
Introducing MONEDA: Scalable Multiobjective
Optimization with a Neural Estimation of Distribution

Algorithm

Luis Martí Jesús García Antonio Berlanga José M. Molina
GIAA, Dept. of Informatics, Universidad Carlos III de Madrid

Av. Universidad Carlos III 22, Colmenarejo 28270 Madrid, Spain
{lmarti,jgherrer}@inf.uc3m.es; {aberlan,molina}@ia.uc3m.es

ABSTRACT
In this paper we explore the model–building issue of multi-
objective optimization estimation of distribution algorithms.
We argue that model–building has some characteristics that
differentiate it from other machine learning tasks. A novel
algorithm called multiobjective neural estimation of distri-
bution algorithm (MONEDA) is proposed to meet those
characteristics. This algorithm uses a custom version of the
growing neural gas (GNG) network specially meant for the
model–building task. As part of this work, MONEDA is
assessed with regard to other classical and state–of–the–art
evolutionary multiobjective optimizers when solving some
community accepted test problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search; I.2.m [Artificial Intelligence]: Evo-
lutionary Computing and Genetic Algorithms—Multiobjec-
tive Evolutionary Algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
Multiobjective Optimization, Estimation of Distribution Al-
gorithms (EDAs), Growing Neural Gas (GNG)

1. INTRODUCTION
Multiobjective optimization problems (MOPs) have at-

tracted a great deal of attention inside the evolutionary com-
putation community. In those problems the optimizer must
find one or more feasible solutions, that corresponds to the
extreme values (either maximum or minimum) of two or
more functions subject to a set of restrictions.

The application of evolutionary computation approaches
to the above described problem has prompted the creation of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

what has been called multiobjective optimization evolution-
ary algorithms (MOEAs) [6]. These algorithms have suc-
ceeded in yielding relevant results mainly because of their
parallel global search and non–assumption of any particular
shape of the underlying fitness landscape.

In spite of the success of MOEAs, two crucial issues arise
when addressing high–complexity problems. The first one is
inherited from single objective evolutionary algorithms and
has to do with the non–intuitive nature of the evolutionary
operators used. These operators in most cases are prob-
lem dependent and hard to grasp by the experimenter. The
other issue has to do with scalability and what has been de-
nominated as many–objective optimization problems. In a
series of experimental studies, like [9, 18] and [6, pp. 414–
419], among others, it has been shown that there is an ex-
ponential dependence between the dimension of the objec-
tive space and the amount of resources required to solve the
problem correctly.

One of the possible strategies for addressing these issues
is to resort to simpler and more efficient evolutionary ap-
proaches. Estimation of distribution algorithms (EDAs) [11]
can be used for that objective. EDAs have been hailed
as a landmark in the progress of evolutionary algorithms.
They replace the application of evolutionary operators with
the creation of a statistical model of the fittest elements of
the population using a machine learning algorithm. This
model–building algorithm is the key feature that differenti-
ates EDAs from other evolutionary approaches. The con-
structed model is then sampled to produce new elements.

EDAs have been extended to the multiobjective domain
prompting what has been denominated multiobjective EDAs
(MOEDAs). Most MOEDAs have limited themselves to
porting single objective EDAs to the multiobjective domain
by incorporating features taken from MOEAs, in particular
the fitness assignment functions. Although MOEDAs have
proved themselves as a valid approach to MOPs, this fact
hinders the achievement of a significant improvement regard-
ing “standard” MOEAs in high–dimensional problems.

There are two fundamental research directions that might
yield a substantial MOEDAs improvement: the fitness as-
signment and the model–building algorithms. The former
has to do with the creation of more robust and less computa-
tionally complex fitness assignment functions and is shared
with MOEAs. The other direction deals with the machine
learning algorithms used for building the model of the fittest
elements. So far, most MOEDAs (and their single–objective
counterparts, for that matter) have used off–the–shelf ma-

689

chine learning algorithms. This was done without taking
into account that the model–building problem has some spe-
cific requirements that differentiate it from the rest of the
classical machine learning tasks. Overlooking those require-
ments introduces a handicap in the search process that might
be the cause of the similar performance of MOEDAs and
MOEAs.

