly enforce diversity during
the generation of ensembles is the so-called overproduce-and-

choose strategy (OCS) [9]. Methods based on OCS are di-
vided into two phases: (1) overproduction; and (2) selection.
An initial large pool of classifiers C = {c1, c2, . . . , cn} is con-
structed at the first phase using the training dataset T . The
second phase is devoted to generate and test different com-
binations of the initial classifiers ci in order to identify the
best subset of classifiers C∗

j . The selected ensemble C∗

j is
then combined to estimate the class labels ωk of the sam-
ples contained in the test dataset G. Figure 1 illustrates the
OCS phases. Hence, the objective of OCS is to find the most
relevant subset of classifiers based on the assumption that
classifiers in C are redundant [6]. It is also interesting to
note that the selection phase required by OCS can be easily
formulated as an optimization problem in which a search al-
gorithm operates by minimizing/maximizing one objective
function or a set of objective functions.

Taking into account that highly accurate and reliable clas-
sification is required in Machine Learning and Pattern Recog-
nition practical applications, ideally, ensemble classifier mem-
bers must be accurate and different from each other to en-
sure performance improvement. Therefore, the key chal-
lenge for classifier ensemble research is to understand and
measure diversity in order to establish the perfect trade-
off between diversity and accuracy [6]. The literature has
shown that OCS allows the selection of accurate and diverse
classifier members [9] by using the combination of the error
rate and diversity as search criteria. Zenobi and Cunning-
ham [14] used ambiguity (as defined in [14]) and the error
rate to guide a hill-climbing search method. Tremblay et al.
[11] employed a multi-objective genetic algorithm MOGA (a
modified version of Non-dominated Sorting GA - NSGA [4])
guided by pairs of objective functions composed of the error
rate with the following four diversity measures: ambiguity
[14], fault majority [10], entropy and Q-statistic [7].

However, since OCS relies on the idea that component
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Figure 1: Overview of the OCS process. OCS is divided into the overproduction and the selection phases.
The overproduction phase creates a large pool of classifiers, while the selection phase focus on finding the
most relevant subset of classifiers.

classifiers are redundant, an analogy can be established be-
tween feature subset selection and OCS. Feature subset se-
lection (FSS) approaches work by selecting the most dis-
criminant features in order to reduce the number of features
and to increase the recognition rate. Following this analogy,
the selection phase of OCS could focus on discarding redun-
dant classifiers in order to increase performance and reduce
ensemble size. In [11], it has been shown that it is possible
to reduce the number of classifiers while at the same time
increasing performance by using both the error rate and en-
semble size to guide the search phase.

Therefore, diversity measures, performance and ensemble
size appear to be the most relevant measures to be employed
in order to identify the best classifier ensemble C∗

j . In this
paper we present an experimental study combining these
three main measures to make up pairs of objective func-
tions to guide the selection phase formulated as a multi-
objective optimization problem. Multi-objective genetic al-

gorithms (MOGAs) are often solutions to optimization pro-
cesses guided by multi-objective functions. Among several
MOGAs proposed in the literature, we use in this paper
NSGA-II (elitist non-dominated sorting GA) [4]. This al-
gorithm presents two important characteristics: a full elite-
preservation strategy and a diversity-preserving mechanism
using the crowding distance as the distance measure. The
crowding distance does not require any parameter to be set
[4]. Elitism is used to provide a means to keep good so-
lutions among generations, and the diversity preservation
mechanism is used to allow a better spread among the so-
lutions over the Pareto front. Solutions more widely spread
are better since a larger spread may indicate a better cover-
age of the true Pareto front [2].

In despite of the diversity preservation mechanism, objec-
tive functions in multi-objective optimization problems must
be conflicting objective functions in order to provide spread
over the Pareto front. In this paper we use two Pareto qual-
ity metrics based on calculating the overall Pareto spread
and kth objective Pareto spread introduced by Wu and Azarm
[13] to show whether or not the pairs of objective functions

used in our experiments are conflicting objective functions.
Our objective is to verify how these Pareto quality mea-
sures may help the analysis of the relationship between di-
versity measures, performance and ensemble size. As a con-
sequence, we study how these classifier ensembles measures
are related to the performance of the solutions found at the
end of the optimization process.

