
AMGA: An Archive-based Micro Genetic Algorithm for
Multi-objective Optimization

Santosh Tiwari
∗

Department of Mechanical
Engineering

Clemson University, Clemson,
SC, USA

stiwari@clemson.edu

Patrick Koch
Engineous Software Inc.

2000 CentreGreen Way, Cary,
NC 27516, USA

patrick.koch@engineous.com

Georges Fadel
Department of Mechanical

Engineering
Clemson University, Clemson,

SC, USA
fgeorge@clemson.edu

Kalyanmoy Deb
Department of Mechanical

Engineering
Indian Institute of Technology

Kanpur, India
deb@iitk.ac.in

ABSTRACT
In this paper, we propose a new evolutionary algorithm for
multi-objective optimization. The proposed algorithm bene-
fits from the existing literature and borrows several concepts
from existing multi-objective optimization algorithms. The
proposed algorithm employs a new kind of selection proce-
dure which benefits from the search history of the algorithm
and attempts to minimize the number of function evalua-
tions required to achieve the desired convergence. The pro-
posed algorithm works with a very small population size and
maintains an archive of best and diverse solutions obtained
so as to report a large number of non-dominated solutions
at the end of the simulation. Improved formulation for some
of the existing diversity preservation techniques is also pro-
posed. Certain implementation aspects that facilitate better
performance of the algorithm are discussed. Comprehensive
benchmarking and comparison of the proposed algorithm
with some of the state-of-the-art multi-objective evolution-
ary algorithms demonstrate the improved search capability
of the proposed algorithm.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristics

General Terms
Algorithms

∗Address all correspondence to this author

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

Keywords
Multi-objective optimization, evolutionary algorithms,
micro-genetic algorithm, diversity preservation

1. INTRODUCTION
Multi-objective optimization has become main-stream in

recent years and many algorithms to solve multi-objective
optimization problems have been suggested. The use of
multi-objective optimization in industry has been acceler-
ated by the availability of faster processing units and the
computational analysis models for various engineering prob-
lems and disciplines. Multi-objective optimization algorithms,
especially those based on evolutionary principles, have seen
wide acceptability because most engineering problems are
NP-hard [1] and therefore a quick computation of approx-
imate solutions is often desirable. Evolutionary algorithms
(EAs) are adaptive search techniques inspired from nature
and their working principle is based on Darwin’s theory of
survival-of-the-fittest [2, 3]. The adaptive nature of EAs
can be exploited to design optimization algorithms by de-
signing suitable variation operators and an appropriate fit-
ness function. The Genetic algorithm (GA) [4, 5, 6, 7]
is one of the evolutionary techniques that has been suc-
cessfully used as an optimization tool. Typically, a GA
works with a population (a set of solutions) instead of a
single solution (individual). This property of a GA makes
it an ideal candidate for solving multi-objective optimiza-
tion problems where the outcome (in most cases) is a set
of solutions rather than a single solution. The population
approach of a GA also makes it resilient to premature con-
vergence, thereby making it a powerful tool for handling
highly non-linear and multi-modal functions. Some of the
notable efforts in designing multi-objective evolutionary al-
gorithms (MOEAs) are Strength Pareto Evolutionary Al-
gorithm (SPEA2) [8], Pareto-Envelope Based Selection Al-
gorithm (PESA-II) [9], Non-dominated Sorting Genetic Al-
gorithm (NSGA-II) [10], Neighborhood Cultivation Genetic
Algorithm (NCGA) [11], Dynamic Multi-objective Evolu-
tionary Algorithm (DMOEA) [12], Improved Strength Pareto

729

Evolutionary Algorithm 2 (SPEA2+) [13], Intelligent Multi-
Objective Evolutionary Algorithm (IMOEA) [14], ε-Multi-
objective Evolutionary Algorithm (ε-MOEA) [15], OmniOp-
timizer [16], and Fast Pareto Genetic Algorith (FastPGA)
[17]. A historical and comprehensive survey of MOEAs can
be found in [7].

