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ABSTRACT
While in the past decades research on multi-objective evolu-
tionary algorithms (MOEA) has aimed at finding the whole
set of Pareto optimal solutions, current approaches focus on
only those parts of the Pareto front which satisfy the prefer-
ences of the decision maker (DM). Therefore, they integrate
the DM early on in the optimization process instead of leav-
ing him/her alone with the final choice of one solution among
the whole Pareto optimal set. In this paper, we address an
aspect which has been neglected so far in the research on
integrating preferences: in most real-world problems, there
is not only one DM, but a group of DMs trying to find one
consensus decision all participants are willed to agree to.
Therefore, our aim is to introduce methods which focus on
the part of the Pareto front which satisfies the preferences
of several DMs concurrently. We assume that the DMs have
some vague notion of their preferences a priori the search
in form of a reference point or goal. Thus, we present and
compare several reference point based approaches for group
decisions and evaluate them on three ZDT and two flow shop
problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms, Design

Keywords
Multi-objective optimization, preference-based optimization,
decision making, group decisions, reference points.
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1. INTRODUCTION
In many real-world optimization problems, several con-

flicting objectives have to be optimized simultaneously. In
business problems, for instance, there is usually a trade-
off between the objectives time, cost, and quality. Since
no single optimal solution can be found when objectives
are conflicting, multi-objective optimization methods try to
find a set of equivalent solutions. Solutions are considered
as equivalent when they are Pareto optimal. Evolutionary
algorithms (EA) have been applied successfully to multi-
objective problems as the population based concept is par-
ticularly suitable for finding a set of solutions which ap-
proximate the Pareto front in a single run while ensuring
a certain diversity of solutions along this front. The ad-
vantage of approximating the whole Pareto front is that no
other information about the decision maker’s (DM) prefer-
ence is needed prior to the search process [14, 5]. Therefore,
most multi-objective evolutionary algorithms (MOEA) work
with minimum information about preferences and postpone
the decision process after the search process (a posteriori
approach).

This a posteriori approach of first computing the complete
Pareto front and then letting the DM chose the preferred
solution out of the Pareto optimal set has two main disad-
vantages. First of all, especially for problems with many
objectives, the set of solutions representing the Pareto front
becomes large, which impedes the choice for the DM. In
the MOEA literature, this a posteriori decision process is
usually not addressed (for one exception see [9]). Secondly,
in most cases the DM has some ideas about his/her prefer-
ences prior to the optimization process [3]. Consequently,
computing the whole Pareto front is a waste of resources
if an articulation of preferences a priori or during the op-
timization process can help to focus the search on relevant
parts of the Pareto front.

Recently, several approaches have been presented that use
preferences to focus on parts of the Pareto front early on in
the search process [6]. Although this recent development in
the research community is very promising, a crucial fact has
been ignored until now in MOEA research: many decisions
in real-world problems do not only depend on the preferences
of one single DM but on several DMs [26]. For instance, in
flow shop problems, the DMs representing different depart-
ments of a company attach a different importance to each
objective like makespan, tardiness, etc. While the produc-
tion division prefers to maximize their output and therefore
wants to minimize the makespan, the sales division aims at
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a high customer satisfaction and thus wants to minimize the
tardiness. Another example is the optimization of supply
chains, where the different partners in the chain have differ-
ent conceptions of which performance criteria are more im-
portant. Although there is a lack of research in MOEA liter-
ature on group decisions, research on group decision support
systems has addressed this topic profoundly. However, this
research mostly assumes the following two points which do
not hold for many real-world problems. First, in many cases
it is assumed that there is only a small amount of possible
alternatives among which a group consensus must be found.
Optimization in a huge alternative space is less considered.
Second, usually the group is assumed to be homogeneous so
that the aggregation into one common preference function
is possible.

Against this background, the aim of this paper is to ad-
dress the lack of research in MOEA for group decision prob-
lems. We suggest several techniques for integrating group
preferences into a MOEA, and show how they support the
group in finding a consensus. Thereby, we assume that the
group is heterogeneous and the group members have some
vague notion about their preferences in form of reference
points or goals. We focus the search on a small set of Pareto
optimal solutions which are preferred by the DMs and test
the proposed approaches on ZDT problems and flow shop
problems. Besides our aim to present possible methods and
evaluate them in experiments, we hope to arouse the inter-
est of other researchers in the field of MOEAs to address
multi-objective group decision problems.