The paper is organized as follows. The Pareto quality
metrics are described in section 2. Then, the experiments
and the results are presented in section 3. Conclusions and
suggestions for future work are discussed in section 4.

2. PARETO ANALYSIS
Objective functions in multi-objective optimization prob-

lems are often conflicting. Since different tradeoffs are es-
tablished over the Pareto front, when one solution is better
according to one objective, it is often worse according to the
remaining objective functions. Indeed, Deb [5] points out
that in a two conflicting objective problem, for instance, if
a ranking of non-dominated solutions is carried out in an
ascending order according to one objective function, a rank-
ing in a descending order is obtained according to the other
objective function.

In terms of OCS, we mentioned in the introduction that
the error rate, ensemble size and diversity measures are the
most frequent objective functions employed in the literature.
Various approaches defining diversity have been proposed
in the literature. We employ 12 diversity measures (Table
1) in the optimization processes conducted in this paper.
Ten measures were grouped by Kuncheva and Whitaker [7]:
correlation coefficient, coincident failure diversity, disagree-
ment, double-fault, difficulty measure, entropy, generalized
diversity, interrater agreement, Kohavi-Wolpert, Q-statistic.
Fault majority was proposed by Ruta and Gabrys [10] and
ambiguity was defined by Zenobi and Cunningham [14]. It is
important to mention that dissimilarity measures must be
maximized, while similarity measures must be minimized
when used as objective functions during the optimization
process. The pairwise measures are calculated for each pair
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Table 1: List of search criteria used in the optimization processes. The optimization specifies whether the
search criterion must be minimized (similarity) or maximized (dissimilarity) and the type indicates whether
the diversity measure is must be calculated for each pair of classifiers or on the whole candidate ensemble.

Name Label Optimization Type
Error rate ǫ - -
Ensemble size ζ - -
Ambiguity γ [14] Dissimilarity Non pairwise
Coincident failure diversity σ [7] Dissimilarity Non pairwise
Correlation coefficient ρ [7] Similarity Pairwise
Difficulty measure θ [7] Similarity Non pairwise
Disagreement η [7] Dissimilarity Pairwise
Double-fault δ [7] Similarity Pairwise
Entropy ξ [7] Dissimilarity Non pairwise
Fault majority λ [10] Dissimilarity Pairwise
Generalized diversity τ [7] Dissimilarity Non pairwise
Interrater agreement κ [7] Similarity Non pairwise
Kohavi-Wolpert ψ [7] Dissimilarity Non pairwise
Q-statistic Φ [7] Similarity Pairwise

of classifiers, while the non-pairwise measures are calculated
on the whole ensemble Cj . Summarizing, as shown in Table
1, our objective functions comprise twelve diversity mea-
sures, the ensemble’s error rate (ǫ) and ensemble size (ζ).

In order to illustrate whether or not these objective func-
tions produce conflicting objective problems, we will use ex-
amples obtained in one replication using the NIST-digits
database (section 3). An initial pool of k Nearest Neighbors

kNN classifiers was generated at the overproduction phase
using the random subspace method. The maximum num-
ber of generations was fixed at 1, 000 and the size of the
population of individuals is 128.

In Figure 2(a) the search was guided by the minimization
of ǫ and the difficulty measure θ. The Pareto front solutions
are shown in an ascending order of ǫ, consequently, in a
descending order of the θ. Figure 2(b) shows the Pareto
front found using the following pair of objective functions:
jointly minimize ǫ and ζ. Once again, the solutions were
ordered according to ǫ, and in a descending order of ζ. In
Figure 2(c) the pair of objective functions employed was the
minimization of ζ and θ. The Pareto solutions are shown in
an ascending order of θ (descending order of ζ). However,
the same behavior cannot be detected in Figure 2(d) where
it is shown an example of the evolution of the optimization
process, which was guided by the following pair of objective
functions: jointly minimize ζ and the interrater agreement
κ. It can be seen that only one solution was found over this
Pareto front. The first two figures show that both θ or ζ
combined with ǫ are conflicting objectives. In Figure 2(c)
it is shown that θ and ζ are also conflicting objectives. In
contrast, κ and ζ are not conflicting objectives.