In this paper, we propose a novel multi-objective evolu-
tionary algorithm geared towards solving large optimization
problems. The design of the proposed algorithm has been
motivated primarily by the fact that in most optimization
scenarios; almost the entire time is spent by the analysis
routines and the user does not have the computational re-
sources to perform a large number of function evaluations.
The actual time spent by the optimization algorithm in per-
forming selection, crossover, mutation, and diversity preser-
vation is often negligible compared to the total simulation
time. Another important guiding principle that has shaped
the design of the proposed algorithm is the fact that, the
user is often satisfied if a good enough non-dominated solu-
tion set is obtained. In most engineering applications, once
a reasonable solution quality is achieved (often within 1% of
the desired function value), a global optimizer (e.g. a genetic
algorithm) is replaced by a local optimizer (e.g. a gradient
based method) which has a faster convergence rate and can
generate solutions with higher accuracy. Often the desired
function value is not known; in such cases, the optimizer
is terminated when the convergence rate falls below a cer-
tain threshold. The proposed algorithm also benefits from
the existing literature in that it borrows several concepts
like formulation for crossover, mutation, two-tier fitness as-
signment mechanism, ranking strategy, preservation of elite
and diverse solutions etc from the existing MOEAs. Unless
otherwise stated, the concept of Pareto domination [18] has
been used for comparing two solutions. The optimization
problem that the proposed algorithm attempts to solve is
formally stated in equation 1.

Minimize (f1(x), f2(x), . . . , fM (x))
Subject to gj(x) ≤ 0, j = 1, 2, . . . , J

hk(x) = 0, k = 1, 2, . . . , K

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, . . . , N

(1)

The usual definition of Pareto-domination [18] that is used
in the present context is as follows: A feasible solution a
dominates another feasible solution b for a M -objective min-
imization problem, if the following conditions are met:

1. f a
i ≤ f b

i for all i = 1, 2, . . . , M ,

2. f a
i < f b

i for at least one i ∈ {1, M}.

The remainder of this paper is organized as follows. In sec-
tion II, the proposed optimization algorithm is described. In
section III, benchmark problems, algorithm tuning param-
eters, and simulation results are presented. In section IV,
inferences from the simulation run are presented. Finally in
section V, a brief conclusion of the study is presented.

2. DESCRIPTION OF THE OPTIMIZATION
ALGORITHM

The proposed algorithm is an evolutionary optimization
algorithm and relies on genetic variation operators for cre-
ating new solutions. The generation scheme deployed in the

proposed algorithm can be classified as generational since
during a particular iteration (generation), only solutions cre-
ated before that iteration take part in the selection process.
The algorithm however generates a small number of new
solutions at every iteration and therefore it can also be clas-
sified as an almost steady-state genetic algorithm. The al-
gorithm works with a small population size and maintains
an external archive of good solutions obtained. At every it-
eration, a small number of solutions are created using the
genetic variation operators. The newly created solutions are
then used to update the archive. We refer to the proposed al-
gorithm as Archive based Micro Genetic Algorithm (AMGA)
owing to the fact that it works with a very small population
size and uses an external archive to maintain its search his-
tory. It is recommended to use a large size for the archive
to obtain a large number of non-dominated solutions. The
size of the archive determines the computational complexity
of the proposed algorithm, however for computationally ex-
pensive optimization problems, the actual time taken by the
algorithm is negligible as compared to the time taken by the
analysis routines. The parent population is created from
the archive and binary tournament selection is performed
on the parent population to create the mating population.
The design of the algorithm is independent of the encoding
of the variables and thus the proposed algorithm can work
with almost any kind of encoding (so long as suitable genetic
variation operators are provided to the algorithm). The al-
gorithm uses the concept of Pareto ranking borrowed from
NSGA-II [10] and is based on a two-tier fitness mechanism.
The pseudo-code of the proposed algorithm (AMGA) is as
follows.