The following section provides a literature review on ex-
isting MOEA approaches for incorporating preferences of a
DM into a MOEA. Furthermore, section 3 discusses how and
when in the search process of a MOEA preferences of groups
can be incorporated. Thereafter, we propose four different
ways of finding consensus decisions with a MOEA in a ref-
erence point based approach. In the experiments in section
5 we evaluate the proposed methods with different reference
points and parameter settings on several test problems. The
paper closes with concluding remarks.

2. PREFERENCES IN MOEA
Recently, several studies in the field of MOEA have been

published which do not aim at approximating the whole
Pareto front. Instead, they restrict their search to those
Pareto optimal solutions which are preferred by the DM.
These approaches often combine methods to elicit prefer-
ences from multi-criteria decision making by integrating the
DM a priori or during the search process.

One of the first attempts in MOEA allows the DM to in-
teractively choose satisfactory and unsatisfactory solutions,
i.e. define goals as well as worst acceptable levels for each
objective [21, 22]. A goal or reference point is some kind
of preferred point in the solution space which defines an as-
piration level for each objective. A similar approach was
presented at about the same time by Fonseca and Fleming
[14]. They propose a ranking scheme which gives a greater
importance to objectives which do not satisfy a goal. The
goal can be adjusted and refined interactively by the DM
such that more and more solutions are excluded from the
search. An a priori MOEA motivated by goal programming
was proposed by Deb [8]. Deb takes the absolute devia-
tions from solutions to the goal for each criteria as objective
functions and minimizes them with NSGA-II [11].

Other studies aim at estimating the DM’s preferences in-
teractively, for example by presenting the DM regularly with
a number of solutions which he/she has to valuate [25]. This
information is then used for training an Artifical Neural Net-
work (ANN) which approximates the utility function of the
DM. This approximation is used to select a subset of the
so-called Pareto population which guides the search process
towards the preferred regions of the search space. However,
the authors report that the ANN is not truly reflecting the
DM preferences due to early convergence of the ANN and
inconsistencies of the provided preference information. A
further idea in this direction was presented by Phelps and
Köksalan [16]. Several times in the course of the search,
promising solutions are presented to the DM for pairwise
comparison. This information is then used to estimate the
utility function by applying the middlemost weights tech-
nique [15]. The population is ranked using this estimated
function and selection is partially influenced by the ranking.

Other approaches explicitly redefine the concept of Pareto
dominance. Branke et al. [4] construct a minimal/maximal
linear utility function by asking the DM about their mini-
mal/maximal trade-offs (”how many units of A would you at
least/most be willed to trade-off against one unit of B”). The
so retrieved information is integrated into a new, so-called
guided dominance principle where the slope of the borders
of the dominated area corresponds to the slope of the max-
imal/minimal utility function. As a consequence, solutions
dominate a larger set in the solution space compared to the
original definition of dominance and therefore exclude some
solutions from the original Pareto front. Since one disadvan-
tage of the method is that in an m-objective space the DM
has to specify m2 − m trade-offs, Cvetkovic and Parmee [7]
focus on the minimization of the cognitive overload for the
DM. They aim at minimizing the number of questions posed
to the DM while allowing him/her to express their prefer-
ences in a fuzzy manner. The weights interfered from the
fuzzy preferences are then used to define a weighted domi-
nance relation. However, as [3] mention, the approach only
biases the search in a coarse manner since the new dom-
inance scheme only considers whether a solution is better
than another one, and not by how much it is better.