In order to show whether or not the pairs of objective
functions composed by the measures summarized in Table 1,
are conflicting objective functions we apply here two qual-
ity metrics based on calculating the overall Pareto spread
and the kth objective Pareto spread introduced by Wu and
Azarm [13]. Considering a multi-objective problem with m

objective functions f1, f2, . . . , fm, we show in this section
how to calculate the two measures of spread taking into ac-
count, without loss of generality, all objective functions to
be minimized and equally important.

Given w be the possible worst solution and b be the pos-

1

f2

f1min f, 2max( )

( f1max, f2min )

f

w

b

Figure 3: Scaled objective space of a two-objective
problem used to calculate the overall Pareto spread
and the kth objective Pareto spread.

sible best solution, the objective space should be scaled by
the following equation for any feasible point xk:

f̄j(xk) =
fj(xk) − fb

j

fw
j − fb

j

(1)

In a two-objective problem, the scaled objective space is a
hyper-rectangle, as shown in Figure 3 defined by the scaled
worst (1, 1) and best (0, 0) solutions.

2.1 Overall Pareto Spread (OPS)
OPS measures the width of the Pareto front over the ob-

jective space considering all objective functions together.
This measure is defined as:

OPS =
m

Y

i=1

|maxn̄p

k=1
[f̄i(xk)] −min

n̄p

k=1
[f̄i(xk)] (2)

where n̄p is the total number of Pareto solutions.
When the measures used to guide the optimization pro-

cess are no conflicting objective functions, OPS is equal to
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Figure 2: Set of non-dominated solutions after 1,000 generations found using NSGA-II and the pairs of
objective functions: jointly minimize the error rate and the difficulty measure (a), jointly minimize the error
rate and ensemble size (b), jointly minimize ensemble size and the difficulty measure (c) and jointly minimize
ensemble size and the interrater agreement (d).

Table 2: Worst and best points, minima and maxima points, IPS and OPS for each set of non-dominated
solutions shown in Figure 2.

Objective Original values Scaled values
Functions w b min max w b min max IPS OPS

Difficulty θ (f1) 1 0 0.0359 0.0362 1 0 0.0359 0.0362 0.0003
Error rate ǫ (f2) 100 0 3.2800 3.5600 1 0 0.0328 0.0356 0.0028 0.1 x 10−5

Ensemble size ζ (f1) 100 0 5 17 1 0 0.0500 0.1700 0.1200
Error rate ǫ (f2) 100 0 3.2900 4.7000 1 0 0.0329 0.0470 0.0141 0.17 x 10−2

Ensemble size ζ (f1) 100 0 5 21 1 0 0.0500 0.2100 0.1600
Difficulty θ (f2) 1 0 0.0415 0.0356 1 0 0.0356 0.0415 0.0059 0.9 x 10−3

Ensemble size ζ (f1) 100 0 5 5 1 0 0.0500 0.0500 0.0000
Interrater κ (f2) 1 0 0.2752 0.2752 1 0 0.2752 0.2752 0.0000 0.0000
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0. Thus, a wider spread leads to more diversity over the
Pareto front, which is a desired Pareto property. However,
there may be a drawback to this quality measure since it
does not take into account the individual objective spread.
For instance, considering the example shown in Figure 3, if
instead of 7 solutions the Pareto front was composed of the
following two solutions (f̄1min, f̄2max) and (f̄1max, f̄2min),
the same OPS would be obtained. However, the diversity
observed over a Pareto front composed of only two solutions
is much smaller than the diversity over a Pareto front com-
posed of 7 solutions. The kth objective Pareto spread [13]
focus on overcoming this problem.

2.2 Kth Objective Pareto Spread (IPS)
According to Wu and Azarm[13], IPS is an additional

measure to OPS, since it takes into account the range of
diversity of each objective function, as follows:

IPSj = |maxn̄p
i=1

(f̄j(xi)) −min
n̄p
i=1

(f̄j(xi))| (3)

In the two-objective problem illustrated in Figure 3, IPS
and OPS are respectively:

IPSf1
= |f̄1max − f̄1min| (4)

IPSf2
= |f̄2max − f̄2min| (5)

OPS = IPSf1
IPSf2

(6)

The IPS is important because it allows us to measure
the diversity over the Pareto front and to show whether or
not spread is wider for one objective function than for the
others. As a consequence, we may verify when the objective
functions are equally diverse.