The AMGA pseudo-code:

1 Begin

2 Generate initial population.

3 Evaluate initial population.

4 Update the archive (using the

initial population).

5 repeat

6 Create parent population from

the archive.

7 Create mating pool from the

parent population.

8 Create off-spring population from

the mating pool.

9 Evaluate the off-spring population.

10 Update the archive (using the

off-spring population).

11 until (termination)

12 Report desired number of solutions

from the archive.

13 End

Although the above mentioned pseudo-code for AMGA
is very simple, it clearly separates all the conceptual steps
of the algorithm. The above pseudo-code encapsulates the
working of the algorithms like NSGA-II [10] and SPEA2
[8] in that, both the algorithms obey the above mentioned
pseudo-code. The parent population is created from the
archive using a strategy similar to environmental selection
(used in SPEA2). The creation of the mating pool is based
on binary tournament selection and is similar (but not iden-
tical) to the one used in NSGA-II. Any genetic variation op-
erator can be used to create the off-spring population. The

730

strategy used to update the elite population (archive) relies
on the domination level of the solutions, diversity of the solu-
tions, and the current size of the archive and is based on the
non-dominated sorting concept borrowed from NSGA-II. In
order to reduce the number of function evaluations per gen-
eration, AMGA uses a small size for the parent population
and the mating pool. The parent population is created from
the archive using only the diversity information of genotypes
(variables). Using an external archive that stores a large
number of solutions provides useful information about the
search space as well as tends to generate a large number
of non-dominated points at the end of the simulation. We
now discuss each step in the pseudo-code of the AMGA in
greater detail.

2.1 Generation of the initial population
The initial population (P0) can be generated in multiple

ways. It can be either generated randomly such that all the
variables are inside the search space or can be uniformly
sampled. We choose to create the initial population using
Latin hypercube (LH) sampling [19] coupled with unbiased
Knuth shuffling since it gives a good overall random (unbi-
ased) distribution of the population in the genotypic (vari-
able) space and does not require any objective or constraint
function evaluation. Let the size of the parent population be
N and the number of variables be n. Let the lower bound
of variable i be li and the upper bound be ui. To gener-
ate a LH sample, the variable range is divided into N equal
segments of size ui−li

N
each, and a real random number is

generated in each segment. Then a random permutation of
integers from 1 to N is generated and the individual with
index i is assigned a value located at π(i)th position in the
permutation. This process is repeated for all the variables.
This ensures that the resultant population spans the entire
genotypic space, is sufficiently random and is free from any
biases. Further details of this procedure can be found in
[16].

2.2 Approach used for updating the archive
The archive maintains a pool of good solutions obtained

during the search process. Let the maximum allowed size for
the archive be A and let the size of the parent population
be P and the size of the mating pool be M . The size of the
archive is taken to be much larger than the size of the parent
population or the size of the mating pool (A À P, M). Ini-
tially the archive is empty and hence in step 4 of the AMGA
pseudo-code, the contents of the initial population are sim-
ply copied to the archive. During the main iteration loop of
the AMGA (steps 5 through 11), the archive is filled with
the new solutions created at every iteration unless the size
of the mating pool is greater than the remaining slots in the
archive. At this stage, not all new solutions generated can
be accommodated in the archive. The current archive pop-
ulation At (at iteration t) and the off-spring population Ct

are combined into Ut. Then At+1 is created from Ut using
the non-dominated sorting procedure employed in NSGA-
II. It has been shown that the crowding distance operator
used in NSGA-II does not work well with more than two ob-
jectives [20, 21]. The diversity preservation technique used
in NSGA-II is replaced by an improved method proposed
by Kukkonen et al. [21]. We propose further refinements to
the crowding distance computation and the diversity preser-
vation technique proposed by Kukkonen et al. in the next

subsection. AMGA uses the diversity information at two
places, which are as follows.