In a paper by Branke and Deb [3], the guided dominance
principle is compared with the idea of biasing the crowd-
ing distance measure. The crowding distance is a concept
in NSGA-II which measures the distance between solutions
and thereby ensures the diversification of solutions along the
Pareto front. The authors improve an approach suggested
earlier by Deb [9] where he biases the crowding distance
with a weight for each objective provided a priori by the
DM. While with that approach some regions of the Pareto
front cannot be focused, the improved version in [3] allows
a better control of the location and the expansion of the
preferred region. The authors project the solutions of the
Pareto optimal front onto a linear preference function. The
new biased crowding distance sets the distance of projected
points (d′) in relation to their original distance on the Pareto
front (d). Solutions which are in a region on the Pareto front
having a similar slope to the utility function and therefore
being preferred by the DM, produce a d′ similar to d whereas
for solutions in regions with a large difference in slope d′ is
much smaller than d. Hence, regions out of interest are arti-
ficially crowded and less solutions are allowed to be located
there.
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Figure 1: The two-stage Pareto ranking scheme by
Tan et al. (1999).

For a more detailed overview of incorporating preferences
into MOEA, the reader is referred to [6].

In all presented studies, it is assumed that one single pref-
erence is given, for instance one linear function or one goal.
The question remains how to deal with preferences of sev-
eral DM which all have to be satisfied at the same time.
Lately, there have been a few studies which at least men-
tion that they easily can be extended to the specification
of several preferences. However, they assume only one DM
and therefore do not deal with the problem of how to sup-
port several DMs in finding a consensus solution. Thiele
et al. [23] use a reference point method and combine this
information with the fitness function in an indicator-based
evolutionary algorithm [32]. They mention that with minor
changes their method can be adapted to search in regions
belonging to several reference points. A similar remark is
made by [10] who point out that their proposed reference
direction method can be easily extended to handle multiple
reference directions simultaneously.

To our best knowledge, there are only two MOEAs which
explicitly deal with several preferences. The two-stage Pa-
reto ranking scheme [20] considers both the case where a
consensus among goals must be found as well as the case
where all regions close to one goal are focused separately.
Although the authors do not address explicitly group deci-
sions, their approach could be applied to that case. Yet, as
we will see in section 4, this approach is very coarse and
therefore fails to focus the search for certain combinations
of goals. In a recent paper, Deb and Sundar [12] present a
reference point based method which, however, does only find
several subsets of Pareto optimal solutions close to each sup-
plied reference point and no consensus. In section 4, we will
elaborate on both approaches in more detail. We will show
how the reference point based algorithm can be modified
and extended such that it meets our purpose, and we will
indicate the deficits of the two-stage Pareto ranking scheme.

3. PREFERENCES IN GROUP DECISIONS
In analogy to scenarios with one DM, methods to inte-

grate preferences of a whole group of DM can be classified
according to the time when the preferences are articulated
[27]: a priori, progressive, or a posteriori the search. In
contrast to problems with one single DM, in problems with
several DM there must be some kind of aggregation of pref-
erences of all participants so that, finally, one solution can

be chosen. This difference has a huge impact on the time
of the preferences’ incorporation. In the a priori approach,
for instance, the decision maker could agree through discus-
sion on one common preference function. That would be a
quite comfortable way from the viewpoint of the optimiza-
tion process since all approaches considering only one DM
(see section 2) could be applied. Furthermore, many tech-
niques for supporting this process of synthesizing individual
decisions have been established, like the nominal group tech-
nique, Delphi techniques, the dialectical approach, and the
analytic hierarchy process (AHP) [29]. Yet, the agreement
to one common preference function often is unrealistic. As
Zahir et al. [30] point out ”in an intermediate-sized group or
in a large group, this homogeneity can be neither guaranteed
nor achieved”.

The second approach of progressively integrating prefer-
ences demands a high involvement of the DM. Therefore, in
the case of a whole group of DMs, this approach is a very
demanding and time-consuming one for the participants. In
the a posteriori approach, the Pareto-front would be pre-
sented to the group which then has to find a consensus again
in discussions or with the aid of one of the already mentioned
tools, like AHP etc.

4. FINDING CONSENSUS WITH MOEA
In this section, we propose four variations of the reference

point based approach by [12] which are able to find a group
consensus. The presented approach focuses on relevant parts
of the Pareto front and still presents the DMs with a range
of several solutions at the end of the optimization process.
We think that this procedure addresses the topics discussed
in section 3 adequately. On the one hand, it supports the
group’s decision by improving only solutions which are of
interest for the group and, on the other hand, it leaves a
certain degree of autonomy and flexibility to the group to
make the final decision among several alternatives. This
flexibility is important since we do not know whether all
preferences are of equal importance or whether one of the
DM has more power of decision than others.