In this paper we focus on this later line of research, as,
to the best of our knowledge, it has not been properly ex-
plored yet. We provide an in–depth discussion of the model–
building issue, its particularities and requirements. Rely-
ing on those arguments we propose a novel algorithm called
multiobjective neural EDA (MONEDA). This algorithm uses
a modified the growing neural gas (GNG) network [8] that
meets the requirements of the model–building task.

The rest of this work is organized as follows. In the subse-
quent section we analyze the model–building problem. Af-
ter that, we proceed to properly describe MONEDA and
the model–building GNG network. The ensuing section is
dedicated to assess MONEDA with regard to other classical
and state–of–the–art evolutionary multiobjective optimizers
when solving some community accepted test problems. Fi-
nally, some conclusive remarks are made, and future lines of
work are sketched.

2. THEORETICAL BACKGROUND
A multiobjective optimization problem (MOP) can be ex-

pressed as

minimize F (x) = 〈f1(x), . . . , fM (x)〉 ,
subject to c1(x), . . . , cR(x) ≤ 0 ,

with x ∈ D ,

9=; (1)

where D is known as the decision space. The functions
f1(x), . . . , fM (x) are the objective functions. Their corre-
sponding image set, O, of D produced by is named objective
space (F : D → O). Finally, inequalities c1(x), . . . , cR(x) ≤
0 express the restrictions imposed to the values of x.

The solution to this problem can be defined relying on the
so–called Pareto dominance relation: having x1,x2 ∈ D,
x1 is said to dominate x2 (expressed as x1 ≺ x2) iff ∀fj ,
fj(x1) ≤ fj(x2) and ∃fi such that fi(x1) < fi(x2). The
solution of (1) is a subset of D that contains elements that
are not dominated by other elements of D. That subset,
D∗, is known as the Pareto–optimal set and its image in
objective space is called Pareto–optimal front, O∗.

Although MOPs have been addressed with a variety of
methods, evolutionary algorithms (EAs) have proved them-
selves as a competent approach from both theoretical and
practical points of view. This fact has led to what has been
called multiobjective optimization evolutionary algorithms
(MOEAs). Their success is due to the fact that EAs do not
make any assumptions about the underlying fitness land-
scape. Therefore, it is believed they perform consistently
well across various types of problems.

Estimation of distribution algorithms (EDAs), like EAs,
are population–based optimization algorithms. However, in
EDAs, the step where the evolutionary operators are applied
is substituted by construction of a statistical model of the
most promising subset of the population. This model is then
sampled to produce new individuals that are merged with
the original population following a given substitution pol-
icy. The introduction of machine learning techniques implies
that these new algorithms lose the biological plausibility of

their predecessors. In spite of this, they gain the capacity
of scalably solving many challenging problems, significantly
outperforming standard EAs and other optimization tech-
niques. Early EDAs were intended for combinatorial opti-
mization but they have been extended to continuous domain
(see [11] for a review).

Multiobjective optimization EDAs (MOEDAs) [17] are
the extensions of EDAs to the multiobjective domain. Most
of MOEDAs are a modification of existing EDAs whose fit-
ness assignment strategy is substituted by one of the com-
monly used by MOEAs.

3. THE MODEL–BUILDING ISSUE
As it was already hinted in section 1, by analyzing differ-

ent MOEDAs it can be deduced that there are two direc-
tions of improvement for their scalability issue. One has to
do with the generation of better performing but less com-
putationally complex fitness assignment functions that can
guide the search process requiring smaller populations. The
other deals with the creation of machine learning algorithms
particularly suited for the model–building task. In a previ-
ous study [13] the authors compared the behavior of a set of
model–building algorithms. It was found out that, in high–
dimensional problems and under the same experimental con-
ditions, robust algorithms, like Bayesian networks [16], were
outperformed by less robust approaches like k–means algo-
rithm or the randomized leader algorithm [4].

These results have prompted us to conclude that the mod-
el–building problem has its own peculiarities and require-
ments that, therefore, must be addressed with specially tai-
lored approaches and not with off–the–shelf machine learn-
ing methods. Among those characteristics we have distin-
guished two essential ones: the handling of outliers in the
model–building data set and the waste of an excess of re-
sources on finding the optimal complexity of the model.