1. Non-dominated sorting : During non-dominated sort-
ing, when selection is to be performed between two so-
lutions having the same rank, the diversity information
is used. In Kukkonen et al. [21], a novel method based
on efficient nearest neighbor search has been proposed
to perform the pruning of crowded solutions. We use
this method during the non-dominated sorting process.

2. Binary tournament selection: During the binary tour-
nament selection, when the primary fitness (the dom-
ination level or the rank) is the same for the two solu-
tions, secondary fitness based on diversity is used. The
method based on efficient nearest neighbor search can-
not be used, since it does not assign a numerical value
to a solution that quantifies its diversity. The crowding
distance operator used in NSGA-II assigns a diversity
metric to every solution in the non-dominated set and
hence this operator (with improvements) is used to as-
sign the secondary fitness.

2.2.1 Diversity preservation used in non-dominated
sorting

For the case of non-dominated sorting, we refer to Kukko-
nen et al. [21]. The authors have proposed a novel method
for pruning of crowded solutions based on the efficient near-
est neighbor search. At every iteration, two nearest neigh-
bors are found. From the two nearest neighbors found, the
one with the smaller value for the Euclidean distance to the
second nearest neighbor is deleted. If the second nearest
neighbors also have the same Euclidean distance, the third
nearest neighbors (and so on) are searched. If one of the
solutions from the nearest neighbor pair happens to be an
extremal point of the Pareto-optimal frontier, then the other
one is deleted from the set. We propose a slight modifica-
tion to the main algorithm. Consider the Pareto-optimal
front in Figure 1. O is the origin and minimization for all
three objectives is assumed. In the algorithm proposed by
Kukkonen et. al. [21], all the solutions having a minimum
or maximum value for any objective are assigned an infinite
value for the diversity. All the solutions that lie on the line
segment AB have the minimum value of the objective func-
tion corresponding to the Z axis. Similarly all the solutions
that lie on the line segments AC and BC have minimum
values for the objectives corresponding to Y and X axes
respectively. Ideally only points A, B and C (or the solu-
tion closest to these points) should get an infinite value for
the diversity. We therefore propose that only the solutions
with the maximum (or worst) objective value be assigned
an infinite value for the diversity (minimization for all the
objectives is assumed). This modification would not change
the distribution of the solutions on the Pareto-optimal front,
rather it would ensure the maximum spread of the obtained
solutions.

2.2.2 Diversity computation used in fitness
assignment

For the case of fitness assignment, we refer to the crowding
distance operator proposed in NSGA-II [10]. We propose
two refinements to the algorithm proposed in [10].

Consider Figure 2. Suppose that the solution B is not
an extreme solution and has both left and right neighbors

731

O

C

B

A

X axis

Y axis

Z axis

Figure 1: Pareto-optimal front in 3 dimensions

l1 r1

l2

r
2

C

B

A

Figure 2: Crowding distance computation

A and C respectively. The usual formulation (proposed in
NSGA-II) for the crowding distance (CD) computation gives
CD(B) = l1 + r1 + l2 + r2. Larger the value of CD(B),
more diverse is the solution. It should be noted that CD(B)
depends only on the location of A and C and not on the
location of B (so long as B is inside the bounding box defined
by A and C). Ideally, it is desirable that solution B lies at
the center of the bounding box for good diversity. It is also
desirable that, the larger the dimension of the bounding box,
the larger the value of CD(B). We thus need a formulation
for CD which is maximized if the dimension of the bounding
box is maximized or for a given size of the bounding box,
CD is maximized if the solution B lies at the center of the
bounding box. We thus propose the modified formulation
for crowding distance computation given in equation 2.

CD(B) =

M∑
i=1

liri (2)

where M is the number of objectives. The product liri is
maximized for a constant size of the bounding box if li = ri;
i.e. if B lies at the center of its neighbors. Also, as the size of
the bounding box grows, the value of the product increases,
thus the formulation given in equation 2 accounts for the size
of the bounding box as well as the location of B inside the
bounding box. The extreme solutions are assigned a value
of infinity as in the original case.