Coello [5] points out that when addressing several DMs,
one must be aware that the aggregation of individual pref-
erences into a group preference has several negative con-
sequences due to Arrow’s Impossibility Theorem [1]. Arrow
specified several requirements of social voting systems which
should be satisfied when constructing a group solution, and
showed that no voting system can fulfill all those require-
ments at the same time. This theorem was originally stated
for ordinal preferences. Further works show that the impos-
sibility results also hold for cardinal utility functions if these
functions are not interpersonally comparable [17]. Since we
propose a method where preferences are not aggregated into
one single preference function, we presume that the nega-
tive results of the impossibility theorem do not hold for our
approach. Nevertheless, this conjecture needs to be proved
in future work.

As pointed out in section 2, there are two existing ap-
proaches which consider several preferences, the two-stage
Pareto ranking scheme and the reference point based ap-
proach. We will now first introduce both approaches, then
we indicate the deficits of the two-stage ranking scheme and
finally we show how the reference point based algorithm can
be modified and extended such that it meets our purpose.
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4.1 Two-stage Pareto ranking scheme
Tan et al. [20] suggest the following two-stage Pareto rank-

ing scheme computed for each of the m goals Gk, k = 1, ..., m
specified by the DM. A goal is equivalent to a reference
point and defines (aspiration) levels for each objective the
DM would like to achieve. In the first stage, only solutions
satisfying Gk get allocated a Pareto rank. That is, all non-
dominated solutions get rank 1 and all others get the rank
according to the number of solutions in the population dom-
inating them plus 1. In the second stage, all solutions not
satisfying Gk in at least one criteria are ranked. Let F x

a and
F x

b denote the components of vector Fa and Fb respectively
in which Fa does not meet the goal Gk. Then Fa dominates
Fb:

Fa ≺Gk Fb if and only if F x
a ≺ F x

b or |Fa − Gk| ≺ |Fb − Gk|
The rank value in this second stage starts from the maximum
rank of the first stage plus 1. Using the difference |Fa − Gk|
can be interpreted as moving a solution xp to xp′

as shown
in figure 1. There, all solutions which are not located in
the left bottom quadrant do not satisfy the goal G and are
therefore transformed in the second ranking stage into the
right upper quadrant. Tan et al. propose the following two
approaches in case of several goals. They concatenate the
ranks of all goals Gk to a solution F (rank(F, Gk)) with
boolean operations OR or AND,

OR : mink=1,...,m{rank(F, Gk)} (1)

AND : maxk=1,...,m{rank(F, Gk)}. (2)

While the OR operation evolves the population toward ei-
ther of the goals, the AND operation tries to minimize the
deviation from all goals concurrently and therefore attempts
to find a consensus.

4.2 Reference point based method
The reference point based method proposed by Deb and

Sundar [12] seizes the suggestion of the OR operation. It
rests upon achievement scalarizing functions proposed in
[28]. In its simplest version, the achievement scalarizing
function minimizes the maximal weighted distance of solu-
tions f(x) towards the reference point r and therefore turns
the d-objective problem into a single-objective one.

Minimize maxi=1...d[wi(fi(x) − ri)]. (3)

Based on this approach, two MOEAs were suggested, an
interactive [23] and an a priori [12] approach. Due to the
arguments pointed out in section 3 we will focus on the a
priori approach [12]. In this approach a new way of calcu-
lating the crowding distance in NSGA-II and still preserving
diversification along the front is proposed. The crowding dis-
tance is taken to differentiate between solutions belonging
to the same front (the same non-domination rank). In this
case, a tournament selection selects the individual with a low
crowding distance dc.

1 The following three steps describe
the modifications which are necessary to adopt NSGA-II to
the reference point method [12]:

1In the original NSGA-II crowding distances of higher value
are preferred while in the reference point based approach
crowding distances of lower value are favored.