Table 2 presents IPS and OPS calculated for each Pareto
front shown in Figure 2. The difficulty measure θ and the
error rate ǫ are conflicting objective functions, but there is
much more variation among ǫ values than among θ values.
Ensemble size ζ and ǫ are conflicting objective functions, and
there is more variation in ζ values than in ǫ values. In ad-
dition, θ and ζ are conflicting objective functions, but once
again, there is less variation among θ values. It is important
to note that there is more variation among θ values when
this diversity measure is combined with ζ than when it is
combined with ǫ. Finally, the interrater agreement κ and ζ
are not conflicting objective functions. In next section we
present experimental results employing these Pareto quality
measures in our problem of selecting classifier ensembles. All
objective functions shown in Table 1 are investigated.

3. EXPERIMENTS
A series of experiments has been carried out to calculate

the two Pareto quality measures presented in last section.
We analyze the Pareto fronts obtained by combining diver-
sity measures, the error rate and ensemble size in pairs of
objective functions used to guide NSGA-II at the selection
phase of OCS. The objective of this analysis is to verify
how these quality measures are related to the performance
of the best classifier ensembles obtained at the end of the
OCS process. In section 3.1 we present the results of the
Pareto analysis and in section 3.2, our analysis in terms of
performance of solutions.

Table 3: Specifications of the NIST-digits dataset
used in the experiments (RSS: random subspace).

Number of classes 10
Number of features 132
Train Set T 5,000
Optimization Set O 10,000
Validation Set V 10,000
Test Set G 60,089
Number of features for RSS 32
Initial pool size 100

Table 4: NSGA-II parameters
Population size 128
Number of generations 1000
Probability of crossover 0.8
Probability of mutation 0.01
One-point crossover and bit-flip mutation

We used the NIST digits Special Database 19 (NIST SD19)
in our experiments, called NIST-digits. The original dataset
was partitioned into four independent datasets: T , O, V and
G, using the classical holdout validation strategy. This is due
to the fact that OCS requires at least four datasets. The en-
semble creation method is employed using a training dataset
(T ) to generate the initial pool of classifiers, C. Thus, the
search algorithm calculates fitness on O by testing different
candidate ensembles. The best candidate ensemble (C∗

j ) is
identified in V to prevent overfitting. Finally, the general-
ization performance of C∗

j is measured using a test dataset
(G). We employ the representation proposed by Oliveira et
al. [8], which is composed of 132 features. Table 3 lists im-
portant information about the database and the partitions
used to compose the four separate sets.

We chose kNN as the base classifier in our experiments.
We used k = 1 without fine-tuning this parameter in or-
der to avoid additional experiments. The random subspace
method was used to generate one pool of 100 homogeneous
classifiers. The size of the subsets of features used by the
random subspace method is shown in Table 3. The opti-
mization processes were conducted by NSGA-II using binary
vectors. Since we used initial pools of classifiers composed of
100 members, each individual was represented by a binary
vector with a size of 100. Each bit determines whether a
classifier is active (1) or not (0). The genetic parameters are
summarized in Table 4.

3.1 Pareto Analysis Results
We have initially calculated IPS and OPS in order to

show which measures, summarized in Table 1, are conflicting
objective functions. The diversity measures were used by
NSGA-II in pairs of objective functions combined with the
error rate ǫ. Moreover, NSGA-II employed pairs of objective
functions combining either the diversity measures or ǫ with
ensemble size. In this way, we have the following three main
groups of pairs of objective functions: (1) diversity measures
combined with ǫ; (2) ensemble size ζ combined with ǫ; and
(3) diversity measures combined with ζ.

Table 5 shows the results obtained for each pair of ob-
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jective functions. It is important to mention that the opti-
mization processes were replicated 30 times owing to the use
of a stochastic search algorithm. Thus, the values reported
in this table were obtained as the mean of the 30 replica-
tion results. Table 5 shows the values of IPS and OPS,
as well as the difference between the kth objective Pareto
spreads. This difference indicates the variation among ob-
jective functions values. Moreover, it is implicitly assumed
that the non-dominated set obtained at each run of NSGA-II
is a good approximation of the true Pareto-optimal.

These results show that all diversity measures are conflict-
ing objective functions when combined with ǫ. Except for
Kohavi-Wolpert ψ, the difficulty measure θ and ambiguity γ,
there is more variation among diversity values than among
ǫ values. Ensemble size ζ and ǫ are also conflicting objec-
tive functions and there is more variation among ζ values.
However, there are only three diversity measures which are
conflicting objective functions when combined with ζ: the
same ψ, θ and γ.