The above formulation has a potential shortcoming. Sup-
pose there is a solution B′ identical to B. In that case, the
formulation described by equation 2 would give a value of
zero for diversity for both B and B′ since distance to the

nearest neighbor is zero in all the directions (since at least
one of li or ri would evaluate to zero). The original formu-
lation (as proposed in NSGA-II) would give non-negative
values to both B and B′. Depending upon their actual po-
sition in the sorted array, the crowding distance for solu-
tions B and B′ would evaluate to one of the values from
(l1 + l2, l1 + r2, r1 + l1, r1 + r2). This situation also is not
desirable, since the obtained values do not accurately reflect
the diversity of the two solutions. We therefore propose
further modification which can be applied to the original as
well as proposed crowding distance formulation. We suggest
that all (but one) copies of an identical solution be removed
and assigned a value of zero for the crowding distance before
applying the formulation given in equation 2. All identical
copies can be removed in O(N log N) time if there are N
solutions in a non-dominated set.

2.3 Scheme for generating the parent
population from the archive

This is the most important step of AMGA. The size of
the parent population significantly affects the performance
of the algorithm. To illustrate a key concept used in the
generation of parent population from the archive, we refer
to the two-objective problem ZDT4 [6]. This problem has
100 distinct Pareto-optimal fronts out of which only one is
globally Pareto-optimal. The plot of the objective space
for the ZDT4 function after the first generation is shown in
Figure 3. Only 6 solutions out of the 100 belong to the first
rank. A significant number of function evaluations can be
saved if only the solutions in the first rank are chosen for
the parent population, which in turn creates the off-spring
solutions. It is thus noted that a reduction in number of
function evaluations can be obtained if only the best solu-
tions (belonging to rank 1) are included in the parent popu-
lation. This however is a greedy scheme and therefore may
give premature convergence if the best solutions happen to
be near a locally optimal basin. It is therefore desirable
to include few more solutions in the parent population and
probably not all the solutions in rank 1. The extra solutions
can be chosen such that they are diverse. Several schemes
can be used to generate the parent population. If only the
solutions from rank 1 are included in the parent population,
fast convergence can be obtained, but it will often result in
a local Pareto-optimal front (such as in the case of ZDT4).
Test problems ZDT4 and ZDT6 were used as the benchmark
problems to fine-tune the selection scheme used to generate
the parent population. Whilst ZDT4 has a large number of
local Pareto-optimal fronts, ZDT6 has a highly non-uniform
distribution of points in the genotypic space corresponding
to a uniform distribution of points on the Pareto-optimal
frontier in the phenotypic space. In AMGA, the parent pop-
ulation is generated from the archive based on the diversity
information alone. The diversity is computed in the geno-
typic space for the creation of the parent population. The
pruning method (based on efficient nearest neighbor search)
used during the archive update is used to generate the par-
ent population. This step is the most time consuming since
a large population is pruned to a very small population.

The diversity based selection gives preference only to those
solutions that are less crowded and very few new solutions
are created. Since parent-centric recombination (simulated
binary crossover [22]) is used with AMGA, the empty spaces
(near diverse solutions) fill up relatively quickly which im-

732

f1

f2

 60

 100

 140

 180

 220

 0 0.2 0.4 0.6 0.8 1

Figure 3: Objective space plot for the zdt4 problem

proves the distribution of solutions on the Pareto-optimal
front. A potential limitation of the proposed approach is ex-
posed when all the solutions in the archive occupy a region
in the search space which points to a locally optimal front.
The phenomenon of genetic drift will then guide the search
towards that locally optimal frontier. Unless the crossover
and mutation operators create a solution that lies inside
the globally optimal basin, the search would lead to pre-
mature convergence. It is practically impossible to detect
this phenomenon since the only information available about
the search space is contained in the archive which now has all
the solutions that belong to a locally optimal basin. Further,
it can never be guaranteed that with the proposed (or any
other optimization) algorithm, global convergence would be
achieved. The proposed scheme relies on the discovery of at
least one solution in the globally optimal basin which also
happens to belong to the first rank (if it does not belong
to the first rank, it may be removed whilst updating the
archive). There always exists a tradeoff between the selec-
tion pressure and the diversity required by an evolutionary
optimization algorithm. From the rigorous benchmarking
conducted, it is concluded that the method proposed in this
paper performs better overall on the problems chosen for the
benchmark study.

