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ABSTRACT
The fully informed particle swarm optimization algorithm
(FIPS) is very sensitive to changes in the population topol-
ogy. The velocity update rule used in FIPS considers all the
neighbors of a particle to update its velocity instead of just
the best one as it is done in most variants. It has been ar-
gued that this rule induces a random behavior of the particle
swarm when a fully connected topology is used. This argu-
ment could explain the often observed poor performance of
the algorithm under that circumstance.

In this paper we study experimentally the convergence be-
havior of the particles in FIPS when using topologies with
different levels of connectivity. We show that the particles
tend to search a region whose size decreases as the connec-
tivity of the population topology increases. We therefore put
forward the idea that spatial convergence, and not a random
behavior, is the cause of the poor performance of FIPS with
a fully connected topology. The practical implications of
this result are explored.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search; G.1.6 [Numerical Analysis]: Opti-
mization – Global Optimization

General Terms
Algorithms

Keywords
Particle Swarm Optimization, Swarm Intelligence, Experi-
ments

1. INTRODUCTION
Particle swarm optimization (PSO) is a swarm intelligence

optimization technique that was inspired by the behavior of
flocks of birds [5]. In a PSO algorithm, particles (i.e., poten-
tial solutions to an optimization problem) move in the search
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space with a velocity that is updated every iteration. The
performance of the algorithm depends on the way the par-
ticles move in the search space and a large body of research
in the field has been devoted to the analysis and proposal of
different movement rules (see [2, 10] for recent accounts of
PSO research).

In the traditional PSO algorithm, a particle is attracted
toward the best position it has visited (with respect to an
objective function) and toward the best position found by
the particles in its neighborhood (we will refer to this strat-
egy as best-of-neighborhood). Neighborhood relations are
usually defined in advance through a population topology
which can be defined by a graph G = {V, E}, where each
vertex in V corresponds to a particle in the swarm and each
edge in E establishes a neighbor relation between a pair of
particles.

A prominent alternative to the best-of-neighborhood ve-
locity update strategy is the one used in the fully informed
particle swarm optimization algorithm (FIPS) [8]. In FIPS,
a particle is attracted to the best positions of all the particles
in its neighborhood, not only to the best one. A study on
the performance attained by algorithms using both strate-
gies and different population topologies was carried out by
Mendes [7, 8]. In these and subsequent studies, FIPS with a
fully connected topology, i.e., when each particle has all the
particles in the swarm as neighbors, has exhibited a particu-
larly bad performance in comparison with the one obtained
with other topologies. It has been argued that this hap-
pens because the simultaneous attraction to multiple points
“confound” the particles, provoking a random behavior of
the particle swarm [6, 10]. A random behavior of the parti-
cles could explain FIPS’s performance with a fully connected
topology, specially in high-dimensional search spaces.

In this paper, we conduct a series of experiments in order
to test the argument mentioned above. Our results show
that the cloud of particles tends to explore a region whose
size decreases as the topology connectivity increases. If a
fully connected topology is used, the search region is lo-
cated near the swarm’s centroid. This behavior, which is
intensified when large population sizes are used, can im-
pair the algorithm’s exploratory capabilities. The reason
for FIPS’s poor performance with fully connected topolo-
gies is thus not a random behavior, but spatial convergence.
These results complement some of the findings derived from
a theoretical analysis of the sampling distribution of some
PSO algorithms [9]. The implications of these results, from
a practical perspective, are explored in a second series of
experiments.
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2. FULLY INFORMED PARTICLE SWARM
OPTIMIZATION ALGORITHM

The fully informed particle swarm optimization algorithm
(FIPS) was proposed by Mendes et al. [8] as an alternative to
PSO algorithms that use the best-of-neighborhood velocity
update strategy. In FIPS, the update of the velocity and
position of a particle i over dimension j is as follows
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where χ is a constriction factor, Ki is the number of particles
in the neighborhood of particle i, U(0, ϕ) is a uniformly dis-
tributed random number in the range [0, ϕ) where ϕ is called
an acceleration coefficient, Ni(n) is a function that returns
the index of the n-th neighbor of particle i, and pt

Ni(n),j is
the j-th component of the previous best position of the n-th
neighbor of i.