The literature has shown that pairwise diversity measures
and ζ are not conflicting objective functions. Aksela and
Laaksonen [1] observe that pairwise measures always try to
find the two most diverse classifiers, which leads to the mini-
mization of the number of classifiers during the optimization
process. Our results confirm this observation since all pair-
wise measures (see Table 1) employed in our experiments
are not conflicting objective functions when combined with
ζ. However, our results show that most of the non-pairwise
measures lead also to the minimization of ζ. Only γ, θ and
ψ are conflicting objective functions when combined with
ζ. Consequently, these three non-pairwise measures do not
minimize ζ. Figure 4 confirms these observations. Figure
4(a) presents a graph containing the size of the classifier
ensembles found in 30 replications generated by each pair
of objective functions composed by ζ and the 12 diversity
measures. We also show in Figure 4(b) the ensemble size of
the classifier ensembles found by NSGA-II combining ǫ with
diversity and ǫ with ζ. It is important to mention that the
minimum number of classifiers allowed by the search algo-
rithms was 5. This fixed minimum ensemble size was defined
to avoid generating too small ensembles.

According to Whitaker and Kuncheva [12] non-pairwise
measures are calculated by using either entropy or correla-
tion between individual outputs and the ensemble’s output
or distribution of “difficulty” of the data samples. Among
the three diversity measures, which are conflicting objective
functions when combined with ζ, two measures are based on
the variance over the dataset (θ and ψ), and γ is based on
the variance among ensemble’s members. Thus, our observa-
tion is that, besides the pairwise diversity measures pointed
out by Aksela and Laaksonen [1], all non-pairwise diversity
measures based on entropy or correlation between individual
outputs are also not able to find the best ensemble’s size, i.e.
they minimize ζ during the optimization process.

Moreover, there is no guarantee of finding the best ensem-
ble’s size using one of the three diversity measures based on
variance, specially ambiguity, which generates the less di-
verse Pareto front (Table 5 and Figure 5(a)) and the small-
est classifier ensembles (Figure 4(a)). However, these three
measures have such a property that makes them able to
generate larger classifier ensembles, which is useful in OCS
methods since we deal with a large initial pool of classifiers.
The two diversity measures based on the variance over the

dataset found more diverse Pareto front and larger classi-
fier ensembles than ambiguity (based on the variance of the
classifiers’ output). The difficulty measure θ was better than
Kohavi-Wolpert ψ in these two aspects, as it can seen in Fig-
ure 5(b) for ψ and in Figure 2(c) for θ, as well as in Table
5. In next section we analyze how these observations may
be related to the performance of the ensembles found at the
end of the optimization process.

3.2 Performance Analysis
We continue our experimental study by analyzing the recog-

nition rates achieved by the classifier ensembles found in
the selection process of our OCS. Figure 6 shows the per-
formances of the selected classifier ensembles found in 30
replications of the optimization processes. Figure 6(a) shows
the performance of the classifier ensembles found by NSGA-
II when combining ζ with diversity measures, while Figure
6(b) shows the performances of the ensembles found when
combining ǫ with diversity measures and with ζ.

These results show that the three diversity measures γ, θ
and ψ, which are conflicting objective functions when com-
bined with ζ, are the most successful diversity measures in
terms of performance when NSGA-II was guided by pairs
of objective functions made up of ensemble size ζ and di-
versity. The best diversity measure was θ. However, the
performance of the ensembles obtained using ζ and ǫ are
better (Figure 6(b)). In fact, our results indicate that di-
versity combined with ζ in pairs of objective functions does
not find high-performance classifier ensembles. Taking into
account all the results obtained in the series of experiments,
the performances of the ensembles found using these pairs
of objective functions showed the worst performances. It is
expected that ensembles which are too small will perform
considerably less well than other approaches such as com-
bining the initial pools of classifiers or selecting the best
subset of classifiers using NSGA-II guided by ǫ combined
either with diversity or with ζ. However, the analogy be-
tween FSS and OCS may be established. The performance
of our baseline system, i.e. the pool of 100 kNN (96.28%),
is 0.07% worse than the average result using ζ and ǫ as the
objective functions (average of 96.35% in Figure 4), while
the averaged ensemble size is 27 classifiers (Figure 4(b)).