2.4 Creation of the off-spring population
The binary tournament selection operator (without re-

placement) used in NSGA-II is used to generate the mating
population. Unlike NSGA-II, the size of the mating popu-
lation is half the size of the parent population. Since SBX
crossover [22] takes two parents and produces two children,
and we want every parent in the mating pool to participate
exactly once in the crossover operation, the size of the mat-
ing pool must be an even number (a multiple of 2). Since the
size of the mating pool is half the size of the parent popu-
lation, the size of the parent population must be a multiple
of 4 (which is also the minimum value for the size of the
parent population). The size of the off-spring population is
the same as the size of the mating pool. In NSGA-II, ev-
ery solution in the parent population participates in exactly
two tournaments, whereas in AMGA, every solution partic-
ipates in exactly one binary tournament selection. Since ev-
ery solution participates in the binary tournament selection
in AMGA, it has a chance of being included in the mating
pool. Also, this modification does not introduce extra copies
of good solutions in the mating pool (better diversity). This
modification favors diversity over selection pressure and ex-
perimental results demonstrated that it leads to faster con-
vergence (since the number of function evaluations per gen-

eration is reduced by half, the number of generations can be
doubled for the same number of function evaluations).

SBX crossover [22] and polynomial mutation [23] have
been used as the genetic variation operators. In Deb et
al. [16], it was shown that a modification to the polynomial
mutation operation can improve the resilience to premature
convergence. The modification increases the disruptiveness
of the mutation operator. The original polynomial mutation
operator [23] does not perturb a variable if it is at the bound-
ary and uses the same probability distribution function for
the entire range of the variable space. The modified polyno-
mial mutation operator perturbs a solution with 50% prob-
ability if it is on the boundary and uses two different prob-
ability distributions for the two regions in which a variable
divides its search range. For more details of the modified
polynomial mutation operator, the reader is referred to the
original study [16]. Both the crossover and mutation opera-
tors used in this study deploy a distribution index η which
is a user defined parameter. The smaller the value of η,
the larger the perturbation in the design variables (and vice
versa). The value of η used for the crossover and mutation
has noticeable impact on the performance of the algorithm.
The suggested values of η are often determined empirically
and may not work on all the problems. One of the goals of
this research is to reduce the impact of tuning parameters
set by the user on the performance of the algorithm. To
reduce the sensitivity of the algorithm to changes in the dis-
tribution index, randomization is introduced in the value of
η. A uniformly distributed random number is generated in
the range [0, 1]. If the random number lies in [0, 0.3), 0.1η is
used as the distribution index. If the random number lies in
[0.3, 0.7], η (user supplied value) is used as the distribution
index. If the random number lies in (0.7, 1.0], 10η is used as
the distribution index. This modification reduces (but does
not eliminate) the dependence on the user supplied value
of η. The random number generator is invoked every time
the crossover or mutation routine is called and the η for that
operation is determined using the random number obtained.