Classical algorithms handle outliers as not representative,
noisy or bogus data. However, for model–building purposes
outliers are essential, as they could represent unexplored ar-
eas of the Pareto–optimal front. If a population element has
been included in the set of promising solutions it certainly
should not be disregarded. Instead it should be preserved
and perhaps even reinforced with regard to other elements
located in more populated zones of the objective space. The
proper handling outliers would also promote diversity on
the Pareto front as it tends to equally sample more or less
densely crowded portions of the Pareto–optimal front.

In most EDAs an excess of computing power is spent on
finding the optimal model size. However, in model–building,
as we had just hypothesized, there is no need of having
an statistically correct model. For example, when doing a
cluster–based model–building it is not necessary to find the
correct amount of clusters. Here a certain degree of overkill
regarding the size of the model could simplify the model
creation step and therefore it would end up as a less com-
putationally intensive process. Introducing a self–organizing
approach capable of on–the–fly model construction might be
the answer to this issue.

This discussion leads us towards the search of new model–
building approaches that conform to the previous issues.
This is a rather odd task, since most of the currently exist-
ing machine learning approaches have been conceived with a
different and sometimes opposite set of objectives. There are
two strategies to sort out this situation. One is to search for

690

algorithms that possess some known properties that make
them particularly suitable, while the other is to synthesize
an original algorithm from scratch. Although in the long
term we find the second option as the most promising in
this paper, we have opted for taking the first alternative as
it seems more viable for initial studies.

4. MULTIOBJECTIVE NEURAL EDA
The multiobjective neural EDA (MONEDA) is a MOEDA

that uses a modified growing neural gas (MB–GNG) network
as its model–building algorithm. The MB–GNG network is
a custom–made model–building algorithm devised to cope
with the specifications of the task and that will be described
later on.

The NSGA–II non–dominated sorting [6] was the scheme
selected for fitness assignment. It was chosen because of its
proven effectiveness and its relative low computational cost.

Although MONEDA intends to deal with the issues raised
by the previous discussion, it was also designed with the
following properties in mind:

• scalability : MONEDA is expected to outperform simi-
lar algorithms when solving many–objective problems;

• elitism: as its has proved itself a very advantageous
property, and;

• diversity preservation: in spite of promoting the preser-
vation of the most fitted solutions, it is also essential
that the population remains as diverse as possible.

It should be noted that it could be questioned if MONEDA
does or does not an estimation of a distribution. In either
case we decided to keep the “EDA” tag as it implies a widely
known evolutionary approach.

4.1 Model–Building with Growing Neural Gas
Clustering algorithms have been used as part of the model–

building algorithms of EDAs and MOEDAs. However, as we
discussed in the previous section a custom–made algorithm
might be one of the ways of achieving a significant improve-
ment in this field.

As a foundation for our proposal we have chosen the grow-
ing neural gas (GNG) network [8]. GNG networks are in-
trinsic self–organizing neural networks based on the neural
gas [15] model. This model relies in a competitive Hebbian
learning rule [14]. It creates an ordered topology of inputs
classes and associates a cumulative error to each. The topol-
ogy and the cumulative errors are conjointly used to deter-
mine how new classes should be inserted. Among the vast
amount of existing clustering methods we decided to base
our approach on GNG because of its interesting properties,
in particular:

• it has a fast convergence to low distortion errors and
these errors are better than those yielded by“standard”
algorithms like k–means clustering, maximum–entropy
clustering and Kohonen’s self–organizing feature maps
[15];

• its learning rule follows a stochastic gradient descent
that follows an explicit energy surface [19];

• the network is sensitive to outliers [19], something un-
desirable in typical applications but suitable for model–
building;

• the network grows to fit itself automatically to the
complexity of the problem being solved, and;

• although it benefits from the topological ordering of
the nodes; it does not suffer the problem associated to
Kohonen networks, where a node can pull its neighbors
to invalid or non representative locations of the input
space.

Our model–building GNG (MB–GNG) is an extension of
the original (unsupervised) GNG. MB–GNG creates a quan-
tization of the input space using a modified version of the
GNG algorithm and then computes the deviations associ-
ated to each node.