The constriction factor χ is used in order to avoid an “ex-
plosion” of the particles’ velocity. Clerc and Kennedy [1]

found the relation χ = 2k/
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, where k ∈

[0, 1], and ϕ > 4, to compute it.

3. EXPECTED BEHAVIOR
Previous theoretical studies of the behavior of particle

swarm algorithms have made some simplifying assumptions
in order to facilitate mathematical analyses. These assump-
tions are usually stagnation (i.e., no solution improvement
over time) and the absence of stochasticity. In this section,
we make the same assumptions in order to derive the ex-
pected behavior of the particles in FIPS. In the following
section we evaluate the extent to which the conclusions de-
rived from our analysis hold in the fully stochastic version
of the algorithm.

It is possible to derive the expected behavior of a particle
using FIPS’s velocity and position update rules by substi-
tuting U(0, ϕ) by its expected value ϕ/2 in Equation 1. By
doing so, we obtain
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In a stagnation phase, pt
Ni(n),j = pNi(n),j ∀t. Thus we

obtain
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which can be simplified to
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where

p̄Ni(∗),j =
1

Ki
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pNi(n),j . (5)

For convenience, let us define the swarm’s centroid in a
componentwise fashion as

cj =
1

N

N
X

i=1

pi,j , (6)

where N is the size of the particle swarm.

Equations 4 and 5 tell us that in the absence of solution
improvement it is expected that a particle is attracted to-
ward the centroid of its neighbors’ previous best positions.
It is also apparent that the size of a particle’s neighborhood
has a direct influence on the expected behavior of a parti-
cle. The larger the neighborhood size, that is, as Ki → N ,
the closer p̄Ni(∗),j will be to the corresponding component
of the swarm’s centroid cj . With a fully connected topol-
ogy all the particles are then expected to move toward the
swarm’s centroid which effectively makes the algorithm to
search around a single point. This behavior results in a bias
that, depending on the topography of the objective func-
tion, could render the algorithm ineffective. Additionally, if
a swarm has a large and highly connected population, the
bias toward the neighborhood centroid effectively becomes
a bias toward the center of the initialization region.

4. VALIDATION EXPERIMENTS
Two series of experiments are designed to test the validity

of the analysis with the fully stochastic FIPS algorithm. The
first set of experiments consists in observing, through some
auxiliary measures, the particles’ behavior on a flat objec-
tive function. These experiments are aimed at observing the
behavior of the algorithm under forced stagnation. In the
second set of experiments, an inverted parabola over a con-
strained range is used as a minimization objective function
so that the particles’ previous best positions move, presum-
ably, toward one of the two local optima, that is, stagnation
is no longer forced.

In all the experiments, FIPS is run with its most com-
monly used parameter settings, that is, ϕ = 4.1 and χ =
0.7298. The behavior of FIPS with different swarm and
neighborhood sizes is investigated. Swarms of 10, 100 and
1000 particles are used. Each particle in these swarms had
{10, 5, 3}, {100, 51, 25, 13, 7, 3}, and {1000, 501, 251, 125,
63, 31, 15, 7, 3} particles as neighbors respectively. The
neighborhood size is expressed as the number of particles to
which a given particle is connected (including itself). Our
data is based on 100 independent runs of up to 1000 itera-
tions each.

The auxiliary measures used in our experiments are the
following:

Average distance between particles. Computed as D =
2

(S+1)S

PS

j=i

PS

i=1 |xi −xj |, where | · | is the Euclidean

norm and S is the size of the swarm. The average dis-
tance between particles is used as a measure of spatial
convergence of the particles.

Average particle speed. Computed as AS = 1
S

PS

j=i
|vi |,

where vi is the velocity vector of particle i. The av-
erage speed is used as a measure of the length of the
average step size of the particles in the swarm.