2.5 Worst case complexity of the proposed
algorithm

Let the size of the parent population be N , and the size of
the archive be A. The size of the mating population would
be N/2. Let the total number of function evaluations be T
and the number of objectives be M . Step 2 of AMGA takes
O(N) time. Step 3 of AMGA also takes O(N) time. In step
4, the initial population is copied to the archive which can
be done in O(N) time. Steps 5 through 11 form the main
iteration loop of the AMGA. The iteration loop consumes
maximum time when the archive is filled with all the solu-
tions belonging to the first rank (i.e. the diversity based se-
lection is imposed on the complete archive). The worst case
complexity of the diversity operator used with the AMGA
is O(MA2 log(A)). The non-domination ranking procedure
used consumes O(MA2) time (although an asymptotically
faster method [24] exists). The number of iterations per-
formed depends on the number of function evaluations, and
the size of the parent population. For T function evalua-

tions, the number of generations of the algorithm is 2(T−N)
N

.
In general, N ¿ T , hence the number of generations per-
formed is 2T

N
. Thus, the overall worst-case complexity of

AMGA is O(TMA2 log(A)
N

).

733

3. SIMULATION RESULTS
To assess the relative performance of AMGA, it is bench-

marked against two state-of-the-art multi-objective evolu-
tionary algorithms. The performance of AMGA is compared
with Non-dominated Sorting Genetic Algorithm II [10] and
Fast Pareto Genetic Algorithm [17]. We choose FastPGA as
one of the algorithms for benchmark study since it is very re-
cent high performing algorithm. NSGA-II is chosen because
it is a de-facto standard against which the performance of
other algorithms is compared. It has been shown in sev-
eral studies that NSGA-II and SPEA2 have similar perfor-
mance characteristics [10, 8, 15] and therefore SPEA2 is not
included in this benchmark study. jMetal [25] is a JAVA
based library that provides implementations for NSGA-II
and FastPGA. For FastPGA, the reference implementation
provided by jMetal is used in this study. The implementa-
tion of NSGA-II is provided by jMetal as well as iSIGHT-
FD. In our tests, we found the iSIGHT-FD implementa-
tion of NSGA-II to be slightly better than the jMetal im-
plementation. In this study, the simulation results of both
the implementations are reported. The simulation results of
NSGA-II obtained using the jMetal implementation are de-
noted with NSGA-II-1 and the simulation results obtained
using iSIGHT-FD implementation are denoted with NSGA-
II-2. For the purpose of the benchmark study; two-objective
ZDT problems 1, 2, 3, 4, and 6; and three-objective DTLZ
problems 1 and 2 are used. The description of the ZDT and
DTLZ test problems is omitted and can be found in [6] and
[26] respectively.

3.1 Performance Indicators
Four unary performance indicators are used to compare

the three algorithms. The performance indicators used in
this study are taken from [17]. The performance indicators
are Delineation, Distance, Diversity and Hypervolume. In
order to use these performance indicators, the true Pareto-
optimal front must be known. Smaller value for a perfor-
mance indicator means a better solution set. Ideally if the
original Pareto optimal front is used as the solution set, all
the performance indicators should evaluate to zero. Since
a finite number of points (1,000 points for the case of two
objectives and roughly 10,000 points for the case of three
objectives) are used to represent the true Pareto-optimal
frontier, a value of 0.01 or less for a performance indicator
implies that the obtained solution set is virtually indistin-
guishable from the Pareto optimal front. If the value of
the performance indicator is 0.5 or more, this implies that
an acceptable solution set was not obtained. All the ob-
jectives are normalized (the Pareto-optimal set is mapped
to the range [0, 1]) before the performance indicators are
computed. Only the non-dominated solutions belonging to
rank 1 are considered for computing the performance indi-
cators. A brief description of each performance indicator
follows next.

• Delineation Metric: It measures“how much of the true
Pareto-optimal front is represented by the obtained so-
lution set”.

• Distance Metric: It measures the average Euclidean
distance between the true Pareto-optimal front and the
obtained solution set.

• Diversity Metric: It measures the uniformity of distri-
bution and the spread of obtained solution set.

• Hypervolume Metric: In the formulation described in
[17], it measures the fraction of search space not dom-
inated by the obtained solution set in comparison to
the true Pareto-optimal set.