1. Ranking For each reference point, a list of the normal-
ized Euclidean distances di to each solution of the cur-
rent front is sorted in an ascending manner and then
ranked.

d =

���� M�
i=1

1

M

�
fi(x) − ri

fmax
i − fmin

i

�2

,

where fi(x) is the i-th objective value of the current
solution and fmax

i and fmin
i are the population max-

imum and minimum values of the i-th objective. The
solution closest to the reference point is assigned rank
one. Each solution has therefore several rank values,
each corresponding to a different reference point.

2. Min The minimum of the ranks assigned to a solution is
taken as its crowding distance dc = mink=1,...,m[rankk]
where m is the number of reference points. Therefore,
a solution closest to one of the reference points is as-
signed the lowest crowding distance of one.

3. Grouping To achieve a diversification of solutions, all
solutions having a sum of normalized difference in ob-
jective values of ε or less between them are grouped.
To allow only one random solution of each group to be
kept in the next generation, all others are penalized
with a high crowding distance.

From our viewpoint, the two-stage Pareto ranking and the
reference point based method incorporate concepts which
are valuable when a group consensus must be found. Using
the max rank in the AND operation helps to find solutions
which are acceptable to all group members and should there-
fore be tested further. However, there are constellations of
reference points (goals) where the two-step ranking fails to
focus the search on the relevant parts of the search space.
Such an example is shown in fig. 2(a) on a slightly modi-
fied version ZDT1* of the ZDT1 problem (see section 5.1).
The two reference points are set to [0.1, 0.5] and [0.5, 0.1].
All solutions of the Pareto front are assigned the same rank,
therefore no part of the front is focused. That is because
there is no differentiation between solutions which are closer
to the reference points. Instead, a pure Pareto dominance
concept is used as method for assigning rankings. We think
that the Euclidean distances to the reference points should
have an effect on the evaluation of solutions as they represent
a point in the solutions space where the DM wants solutions
to be located. Furthermore, finer graduations of ranks or
crowding distances are needed to control the focus on the
Pareto front better. Concerning the reference point based
method, we will see later that it is easily adoptable to the
task of consensus finding. However, in the current version it
focuses on each reference point separately (see figure 2(b))
and therefore does not find a set of consensus solutions.

4.3 Proposed Consensus Finding Approaches
We propose four different variations on how the reference

point based method as suggested in [12] is applied to group
consensus finding. In the ranking based approach, only the
second step of the reference point method must be adopted,
while for the distance based approach the first and second
step are modified.

Ranking based approach.
In the ranking based approach, the second step (Min) (see

section 4.2) can be changed in two different ways. First,
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Figure 2: Comparison between ”AND” operator of two-stage ranking, reference point based method by
Deb and Sundar 2006, and the four newly proposed consensus finding methods with different ε values for a
modified version of ZDT1.

instead of the minimum of the ranks, the maximum of the
ranks is taken as crowding distance (in reference to the AND
operation). Since in contrast to the original NSGA-II, the
crowding distance is supposed to be minimized, we call this
approach the MinMaxRanking. The second idea is to assign
the average rank as crowding distance (AvgRanking). For
example, if one solutions has the ranks 1,4,10 to each of the
three reference points, respectively, the crowding distance
after step 2 would be 5.

Distance based approach.
In the distance based approach, the first step (Ranking) is

simplified because the ranking is skipped and only the nor-
malized Euclidean distances are used as crowding distances.
Then, in the second step, the same changes are made as
in the ranking based approach. We consider all solutions
and assign as crowding distance either the maximal nor-
malized Euclidean distance they have to a reference point
(MinMaxDistance) or the average distance (AvgDistance).
Since for the ranking and the distance based approach, the
grouping step is unchanged, the ε parameter can control the
diversification of the Pareto front.

5. EXPERIMENTS
We present experiments for all four variations (AvgRank-

ing, MinMaxRanking, MinMaxDistance, AvgDistance) of
the proposed approach on three ZDT test problems and two
test problems of the flow shop problem. In the ZDT exper-
iments, we show how the proposed approaches perform for
different numbers of reference points, different locations of
reference points, and different settings of the grouping para-
meter ε. Afterwards, on the basis of the flow shop problem,

we explain how the method can be applied to a realistic
problem setting. Since the visualization of the results is im-
portant for the evaluation of the proposed consensus finding
method, we limit ourselves to two-dimensional test prob-
lems.