To the original GNG formulation we have added a cluster
repulsion mechanism [20]. This enhancement fosters explo-
ration of the input space as it makes each cluster to represent
a distinctive zone of the space.

MB–GNG is a one layer network that defines each class as
a local Gaussian density and adapts them using a local learn-
ing rule. The layer contains a set of nodes C = {c1, . . . , cN∗},
with N0 ≤ N∗ ≤ Nmax. Here N0 and Nmax represent the
initial and maximal amount of nodes in the network.

A node ci consists of a center, µi, deviations, σi, an ac-
cumulated error, ξi, and a set of edges that define the set of
topological neighbors of ci, Vi. Each edge has an associated
age, νi,j .

The dynamics of a GNG network consists of three con-
current processes: network adaptation, node insertion and
node deletion. The combined use of these three processes
renders GNG training Hebbian in spirit [14].

The network is initialized with N0 nodes with their centers
set to randomly chosen inputs. A training iteration starts
after an input x is randomly selected from the training data
set, Ψ. Then two nodes are selected for being the closest
ones to x. The best–matching node, cb,

b = arg min
i=1,...,N∗

d (µi,x) , (2)

is the closest node to x. Consequently, the second best–
matching node, cb′ , is determined as

b′ = arg min
i=1,...,N∗;i 6=b

d (µi,x) . (3)

Here d (a, b) is a distance metric. For this work we have
used d(·) defined as

d (a, b) = ‖a− b‖ . (4)

If cb′ is not a neighbor of cb then a new edge is established
between them Vb = Vb∪{cb′} with zero age, νb,b′ = 0. If, on
the other case, cb′ ∈ Vb the age of the corresponding edge is
reset νb,b′ = 0.

At this point, the age of all edges is incremented in one.
If an edge is older than the maximum age, νi,j > νmax, then
the edge is removed. If a node becomes isolated from the
rest it is also deleted.

Clustering error is then added to the best–matching node
error accumulator,

∆ξb = d (µi,x)2 . (5)

After that, learning takes place in the best–matching node
and its neighbors with rates εbest and εvic, respectively. For
cb adaptation follows the rule originally used by GNG

∆µb = εbest (x− µb) . (6)

691

However for cb’s neighbors a cluster repulsion term [20] is
added to the original formulation, that is, ∀cv ∈ Vb,

∆µv = εvic (x− µv)

+βe

„
− d(µv,µb)

ζ

«P
cu∈Vb

d(µu,µb)

|Vb|
(µv−µb)
d(µv,µb)

.
(7)

Here β is an integral multiplier that defines the amplitude
of the repulsive force while ζ controls the weakening rate
of the repulsive force with respect to the distance between
the nodes’ centers. This approach was already used as part
of the robust GNG [19] and it has proved itself useful for
obtaining a good spread of the clusters in the inputs’ space.
In the aforementioned work its stated that the adaptation
rule is not sensitive with respect to its parameters. We have
set them to β = 2 and ζ = 0.1 as suggested in [19].

If the current iteration is an integer multiple of T+ and N∗

is smaller than Nmax then a new neuron is inserted to the
network. First, the node with largest error, ce, is selected
the node. Then the worst node among its neighbors, ce′ , is
located. Then N∗ is incremented and the new node, cN∗ , is
inserted between the two nodes,

µN∗ = 0.5 (µe + µe′) . (8)

The edge between ce and ce′ is removed and two new edges
connecting cN∗ with ce and ce′ are created. The accumu-
lated errors are reduced in a rate 0 ≤ δI ≤ 1 by letting

ξe = δIξe , ξe′ = δIξe′ . (9)

The error of the newly created node is computed as

ξN∗ = 0.5(ξe + ξe′) . (10)

Finally, the errors of all nodes are decreased by a factor δG,

ξi = δGξi, i = 1, . . . , N∗ . (11)

Stopping the learning of GNG is a non–trivial issue shared
by the rest of clustering algorithms and all reiterative heuris-
tic algorithms. As we are interested to cover the inputs space
as much as possible we will stop if, after a learning epoch,
the standard deviation of the accumulated errors is smaller
than a certain threshold, ρ,vuut 1

N∗

N∗X
i=1

(ξi − ξ)2 < ρ . (12)

This means that we will stop when the outliers are as better
represented as possible.