Swarm’s Centroid to the Origin. Computed as C2O =
˛

˛

˛

1
S

PS

i=1 xi

˛

˛

˛
. This measure is useful for tracking the

movement of the particle swarm relative to the origin.

4.1 Experiments with a flat objective function
For this series of experiments, the objective function is

f(x) = 0, (7)

where x ∈ R. The particles are initialized randomly in the
range [−1, 1] with a random initial velocity within the same

72



range. The condition for accepting a new best position is
a strict improvement; therefore, the particles’ previous best
positions remain where they are initialized.

Figure 1 shows the development of the average distance
between particles over time with swarms and neighborhoods
of different size. The size of the confidence intervals in the
experiments with 100 and 1000 particles are close to zero.
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(c) 1000 particles

Figure 1: Development of the average distance be-
tween particles over time on a one-dimensional flat
objective function. The plots show the sample mean
with 95% confidence intervals. Each line corre-
sponds to a different neighborhood size.

The distance between particles reaches a stable value af-
ter some iterations. This means that the particles end up
congregating in a region of constant size. The size of this
region decreases as the size of the particles’ neighborhood
increases. The final size of this region depends on both the
particles’ neighborhood size and the swarm size, although
the influence of the swarm size decreases when a particle’s
neighborhood is small. In particular, the average distance
between particles, with neighborhood size of 3 is the same
regardless of the size of the swarm. Note also that this sta-

ble value is very close to the one obtained after initialization,
which corresponds to the expected distance between any two
uniformly distributed random points in a segment of length
equal to 2 (i.e., the length of our initialization range) [3].
This suggests that, in this case, the algorithm does not lose
its exploration capabilities.

Figure 1 tells us that the particles end up on average at
a certain distance from each other, but it does not tell us
whether they are moving or not; however, since the parti-
cles’ velocity ultimately depends on their separation, dis-
tance and velocity are correlated. Thus the larger the parti-
cles’ neighborhoods, the lower the average final velocity. The
distance of the particles’ centroid to the origin (the plots are
not shown for the sake of conciseness) is constant across it-
erations, meaning that the interparticle distances oscillate
around a stable point with constant amplitude, the mag-
nitude of which decreases as the particles’ neighborhoods
increase in size.

The experimental results shown in this section confirm
that the fully stochastic FIPS algorithm in a stagnation
phase behaves as explained in the previous section. The
particles explore near the centroid of the particles’ previous
best positions and the population topology determines the
size of the exploration area. The larger a particle’s neighbor-
hood, the smaller the region in which the particles oscillate.

4.2 Experiments with an inverted parabola
The objective function used in the following set of exper-

iments is

f(x) = −x2, (8)

where x ∈ [−10, 10]. As in the previous experiments, the
particles are initialized randomly in the range [−1, 1] with
a random initial velocity within the same range. If a parti-
cle’s next position falls outside the boundaries, the velocity
value is left unchanged but the particle’s position is set to
the boundary value. This objective function permits the
observation of the bias toward the centroid of the previous
best positions when these can move according to the under-
lying objective function topography (see Fig. 2). If both the
distance between particles and the distance of the swarm’s
centroid to the origin are small (e.g., within the initializa-
tion range), it is possible to conclude that a bias is present.
Furthermore, it is possible to measure the severity of this
bias by estimating the probability of this phenomenon to
happen.

Figure 3 shows the development of the average distance
between particles over time on the inverted parabola prob-
lem. The average distance between particles decreases as
the neighborhood size increases. In other words, the more
connected the particle swarm, the more likely it is that the
particles remain close to each other. In fact, when the fully
connected topology is used, the swarm collapses into a single
point. These results agree with the ones obtained with the
flat objective function.

The ratio between the number of runs in which the swarm’s
centroid remains within the initialization range and the to-
tal number of runs is used as an estimate of the probability
with which the swarm can get trapped. The development
of this estimate over time is shown in Figure 4. The graph
shows only the results obtained with fully connected topolo-
gies which are the ones that make the algorithm exhibit the
strongest bias.