Therefore, we observe that since ensemble size and diver-
sity are not conflicting objective functions, we cannot de-
crease the generalization error rate by combining this pair
of objective functions. However, by including both diversity
and ǫ in a multi-objective optimization process, we may find
the most high-performance classifier ensembles. The best
diversity measures in this main group of pairs of objective
functions are difficulty θ, interrater agreement κ, correlation
coefficient ρ and double-fault δ.

4. CONCLUSIONS
In this paper we have applied two Pareto spread quality

measures to analyze the relationship among the three main
search criteria used to select classifier ensembles, which are
the ensemble error rate, ensemble size and diversity mea-
sures. The experiments were conducted using NSGA-II and
the three search criteria were combined in pairs of objec-
tive functions in three main groups: (1) diversity measures
combined with the error rate; (2) ensemble size combined
with the error rate; and diversity measures combined with
ensemble size.
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Table 5: The average kth objective Pareto spread IPS values and the average overall Pareto spread OPS

values for each pair of objective function (div: diversity).
Error rate ǫ Ensemble size ζ

Diversity IPSǫ IPSdiv IPSdiv − IPSǫ OPS IPSζ IPSdiv IPSζ − IPSdiv OPS

γ 0.0187 0.0254 0.0067 0.5 x10−3 0.0503 0.0030 -0.0474 0,0001
σ 0.0134 0.0368 0.0234 0.5 x10−3 0.0000 0.0000 0.0000 0.0000
ρ 0.0213 0.0442 0.0229 0.9 x 10−3 0.0000 0.0000 0.0000 0.0000
θ 0.0025 0.0006 -0.0019 0.2 x 10−5 0.1733 0.0058 -0.1675 0.0010
η 0.0330 0.0428 0.0098 0.14 x 10−2 0.0000 0.0000 0.0000 0.0000
δ 0.0159 0.0068 -0.0091 0.1 x 10−3 0.0000 0.0000 0.0000 0.0000
ξ 0.0249 0.0659 0.0410 0.17 x 10−2 0.0000 0.0000 0.0000 0.0000
λ 0.0192 0.0460 0.0268 0.9 x 10−3 0.0000 0.0000 0.0000 0.0000
τ 0.0150 0.0357 0.0207 0.5 x 10−3 0.0000 0.0000 0.0000 0.0000
κ 0.0159 0.0447 0.0288 0.7 x 10−3 0.0000 0.0000 0.0000 0.0000
ψ 0.0119 0.0113 -0.0006 0.1 x 10−3 0.1000 0.0079 -0.0921 0.0008
Φ 0.0265 0.0927 0.0662 0.25 x 10−2 0.0000 0.0000 0.0000 0.0000

Ensemble size ζ and Error rate ǫ

IPSǫ IPSζ IPSζ − IPSǫ OPS

0.0119 0.2163 0.2045 0.0025
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Figure 4: Size of the ensembles found using 12 diversity measures combined with ensemble size ζ (a) and the
error rate ǫ (b). Results from combining ζ with ǫ are also shown in (b). Plus sign indicates outliers.
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Figure 5: Set of non-dominated solutions found by NSGA-II and the pairs of objective functions: minimize
ensemble size and maximize ambiguity (a) and minimize ensemble size and maximize Kohavi-Wolpert (b).
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Figure 6: Performance of the classifier ensembles found using NSGA-II with pairs of objective functions
made up of 12 diversity measures and ensemble size ζ (a), and the error rate ǫ (b). The results obtained by
combining ζ with ǫ are also shown in (b). Plus sign indicates outliers, which are points beyond the ends of
the whiskers.

The experiments demonstrated that all diversity measures
are conflicting objective functions when combined with the
error rate. In addition, ensemble size and the error rate
are conflicting objective functions. However, there are only
three diversity measures which are conflicting objective func-
tions when combined with ensemble size. As a consequence,
since the minimum number of classifiers is often achieved
when using this combination of objective functions, we can-
not decrease the generalization error rate by combining them.
In contrast, by combining the error rate with either diver-
sity or the ensemble size, we may find much more high-
performance classifiers. The best performances were ob-
tained by combining error rate with diversity.

For future works we plan to investigate how Pareto spread
measures may be used to help dynamic classifier ensemble
selection processes.
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