After training has ended the deviations, σi, of the nodes
must be computed. For this task we employ the unbiased
estimator of the deviations detail in the following algorithm

Set s1, . . . , sN∗ = 0 and n1, . . . , nN∗ = 0.
for all x ∈ Ψ do

Determine the closest node, cc to x.
sc = sc + (x− µc)2.
nc = nc + 1.

Compute the deviations as δi =
q
si
ni

.

4.2 MONEDA Algorithm
MONEDA maintains a population of individuals, Pt, with

t as the current iteration. The algorithm’s workflow is sim-
ilar to other EDAs. It starts from a random initial popu-
lation P0 of npop individuals. It then proceeds to sort the
individuals using the NSGA–II fitness assignment function.

The NSGA–II fitness first ranks the individuals according
the dominance relations established between them. Indi-
viduals with the same domination rank are then compared
using a local crowding distance.

The first step consists in classifying the individuals in a
series of categories F1, . . . ,FL. Each of these categories
store individuals that are only dominated by the elements
of the previous categories,

∀x ∈ F i : ∃y ∈ F i−1 such that y ≺ x, and
6 ∃z ∈ Pt \ (F1 ∪ . . . ∪ F i−1) that z ≺ x ;

(13)
with F1 equal to P∗t , the set of non–dominated individuals
of Pt.

After all individuals are ranked a local crowding distance
is assigned to them. The use of this distance primes individ-
uals more isolated with respect to others. The assignment
process goes as follows,

for all category sets F l, having fl = |F l| do
for all individuals xi ∈ F l do
di = 0.

for all objective functions m = 1, . . . ,M do
I = sort (F l,m) (generate index vector).

d
(l)
I1

= d
(l)
Ifl

=∞.

for i = 2, . . . , fl − 1 do
Update the remaining distances as

di = di +
fm

`
xIi+1

´
− fm

`
xIi+1

´
fm (xI1)− fm

“
xIfl

” .

Here the sort (F ,m) function produces an ordered index vec-
tor I with respect to objective function m.

Having the individual ranks and their local distances they
are sorted using the crowded comparison operator, stated
as: An individual xi is better than xj if:

• xi has a better rank: xi ∈ Fk, xj ∈ F l and k < l, or;

• if k = l and di > dj .

A set P̂t containing the best bα |Pt|c elements is extracted
from the sorted version of Pt,˛̨̨

P̂t

˛̨̨
= bα |Pt|c . (14)

A MB–GNG network is then trained using P̂t as training
data set. In order to have a controlled relation between size
of P̂t and the maximum size of the network, Nmax, these
two sizes are bound by the rate γ ∈ (0, 1],

Nmax =
l
γ
˛̨̨
P̂t

˛̨̨m
. (15)

The resulting Gaussian kernels are sampled to produce an
amount bω |Pt|c of new individuals. Each one of these indi-
viduals substitute a randomly selected ones from the section
of the population not used for model–building Pt \ P̂t. The

set obtained is then united with best elements, P̂t, to form
the population of the next iteration Pt.

Iterations are repeated until a given stopping criterion
is met. The output of the algorithm is the set of non–
dominated solutions of Pt, P∗t . The outline of MONEDA is
presented in algorithmic form on Algorithm 1.

692

Algorithm 1 Algorithmic representation of MONEDA.

MB–GNG parameters: N0, νmax, εb, εv, δI, δG and ρ.
MONEDA parameters: npop, α, γ and ω.
Let t = 0.
Randomly generate the initial population P0 with z indi-
viduals.
repeat

Sort Pt individuals with regard to the crowded compar-
ison operator.
Extract first α |Pt| elements the sorted Pt to P̂t.

Train MB–GNG network with P̂t training data set and

Nmax =
j
γ
˛̨̨
P̂t

˛̨̨k
.

Sample bω |Pt|c from the MB–GNG.