With 10 particles, the particle swarm moves away from the
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Figure 2: The inverted parabola provides two local
optima at the extremes of the range [−10, 10]. The
particles’ initialization range is shown. If a bias ex-
ists, the particle swarm should remain tight with its
centroid close to the origin.
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(c) 1000 particles

Figure 3: Development of the average distance be-
tween particles over time on an inverted parabola
objective function. The plots show the sample mean
and 95% confidence intervals. Each line corresponds
to a different neighborhood size.
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Figure 4: Estimated probability of a swarm being
trapped within its initialization range due to a bias
toward the swarm’s centroid.

initialization range. In this case, the swarm remains com-
pact but it moves toward one of the two local optima. With
100 particles, the probability of being trapped within the
initialization range is 0.03. With 1000 particles, this proba-
bility increases to 0.12. Strikingly, a swarm of 1000 particles
is not capable of finding a local optimum of a constrained
inverted parabola with a probability of 0.12! These results
highlight the effect of the swarm size on the severity of the
bias toward the swarm’s centroid. This result follows from
the fact that increasing the number of particles strengthens
the attraction of the particles toward the swarm’s centroid.

These results clearly show that the number of particles
considered for computing a particle’s velocity have a major
impact on the exploratory capabilities of FIPS. The larger
the neighborhood, the greater the attraction of a particle to
explore on a small region close to the centroid of its neigh-
bors’ previous best positions. If this region happens to be of
a lower quality than that of the particles’ previous best posi-
tions (as in the inverted parabola problem), the probability
of stagnation increases.

5. OPTIMIZATION EXPERIMENTS
In this section, we explore the implications of our results

on the performance of FIPS as an optimization algorithm.
Based on the results obtained so far, it is possible to antic-
ipate that FIPS using a fully connected population topol-
ogy will have a better performance than with less connected
topologies during the first iterations before the particles con-
verge, on problems or settings where the population is uni-
formly distributed over a “funnel” of the objective function
topography. The word funnel is used as a metaphor to re-
fer to a region in the search space where a number of local
optima are clustered together and where a trajectory that
moves from one local optimum to another in a strictly de-
scending way ends up necessarily at the local optimum of
minimum value [11].

We expect such a difference in performance due to the bias
toward the swarm’s centroid that a fully connected topology
induces. In a single-funnel problem, where the global opti-
mum is located at its bottom, the bias will drive the particles
close to the optimum before converging. In a multiple-funnel
problem, the same bias will hinder the exploratory capabili-
ties of the algorithm because no possibility of escaping from
a low quality funnel is possible. In this case, the performance
of the algorithm will greatly depend on the initialization con-
ditions.
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5.1 Single-funnel problems
Two single-funnel benchmark problems are used to test

whether FIPS with a fully connected topology could take ad-
vantage of the bias toward the swarm’s centroid. The prob-
lems are the sphere and Rastrigin functions. Both functions
are shifted in order to discard the effects of any possible bias
toward the origin of the coordinate system. Their definitions
are:

f(x) =
n

X

i=1

(xi − 100)2, (9)

and

f(x) = 10n+

n
X

i=1

((xi−5.12)2−10 cos(2π(xi−5.12))). (10)

In the first case, the initialization range is xi ∈ [0, 200]
and in the second case, it is xi ∈ [0, 10.24]. The problems
are ten-dimensional, that is, n = 10. The first problem is a
unimodal problem while the second one is multimodal.

Tables 1 and 2 show the mean solution value with 95%
confidence intervals1 obtained on the sphere and Rastrigin
problems respectively. The data is organized by population
size, iteration number and neighborhood size.