5.1 ZDT Problems
For the experiments with the three 30-variable ZDT prob-

lems, we use the parameters proposed for the reference point
based method [12]. The distribution index is 10 for the sim-
ulated binary crossover (SBX) and 20 for the polynomial
mutation operator. The mutation probability is set to 1

30
(1/length of genotype) and the crossover probability to 0.9.
Furthermore, the population size is set to 100, and each run
is stopped after 50,000 evaluations. The results of each ex-
periment are based on 10 independent runs.

ZDT1*.
ZDT1* is a slightly modified version of ZDT, in which

a constant value of 0.5 is added to each of the two objec-
tives of ZDT1. This transformation was necessary to better
demonstrate the effects of certain reference points in the two
stage Pareto ranking. ZDT1* forms a convex Pareto front
([31]). Figures 2(c)-(f) show the results for all four varia-
tions of the consensus approach for different values of ε for
the 10 independent runs. We assume the same two reference
points as in figures 2(a) and 2(b). For a better visualization
of ε = 0.005 and ε = 0.01, we plot the two Pareto fronts
with a parallel translation of plus 0.1 and 0.2 respectively in
each dimension. The parameter ε controls the focus of the
NSGA-II. For higher ε (>0.01) the front is as diverse as the
one for the two-stage Pareto ranking because a high ε allows
only one solution in a large neighborhood to be selected.
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Figure 3: Runs for all three ZDT problems for different combinations of reference points.

We see that while MinMaxRanking, AvgRanking and Avg-
Distance succeed in focusing on parts of the Pareto front
which satisfy the preferences of both DMs (both reference
points), MinMaxDistance focuses on the right part of the
front favoring the reference point [0.5, 0.1]. The same ten-
dency can be observed with AvgDistance. However, tak-
ing the average instead of the maximum of the normalized
Euclidean distances produces less extreme values.

Figures 3(a) and 3(b) explain the behavior of the MinMax
approach (the average approach behaves equivalently). We
plot all denominators fmax

i −fmin
i of the normalized Euclid-

ean distance over all evaluations. For both, MinMaxDis-
tance and MinMaxRanking the range of f2 is higher in the
first 10000 evaluations. Then, in case of MinMaxDistance
f2 constantly falls below f1, while in MinMaxRanking f1

and f2 are more or less equal. In other words, in both cases
in the first 10000 evaluations, the denominator for the nor-
malization of f2 is much higher than for f1. Consequently
changes in the f2 value of a solution have less effect on the
crowding distance than changes in f1. The EA focuses on
minimizing f1 and the population is pushed to the left side
of the Pareto front. From the 10000th evaluation on only
for MinMaxDistance the behavior is the other way around.
From now on, the EA focuses on minimizing f2. This behav-
ior is displayed in figure 3(c) for the whole search process.
After 2000 evaluations the EA focuses on the left upper part
and moves to the right part from the 10000th evaluation on.
In the ranking approaches there is no such bias after the
10000th evaluation.

Due to this high influence of the different ranges of the
objective functions for the distance based approach, the fol-
lowing experiments focus on the ranking based approaches.

ZDT2.
ZDT2 has a non-convex Pareto front. The results for

a combination of one feasible ([0.2, 1.5]) and one infeasi-
ble reference point ([0.6, 0.2]) for the two distance based
approaches are presented in figure 3(d) with an epsilon of
0.003. Here again, the Pareto front is drawn with a parallel
translation of plus 0.1 in each dimension. Both the non-
convexity of the front as well as the feasibility/infeasibility
of reference points do not cause any problems for the meth-
ods. They easily focus on the part between the reference
points on the true Pareto front. More tests were done with
different numbers and locations of reference points. All runs
show the desired behavior. For an example with three ref-
erence points see figure 3(e).

ZDT3.
The ZDT3 problem has a non-convex and discontinuous

Pareto front. Both approaches behave very similarly on a
case with four reference points (see figure 3(f)). The con-
centration on the upper left parts of the front result from
the concentration of three out of the four reference points
in this same corner. Here again, the proposed approach has
no difficulties with the form of the Pareto front or different
reference points.