Substitute randomly selected individuals of Pt\P̂t with
the new individuals to produce P ′t .
Pt+1 = P̂t ∪ P ′t .
t = t+ 1.

until end condition is met
Determine the set of non–dominated individuals of Pt,
P∗t .
return P ∗t as the algorithm’s solution.

5. EXPERIMENTS
MONEDA and its underlying hypothesis must be properly

assessed from an experimental point of view in order to com-
plement the theoretical discussion issued above. However,
because of the length restrictions imposed to this contribu-
tion we have had to restrain ourselves present a limited set
of results.

The experiments consist on the application of a set of
known and competent evolutionary multiobjective optimiz-
ers and MONEDA to some community–accepted test prob-
lems. The algorithms applied are näıve MIDEA [3], mrBOA
[1], RM–MEDA [21], MOPED [5], NSGA–II [6] and SPEA2
[6]. The DTLZ3 and DTLZ6 problems scalable multiob-
jective test problems [7] were used. These problems were
selected for their scalability, their known and easily measur-
able Pareto–optimal front, and their multiple suboptimal
fronts. Each problem was configured with 3, 6 and 9 ob-
jective functions. In all cases the dimension of the decision
space was fixed to 15.

Tests were carried out under the PISA experimental frame-
work [2]. Algorithms’ implementations were adapted from
the ones provided by their respective authors with the excep-
tion of NSGA–II and SPEA2, that were already distributed
as part of the framework, and MOPED and MONEDA that
were implemented from scratch.

The unary additive epsilon indicator [10] and the Pareto–
optimal front coverage indicator [4] were used to assess the
performance. The first indicator measures how close the set
of solutions is to the optimal one while the second indica-
tor gauges how well distributed are the solutions along the
optimal set. Both indicators should be minimized.

For each problem/dimension pair each algorithm was ex-
ecuted 30 times. As assessing the progress of the algorithms
in higher dimensions is a complicate matter the MGBM
multiobjective optimization cumulative stopping criterion
[12] was used.

Figure 1 shows the progress of each algorithm for the dif-
ferent problem setups with regard to the two indicators. In
each case the data series are shown until the first of the

30 runs stopped. The statistical description of the results
yielded by the algorithms can be inspected on Fig. 2.

In the three dimensional configurations our approach per-
formed similarly to the rest of the algorithms. This was an
expected outcome since our MOEDA uses an already ex-
istent fitness function and its model–building algorithm is
meant to provide a significant advantage in more extreme
situations.

However, as the tests proceed into higher dimensions, it
becomes evident that MONEDA outperforms the rest of the
optimizers applied. MONEDA not only yields better final
results but they have a very low variance and also fewer
iterations are required. This means that it performed con-
sistently well across the different runs. The results not only
show that MONEDA’s solutions are close to the optimal but
also they manage to evenly cover the Pareto–optimal front.

This might lead us to hypothesize that thanks to its novel
treatment of the outliers in the model–building data set our
approach manages to overcome the difficulties that hampers
the rest of the methods. Although very interesting, the re-
sults presented here rise the question of how if they are con-
ditioned by the particularities of the problems solved. They
must be further investigated to understand if the low dis-
persion of the error indicators can only be obtained in the
problems solved or if it can be extrapolated to other prob-
lems. Regretfully, the briefness of this communication does
not allow us to deal with these issues in more depth.

6. FINAL REMARKS
In this paper we have explored the model–building issue of

MOEDAs. We argued that model–building has some char-
acteristics that differentiate it from other machine learning
tasks. Specifically, we contended that in this problem out-
liers must not be disregarded but instead they should be
preserved, as they represent regions of the suboptimal so-
lutions space that have not been properly explored. In ad-
dition to that, we reflected on the excess of computation
capacity wasted by MOEDAs in finding the optimal model
size and we hypothesized that a self–organizing approach
would yield better results in terms of resource consumption,
even if a certain degree of overkill is included.

Using those postulates as requirements for a model–build-
ing algorithm we proposed a novel algorithm, which we called
MONEDA. MONEDA uses a custom–made model–building
GNG (MB–GNG) specially intended for this task. In the
subsequent experimental studies MONEDA’s performance
was contrasted with a set of multiobjective optimizers. In
those tests MONEDA outperformed the rest of the methods
in terms of proximity to the Pareto–optimal front, diversity,
and speed of convergence.