Regardless of whether the problem is unimodal or multi-
modal, the results share a number of common characteris-
tics. After 10 iterations, the best results are obtained with
swarms with highly connected topologies. It is important
to note that in the 1000 particles case, the difference be-
tween the best results obtained with large neighborhood
sizes (1000, 501 and 251 particles) are not statistically sig-
nificant (the confidence intervals overlap). With 10 and 100
particles and after 100 iterations, the best results are not
obtained with the fully connected topology but with less
connected ones. After 1000 iterations, the best results are
obtained with the least connected topologies. With 1000
particles and a fully connected topology very good results
are obtained after 1000 iterations.

The results obtained in these experiments agree with our
expectations. A highly connected topology coupled with a
single-funnel topography (regardless of whether there are lo-
cal minima or not) provides the algorithm the opportunity
of finding good solutions during the first iterations. The
solution improvement then stagnates due to the spatial con-
vergence of the particles. With large populations, highly
connected topologies obtain very good results even in long
runs. We think this is the case because the swarm’s cen-
troid gets closer to the center of the initialization range as
the size of the neighborhood increases. In our experiments,
being close to the center of the initialization range is equiv-
alent to being close to the location of the global optima of
the test problems used.

5.2 Multiple-funnel problems
A multiple-funnel benchmark problem is used for this set

of experiments. It is the Schwefel’s sine root function, the
mathematical definition of which is

f(x) = 418.9829n −
n

X

i=1

“

xi sin(
p

|xi|)
”

, (11)

1Numbers that are less than or equal to 1 × 10−20 are indi-
cated with 0.

Table 1: Mean solution quality over time with 95%
confidence intervals on the shifted 10-dimensional
sphere problem using different swarm and neighbor-
hood sizes.

Pop.
Size

Iteration Neighbors Solution

10

10
10 3825.18 (±289.52)
5 5403.56 (±371.16)
3 8278.63 (±526.83)

100
10 39.598 (±15.540)
5 3.906 (±1.949)
3 9.487 (±2.699)

1000
10 3.803 (±3.728)
5 1.1e-4 (±2e-4)
3 1.7e-12 (0)

100

10

100 338.39 (±21.94)
51 417.37 (±23.43)
25 682.89 (±38.26)
13 1240.99 (±67.75)
7 2158.17 (±121.45)
3 4468.14 (±256.06)

100

100 0.001 (±0.002)
51 0.001 (±6e-4)
25 6e-5 (±3e-5)
13 7e-6 (±1e-6)
7 3e-4 (±3e-5)
3 1.686 (±0.13)

1000

100 0.001 (±0.002)
51 3e-8 (±5e-8)
25 0 (0)
13 0 (0)
7 0 (0)
3 0 (0)

1000

10

1000 122.53 (±6.700)
501 116.73 (±5.781)
251 123.40 (±5.854)
125 148.48 (±7.491)
63 201.79 (±10.573)
31 314.22 (±15.337)
15 586.36 (±30.903)
7 1263.00 (±67.451)
3 2526.23 (±131.71)

100

1000 8e-11 (±0)
501 6e-10 (±7e-11)
251 1e-8 (±6e-9)
125 6e-8 (±1e-8)
63 4e-7 (±8e-8)
31 5e-7 (±7e-8)
15 1e-6 (±7e-8)
7 1e-4 (±9e-6)
3 0.784 (±0.053)

1000

1000 0 (±0)
501 0 (±0)
251 0 (±0)
125 0 (±0)
63 0 (±0)
31 0 (±0)
15 0 (±0)
7 0 (±0)
3 0 (±0)
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Table 2: Mean solution quality over time with 95%
confidence intervals on the shifted 10-dimensional
Rastrigin problem using different swarm and neigh-
borhood sizes.