Conclusion.
The experiments reveal that the rank based consensus ap-

proaches work well with different combinations of reference
points and for different shapes of the Pareto front. The
grouping parameter ε controls nicely the extension of the
focused front but must be adopted separately for each test
problem and each method. It is interesting to note that
with the grouping parameter the DMs can decide a priori
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Figure 4: Comparison of AvgRanking approach and
NSGA-II for a PFSP problem with 50 jobs and 20
machines.

whether they would like to have a small concentrated set of
solutions for the final choice or whether they want a more
varied set which also includes more extreme solutions which
are more in favor of only one of the DMs. That is, the lower
the grouping parameter is chosen, the more equal the bal-
ance of power between the DM should be distributed. If,
on the other hand, the preferences of one or several DM are
more important than others, then the grouping parameter
should be assigned a higher value.

5.2 Permutation Flow Shop Scheduling Prob-
lem (PFSP)

The PFSP considers the task of scheduling n jobs, denoted
by J1, ..., Jn, on a set of m machines, where one machine can
only process one job at a time. All jobs are available at time
zero and have the same processing route (M1, M2, ..., Mm).
For each job Ji and each machine Mj a processing time
is given by pij describing the time Ji needs on machine
Mj . For a feasible schedule σ, the completion time of Ji

is denoted by Ci(σ). In the single-objective case of the
PFSP, the objective is usually to minimize the makespan
Cmax(σ) = maxi=1...n[Ci(σ)]. In this paper we consider not
only the minimization of the makespan, but also the mini-
mization of the total tardiness of the jobs. A job is tardy
if it is completed after its due date di. The total tardiness
is therefore defined as T (σ) =

�
i=1...n max[Ci(σ) − di, 0].

Both problems, minimizing the makespan as well as mini-
mizing the tardiness, are NP-hard [24].

In a real-world flow shop problem, usually several divisions
are involved in the scheduling decision [2]. The production
division, for instance, wants to achieve output maximization
and would therefore be interested mostly in minimizing the
makespan. In contrast to that, the sales division mostly
wants to achieve customer satisfaction and therefore aims
at minimizing the tardiness. The controlling has to ensure
profit maximization and therefore should be interested in
optimizing both objectives concurrently.

We test the AvgRanking consensus finding approach on
two flow shop benchmark problems of different complexity.
The first problem is one with 50 jobs and 20 machines taken
from the literature [13]. The second problem from Taillard
is more complex with 100 jobs and 10 machines [18]. It was
previously extended to the bi-objective case [19]. Three dif-
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ferent reference points for each problem are set according to
the preferences of every division described above (produc-
tion rp, sales rs, and controlling rc). In the experiments
we use OX crossover and shift mutation. The population
size is 100, the crossover probability 0.9 and the mutation
probability 0.05.

Figure 4 displays the non-dominated solutions of AvgRank-
ing and NSGA-II for the first problem after 10 runs with dif-
ferent seeds, each with 50,000 evaluations. We can see that
the AvgRanking approach finds more and better solutions
than the NSGA-II in the region which represents a consensus
between all reference points. The NSGA-II produced only
good results for rp. The convergence of NSGA-II is slower
since it aims at approximating the whole Pareto front.

In figure 5 one can see the development of the non-do-
minated individuals for the AvgRanking approach and the
standard NSGA-II considering different numbers of evalua-
tions for the second problem. Again the AvgRanking ap-
proach shows considerably better results than the standard
NSGA-II. Due to the concentration on the region of interest
for the three DMs, it achieves better solutions while per-
forming less evaluation steps than the standard NSGA-II.