In spite of the promising results obtained so far, further
studies are necessary. More problems, of both continuous
and discrete nature, should be addressed to establish if the
outcome of the experiments shown here can be generalized.
The detailed analysis of the execution of MONEDA will
also be helpful in understanding the actual impact of the
modified model–building strategy we put forward here in an
iteration–wise scale.

From a theoretical perspective some points still need to be
explored. For example, a computational complexity study
is necessary in order to grasp the resource consumption of
MONEDA when advancing into higher dimensions. On the
other hand, more model–building approaches that follow our

693

(a) DTLZ3, M = 3, coverage. (b) DTLZ3, M = 6, coverage. (c) DTLZ3, M = 9, coverage.

(d) DTLZ3, M = 3, ε–indicator. (e) DTLZ3, M = 6, ε–indicator. (f) DTLZ3, M = 9, ε–indicator.

(g) DTLZ6, M = 3, coverage. (h) DTLZ6, M = 6, coverage. (i) DTLZ6, M = 9, coverage.

(j) DTLZ6, M = 3, ε–indicator. (k) DTLZ6, M = 6, ε–indicator. (l) DTLZ6, M = 9, ε–indicator.

Figure 1: Algorithms’ progress across iterations solving the DTLZ3 and DTLZ6 problems.

694

(a) DTLZ3, M = 3, coverage. (b) DTLZ3, M = 6, coverage. (c) DTLZ3, M = 9, coverage.

(d) DTLZ3, M = 3, ε–indicator. (e) DTLZ3, M = 6, ε–indicator. (f) DTLZ3, M = 9, ε–indicator.

(g) DTLZ6, M = 3, coverage. (h) DTLZ6, M = 6, coverage. (i) DTLZ6, M = 9, coverage.

(j) DTLZ6, M = 3, ε–indicator. (k) DTLZ6, M = 6, ε–indicator. (l) DTLZ6, M = 9, ε–indicator.

Figure 2: Box plots of the indicators obtained at the final iteration when solving the DTLZ3 and DTLZ6
problems.

695

premises should be tested. Such models could be found by
doing a more exhaustive survey on machine learning algo-
rithms or by proposing completely new ones. If such ap-
proaches show themselves as efficient as the one described
here, it would help to corroborate the working hypothesis of
this contribution.

Acknowledgments
This work was supported by projects MADRINET, TEC2005-
07186-C03-02, SINPROB and TSI2005-07344-C02-02. The
authors wish to thank the anonymous reviewers for the en-
couraging comments.

7. REFERENCES
[1] C. W. Ahn. Advances in Evolutionary Algorithms.

Theory, Design and Practice. Springer, 2006. ISBN
3-540-31758-9.

[2] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler.
PISA—A Platform and Programming Language
Independent Interface for Search Algorithms. In C. M.
Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and
L. Thiele, editors, Evolutionary Multi-Criterion
Optimization. Second International Conference, EMO
2003, pages 494–508, Faro, Portugal, April 2003.
Springer. Lecture Notes in Computer Science. Volume
2632.

[3] P. A. Bosman and D. Thierens. The Näıve MIDEA: A
baseline multi–objective EA. In C. A. Coello Coello,
A. Hernández Aguirre, and E. Zitzler, editors,
Evolutionary Multi-Criterion Optimization. Third
International Conference, EMO 2005, pages 428–442,
Guanajuato, México, March 2005. Springer. Lecture
Notes in Computer Science Vol. 3410.

[4] P. A. N. Bosman. Design and Application of Iterated
Density-Estimation Evolutionary Algorithms. PhD
thesis, Institute of Information and Computing
Sciences, Universiteit Utrecht, Utrecht, The
Netherlands, 2003.

[5] M. Costa, E. Minisci, and E. Pasero. An hybrid
neural/genetic approach to continuous multi–objective
optimization problems. In B. Apolloni, M. Marinaro,
and R. Tagliaferri, editors, Italian Workshop on Neural
Neural Nets (WIRN), volume 2859 of Lecture Notes in
Computer Science, pages 61–69. Springer, 2003.