Pop.
Size

Iteration Neighbors Solution

10

10
10 81.528 (±2.279)
5 91.448 (±2.400)
3 102.40 (±2.861)

100
10 19.307 (±2.769)
5 28.838 (±2.301)
3 40.735 (±1.561)

1000
10 11.640 (±1.035)
5 7.418 (±0.689)
3 6.437 (±0.752)

100

10

100 45.585 (±1.512)
51 46.648 (±1.544)
25 50.846 (±1.489)
13 56.878 (±1.541)
7 63.667 (±1.711)
3 78.371 (±1.792)

100

100 19.402 (±3.257)
51 14.936 (±3.027)
25 15.826 (±1.536)
13 13.305 (±1.145)
7 13.389 (±1.004)
3 27.500 (±0.974)

1000

100 15.251 (±2.855)
51 8.807 (±2.585)
25 10.359 (±1.147)
13 4.457 (±0.485)
7 2.501 (±0.221)
3 2.115 (±0.210)

1000

10

1000 31.363 (±1.113)
501 30.491 (±1.061)
251 30.562 (±1.005)
125 31.939 (±1.144)
63 32.935 (±0.949)
31 35.573 (±1.157)
15 42.431 (±1.189)
7 49.273 (±1.488)
3 60.557 (±1.487)

100

1000 0.002 (±0.005)
501 0.009 (±0.019)
251 0.005 (±0.007)
125 0.040 (±0.029)
63 0.647 (±0.235)
31 4.050 (±0.559)
15 4.780 (±0.406)
7 6.670 (±0.383)
3 19.193 (±0.730)

1000

1000 0.002 (±0.004)
501 0.009 (±0.019)
251 0.005 (±0.007)
125 0.039 (±0.029)
63 0.420 (±0.146)
31 2.355 (±0.427)
15 1.536 (±0.193)
7 0.721 (±0.103)
3 0.482 (±0.095)

with xi ∈ [−500, 500] and n = 10. If the boundary con-
straint is violated, the maximum value of a single-precision
floating-point number is returned as the value of the objec-
tive function. This makes particles exploring outside the
search range of interest to go back to it. In this case, the
function is not shifted because the global optimum is not
located in the origin of the coordinate system.

Table 3 shows the mean solution value with 95% confi-
dence intervals obtained on the sine root problem. After 10
iterations the best performance is obtained with a fully con-
nected topology. At 100 and 1000 iterations, the best perfor-
mance is obtained with the least connected topology. With
large swarms (100 and 1000 particles), the solution quality
obtained when the algorithm uses a highly connected topol-
ogy does not improve over time. The best solution found
during the very first iterations of the algorithm remains the
best even after 1000 iterations. This suggests that, as ex-
pected, the performance of the algorithm with highly con-
nected topologies greatly depends on the initialization con-
ditions. The strong attraction between the particles with
highly connected topologies hinders the exploratory capa-
bilities of the algorithm, effectively stagnating the solution
improvement process.

5.3 Restarts
A simple strategy to deal with solution improvement stag-

nation is to restart the optimization algorithm from new
initial conditions [4]. If premature spatial convergence is
the cause of the solution improvement stagnation observed
when FIPS uses a fully connected topology, then using a
dynamic restart mechanism, whereby the particles are reini-
tialized every time they concentrate in a small region, should
improve the performance of the algorithm in the long run.
However, the effectiveness of using spatial convergence as a
restart criterion will depend on the selected distance thresh-
old. In cases in which finding very high quality solutions
requires an algorithm to make very small steps in the search
space, a large threshold will provoke premature restarts. In
general, the restart criteria should be tuned for the specific
problem at hand.

A series of experiments are carried out in order to ver-
ify the effectiveness of a dynamic restart mechanism on the
performance of FIPS with fully connected topologies. The
experimental setup is the same that was used in the previous
sections. Two extra parameters are used in these series of
experiments: the restart criterion and whether the best so-
lution before a restart is carried over to the next run to bias
the search or not. The restart criterion is set to be when
the average distance between particles drops below 1% and
10% of the expected distance between randomly generated
points in a 10-dimensional space (which was estimated using
a Monte Carlo method). The experiments were run with and
without the best solution being carried over restarts. When
a solution is carried over to the next run, it is used as the
previous best position of one particle of the swarm.