6. CONCLUSION
Some of the latest approaches in multi-objective evolu-

tionary algorithms (MOEA) do not attempt to approximate
the whole Pareto optimal set of solutions but instead focus
on those solutions which are preferred by the decision maker
(DM). Therefore, it is assumed that the DM has at least
some vague notion about his/her preferences which can help
to focus the search process on only the relevant parts of the
search space. Although this new research on integrating user
preferences into a MOEA makes MOEAs more attractive for
real-world scenarios, a crucial aspect relevant in many real-
world scenarios misses: usually, it is a heterogenous group
of DMs which decides for one final solution. In this pa-
per, we have addressed this topic and propose a reference
point based MOEA which finds a set of consensus decisions
among the Pareto optimal set. We have shown that when
normalized distances from solutions to the reference points
are minimized in the algorithm, difference in the ranges of
the objectives causes strong biases. These biases prevent the
search from focusing on the consensus solutions. However,
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when an additional ranking scheme is assigned according to
the normalized distances, this bias vanishes after some eval-
uations and the approach succeeds in finding solutions in
the parts which are preferred by all decision makers. Ex-
periments with three artificial test problems with different
Pareto fronts and with two realistic flow shop problems have
validated the proposed approach. In future work, more stud-
ies should be done supporting multi-criteria group decision
problems with MOEAs as we think that such approaches are
very relevant for real-world scenarios.
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[16] S. P. Phelps and M. Köksalan. An interactive evolutionary
metaheuristic for multiobjective combinatorial
optimization. Management Science, 49(12):1726–1738,
2003.

[17] A. Sen. The impossibility of a paretian liberal. Journal of
Political Economy, 78:152–157, 1970.

[18] E. Taillard. Benchmarks for basic scheduling problems.
European Journal of Operational Research, 64(2):278–285,
1993.

[19] E. G. Talbi, M. Rahoual, M. H. Mabed, and C. Dhaenens.
A hybrid evolutionary approach for multicriteria
optimization problems: Application to the flow shop. In
E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, and
D. Corne, editors, Lecture Notes in Computer Science,
pages 416–428. Springer, Berlin, 2001.

[20] K. C. Tan, T. H. Lee, and E. F. Khor. Evolutionary
algorithms with goal and priority information for
multi-objective optimization. In Proceedings of the
Congress on Evolutionary Computation (CEC-99), pages
106–113, 1999.

[21] M. Tanaka and T. Tanino. Global optimization by the
genetic algorithm in a multiobjective decision support
system. In Proceedings of the 10th International conference
on Multiple Criteria Decision Making, volume 2, pages
261–270, 1992.

[22] T. Tanino, M. Tanaka, and C. Hojo. An interactive
multicriteria decision making method by using a genetic
algorithm. In Proceedings of the 2nd International
Conference on Systems Science and Systems Engineering,
pages 381–386, 1993.

[23] L. Thiele, K. Miettinen, P. Korhonen, and J. Molina. A
preference-based interactive evolutionary algorithm for
multiobjective optimization. Technical report, 2007.

[24] V. T’kindt and J. C. Billaut. Multicriteria Scheduling:
Theory, Models and Algorithms. Springer, Berlin, 2002.

[25] D. S. Todd and P. Sen. Directed multiple objective search
of design spaces using genetic algorithms and neural
networks. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-99), volume 2, pages
1738–1743, 1999.

[26] E. Turban. Decision Support Systems and Expert Systems:
Managerial Perspectives. MacMillan, 1988.

[27] D. A. V. Veldhuizen and G. B. Lamont. Multiobjective
evolutionary algorithms: Analysing the state-of-the-art.
IEEE Transactions on Evolutionary Computation,
8(2):125–147, 2000.

[28] A. Wierzbicki. The use of reference objectives in
multiobjective optimization. In G. Fandel and T. Gal,
editors, Lectures Notes in Economics and Mathematical
Systems, volume 177, pages 468–486. Springer, New York,
1980.

[29] J. M. Yeh, C. Lin, B. Kreng, and J. Y. Gee. A modified
procedure for synthesising ratio judgements in the analytic
hierarchy process. Journal of the Operational Research
Society, 50(8):867–873, 1999.

[30] S. Zahir. Clusters in a group: Decision making in the vector
space formulation of the analytic hierarchy process.
European Journal of Operations Research, 112(3):620–634,
1999.

[31] E. Zitzler, K. Deb, and L. Thiele. Comparison of
Multiobjective Evolutionary Algorithms: Empirical
Results. Evolutionary Computation, 8(2):173–195, 2000.

[32] E. Zitzler and S. Künzli. Indicator-Based Selection in
Multiobjective Search. In Conference on Parallel Problem
Solving from Nature (PPSN VIII), pages 832–842.
Springer, 2004.

704