[6] K. Deb. Multi-Objective Optimization using
Evolutionary Algorithms. John Wiley & Sons,
Chichester, UK, 2001. ISBN 0-471-87339-X.

[7] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler.
Scalable test problems for evolutionary multiobjective
optimization. In A. Abraham, L. Jain, and
R. Goldberg, editors, Evolutionary Multiobjective
Optimization: Theoretical Advances and Applications,
Advanced Information and Knowledge Processing,
pages 105–145. Springer Verlag, 2004.

[8] B. Fritzke. A growing neural gas network learns
topologies. In G. Tesauro, D. S. Touretzky, and T. K.
Leen, editors, Advances in Neural Information
Processing Systems, volume 7, pages 625–632. MIT
Press, Cambridge, MA, 1995.

[9] V. Khare, X. Yao, and K. Deb. Performance Scaling of
Multi-objective Evolutionary Algorithms. In C. M.

Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and
L. Thiele, editors, Evolutionary Multi-Criterion
Optimization. Second International Conference, EMO
2003, pages 376–390, Faro, Portugal, April 2003.
Springer. Lecture Notes in Computer Science. Volume
2632.

[10] J. Knowles, L. Thiele, and E. Zitzler. A tutorial on the
performance assessment of stochastic multiobjective
optimizers. TIK Report 214, Computer Engineering
and Networks Laboratory (TIK), ETH Zurich, 2006.

[11] P. Larrañaga and J. A. Lozano, editors. Estimation of
Distribution Algorithms. A new tool for Evolutionary
Computation. Genetic Algorithms and Evolutionary
Computation. Kluwer Academic Publishers,
Boston/Dordrecht/London, 2002.

[12] L. Mart́ı, J. Garćıa, A. Berlanga, and J. M. Molina. A
cumulative evidential stopping criterion for
multiobjective optimization evolutionary algorithms.
In GECCO ’07: Proceedings of the 9th annual
conference on Genetic and evolutionary computation,
pages 911–911, New York, NY, USA, 2007. ACM
Press.

[13] L. Mart́ı, J. Garćıa, A. Berlanga, and J. M. Molina.
Model–building algorithms for multiobjective EDAs:
Directions for improvement. In Z. Michalewicz, editor,
IEEE Conference on Evolutionary Computation
(CEC), part of 2008 IEEE World Congress on
Computational Intelligence (WCCI 2008). IEEE
Press, 2008.

[14] T. M. Martinetz. Competitive Hebbian learning rule
forms perfectly topology preserving maps. In
International Conference on Artificial Neural
Networks (ICANN’93), pages 427–434, Amsterdam,
1993. Springer–Verlag.

[15] T. M. Martinetz, S. G. Berkovich, and K. J. Shulten.
Neural–gas network for vector quantization and its
application to time–series prediction. IEEE
Transactions on Neural Networks, 4:558–560, 1993.

[16] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Francisco, CA, 1988.

[17] M. Pelikan, K. Sastry, and D. E. Goldberg.
Multiobjective estimation of distribution algorithms.
In M. Pelikan, K. Sastry, and E. Cantú-Paz, editors,
Scalable Optimization via Probabilistic Modeling: From
Algorithms to Applications, Studies in Computational
Intelligence, pages 223–248. Springer-Verlag, 2006.

[18] R. C. Purshouse and P. J. Fleming. On the
evolutionary optimization of many conflicting
objectives. IEEE Transactions on Evolutionary
Computation, 11(6):770–784, 2007.

[19] A. K. Qin and P. N. Suganthan. Robust growing
neural gas algorithm with application in cluster
analysis. Neural Networks, 17(8–9):1135–1148, 2004.

[20] H. Timm, C. Borgelt, C. Doring, and R. Kruse. An
extension to possibilistic fuzzy cluster analysis. Fuzzy
Sets and Systems, 147(1):3–16, October 2004.

[21] Q. Zhang, A. Zhou, and Y. Jin. RM-MEDA: A
regularity model–based multiobjective estimation of
distribution algorithm. IEEE Transactions on
Evolutionary Computation, 12(1):41–63, 2008.

696