Table 4 shows the results obtained with the Rastrigin
(single-funnel) and Schwefel’s sine root (multiple-funnel) func-
tions2. The reported results correspond to the solution value
after 100 and 1000 iterations only. The results obtained af-
ter 10 iterations are not shown because they do not show

2The results obtained with the sphere function are not
shown due to space constraints. Nevertheless they are com-
mented in the text.
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Table 3: Mean solution quality over time with 95%
confidence intervals on the 10-dimensional Schwe-
fel’s sine root problem using different swarm and
neighborhood sizes.

Pop.
Size

Iteration Neighbors Solution

10

10
10 3022.23 (±57.732)
5 3027.68 (±59.462)
3 3034.44 (±62.204)

100
10 2708.88 (±74.850)
5 2558.02 (±58.187)
3 2339.65 (±45.720)

1000
10 2488.50 (±55.161)
5 1630.11 (±61.721)
3 544.21 (±49.640)

100

10

100 2559.40 (±38.665)
51 2570.95 (±43.054)
25 2581.18 (±43.172)
13 2577.70 (±41.942)
7 2571.18 (±42.598)
3 2569.61 (±45.356)

100

100 2559.40 (±38.665)
51 2570.95 (±43.054)
25 2581.18 (±43.172)
13 2575.19 (±41.486)
7 2410.92 (±35.819)
3 1837.44 (±37.650)

1000

100 2559.40 (±38.665)
51 2570.95 (±43.054)
25 2578.47 (±42.704)
13 2522.70 (±35.426)
7 1596.58 (±46.349)
3 113.81 (±16.275)

1000

10

1000 2035.64 (±53.400)
501 2071.30 (±44.807)
251 2098.28 (±38.063)
125 2124.09 (±41.101)
63 2137.04 (±41.938)
31 2150.55 (±42.482)
15 2175.96 (±41.881)
7 2179.08 (±41.113)
3 2156.53 (±39.736)

100

1000 2035.64 (±53.400)
501 2071.30 (±44.807)
251 2098.28 (±38.063)
125 2124.09 (±41.101)
63 2137.04 (±41.938)
31 2150.55 (±42.482)
15 2175.96 (±41.881)
7 2107.84 (±36.238)
3 1544.90 (±29.845)

1000

1000 2035.64 (±53.400)
501 2071.30 (±44.807)
251 2098.28 (±38.063)
125 2124.09 (±41.101)
63 2137.04 (±41.938)
31 2150.55 (±42.482)
15 2175.96 (±41.881)
7 1207.13 (±28.137)
3 4.563 (±3.428)

any difference with respect to the results obtained without
restarts. This is due to the fact that after 10 iterations the
restart criteria are never met. The symbols <, >, = are
used to indicate whether the results are less than, greater
than, or equal to (not necessarily in a statistical sense) the
ones obtained without restarts.

In all cases, the differences between the results obtained
with and without the best solution carried over restarts are
not statistically significant. Particles in FIPS are not only
attracted toward the best particle, so carrying over the best
solution does not provide any significant benefit.

On the sphere function, the use of restarts is beneficial
only in the case of a swarm of 10 particles and a restart
criterion of 1%. In all other cases, the use of restarts is
detrimental. In the sphere problem, finding good solutions
requires the algorithm to make very small steps near the op-
timum. These results constitute an example of the detrimen-
tal effects of using restart criteria that make the algorithm
restart prematurely. On the Rastrigin problem, restarting
with a criterion of 1% always improves the solution quality
obtained after 1000 iterations. On the Schwefel problem,
improvement is always attained with a criterion of 10% af-
ter 1000 iterations. It is worth noting that the best results
obtained with restarts are still far from the results obtained
with other population topologies. These results further con-
firm the hypothesis that the spatial convergence of the par-
ticles is the reason for the solution improvement stagnation
observed in FIPS with a fully connected topology.

6. CONCLUSIONS
In the fully informed particle swarm optimization algo-

rithm (FIPS), each particle uses the information from all its
neighbors to update its velocity. The structure of the pop-
ulation topology has, therefore, a critical impact on the be-
havior of the algorithm which in turn affects its performance
as an optimizer. Previous studies have found that when a
fully connected topology is used, the performance of FIPS is
considerably reduced. It has been argued that this happens
because the simultaneous influence of all the particles in the
swarm“confounds” the particle that is updating its velocity,
provoking a random behavior of the particle swarm [6, 10].

In this paper, we carried out an analysis of the expected
behavior of a particle in FIPS under stagnation and tested
empirically the validity of the conclusions drawn from this
analysis. It turns out that the observed performance of the
algorithm with fully connected topologies is a consequence
of the spatial convergence of the particles during the search,
rather than a random behavior. With highly connected
topologies, the particles explore in a region close to the cen-
troid of the swarm. These results complement the findings
derived from an analysis of the sampling distribution of some
PSO algorithms [9], where it has been shown that FIPS be-
comes more and more stable (with respect to the first four
moments of its sampling distribution under stagnation) as
the size of the particles’ neighborhoods increases.

Not surprisingly, the final performance of the algorithm
depends on the objective function topography. If the pop-
ulation is evenly distributed around a “funnel” in the land-
scape, the bias will produce good results, especially during
the first iterations of the algorithm. When the region where
the particles explore happens to be of lower quality than the
particles’ previous best positions, the algorithm is in high
risk of becoming trapped and being unable to improve any
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Table 4: Mean solution quality over time with 95% confidence intervals obtained with FIPS and fully con-
nected topologies with restarts. The best result for different restart criteria is shown in boldface.

Solution Quality
Problem Pop.

Size
Iteration Restart Criterion Without solution carried over With solution carried over

Rastrigin

10
100 1% 20.133 (±2.709) > 20.406 (±2.731) >

10% 38.322 (±1.841) > 37.837 (±2.070) >

1000 1% 7.179 (±0.451) < 6.530 (±0.428) <
10% 20.374 (±0.919) > 19.997 (±0.869) >

100
100

1% 18.386 (±3.289) < 18.247 (±3.305) <
10% 7.671 (±1.753) < 8.865 (±2.067) <

1000 1% 11.963 (±3.099) < 11.591 (±3.114) <
10% 1.485 (±0.118) < 1.552 (±0.108) <

1000
100 1% 0.002 (±1e-4) = 0.001 (±1e-4) <

10% 0.209 (±0.016) > 0.204 (±0.014) >

1000 1% 0.001 (±5e-5) < 0.001 (±5e-5) <
10% 0.106 (±0.006) > 0.107 (±0.005) >

Schwefel

10
100 1% 2710.24 (±74.464) > 2703.32 (±74.905) <

10% 2738.53 (±72.355) > 2748.71 (±66.240) >

1000 1% 2242.07 (±63.576) < 2280.60 (±62.145) <
10% 2273.13 (±63.167) < 2281.43 (±56.363) <

100
100 1% 2559.40 (±38.665) = 2559.40 (±38.665) =

10% 2399.58 (±41.582) < 2404.77 (±42.176) <

1000 1% 2559.40 (±38.665) = 2559.40 (±38.665) =
10% 2059.08 (±34.477) < 2075.46 (±32.067) <

1000
100 1% 2035.64 (±53.400) = 2035.64 (±53.400) =

10% 1877.89 (±46.237) < 1873.50 (±45.933) <

1000 1% 2035.64 (±53.400) = 2035.64 (±53.400) =
10% 1628.35 (±36.083) < 1627.99 (±35.642) <

further. In this case, increasing the diversity of the popula-
tion by making it larger, does not work because the larger
the population, the stronger is the bias toward the centroid
of the swarm. Enhancing the exploratory capabilities of the
algorithm by using dynamic restarts provides some benefits
but these are problem-dependent.

7. ACKNOWLEDGMENTS
Marco A. Montes de Oca is funded by the Programme

Alβan, the European Union Programme of High Level Schol-
arships for Latin America, scholarship No. E05D054889MX,
and by the ANTS project, an Action de Recherche Concertée
funded by the Scientific Research Directorate of the French
Community of Belgium. Thomas Stützle acknowledges sup-
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