Detailed description of the four performance indicators
can be found in [17]. In [17], performance indicators are only
formulated for the case of two objectives. The definition of
delineation, distance, and hypervolume as described in [17]
can be directly extended to three objectives. For the case
of diversity, it is non-trivial to define the spread (since the
obtained solution set is a surface in 3D). For the case of
three objectives, the diversity metric is computed using the
Euclidean distance to the nearest neighbors. For solution i,
let the distance to its nearest neighbor be di. Let the average
of all dis be dm. Let the size of the obtained solution set
be S. Then, the diversity for the case of three objectives is
given by Equation 3.

Diversity Metric =

√√√√ 1

S

S∑
i=1

(di − dm)2 (3)

The formulation given in Equation 3 only accounts for
the uniformity of distribution. It does not account for the
spread; since in three dimensions, the extremal points of
the Pareto optimal set form a curve and it is non-trivial to
compute the spread for the general case. The nadir objective
vector is taken as [1.1, 1.1] for the purpose of computing the
hypervolume metric. Any solution that is dominated by
the nadir objective vector is discarded from the obtained
solution set for the purpose of computing the hypervolume
metric.

3.2 Simulation Parameters
Identical parameter settings (wherever possible) are used

for all the algorithms. The identical parameter settings for
NSGA-II, FastPGA, and AMGA are: size of the initial pop-
ulation = 100, crossover probability = 1.0, mutation prob-
ability = 1/n, where n is the number of variables, crossover
distribution index = 15.0, and mutation distribution index
= 20.0. For FastPGA, maximum population size is equal
to 100. For AMGA, maximum allowed size for the archive
= 100, size of the parent population = 8, and number of
Pareto-optimal solutions desired = 100. Number of function
evaluations for ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, DTLZ1,
and DTLZ2 are 6500, 6500, 6000, 10000, 10000, 20000, and
10000 respectively.

3.3 Results in tabulated format
30 random simulations each are performed for NSGA-II,

FastPGA and AMGA. The mean and median values for all
performance indicators is summarized in Tables 1 and 2. De-
lineation, distance, diversity, and hypervolume are abbrevi-
ated as Del., Dis., Div., and Hyp. in the tables respectively.

4. INFERENCES
As is evident from Tables 1 and 2, the performance of

AMGA is better than NSGA-II and FastPGA on the two-
objective test problems. On the two three-objective test

734

Table 1: The Mean value for all the performance
indicators

Problem Algorithm Del. Dis. Div. Hyp.

ZDT1

NSGA-II-1 0.0530 0.0546 0.0861 0.0873
NSGA-II-2 0.0480 0.0495 0.0753 0.0794
FastPGA 0.0230 0.0225 0.0408 0.0762
AMGA 0.0045 0.0017 0.0062 0.0075

ZDT2

NSGA-II-1 0.0973 0.0987 0.3278 0.2967
NSGA-II-2 0.0967 0.0952 0.3318 0.2766
FastPGA 0.0394 0.0388 0.1441 0.1610
AMGA 0.0044 0.0012 0.0061 0.0115

ZDT3

NSGA-II-1 0.0308 0.0286 0.1126 0.0912
NSGA-II-2 0.0322 0.0311 0.1151 0.1005
FastPGA 0.0126 0.0114 0.0628 0.0785
AMGA 0.0033 0.0007 0.0404 0.0050

ZDT4

NSGA-II-1 1.0352 1.4101 2.2804 0.9398
NSGA-II-2 0.8208 0.8133 1.7373 0.6947
FastPGA 0.7278 0.8806 1.4569 0.8335
AMGA 0.1560 0.1650 0.2630 0.2533

ZDT6

NSGA-II-1 0.2695 0.2744 0.7337 0.5992
NSGA-II-2 0.1209 0.1271 0.3388 0.3107
FastPGA 0.0463 0.0484 0.1345 0.1315
AMGA 0.0048 0.0015 0.0178 0.0136

DTLZ1

NSGA-II-1 0.5966 1.2715 0.0057 0.6618
NSGA-II-2 0.7384 3.1760 0.0071 0.6549
FastPGA 0.3755 1.6488 0.0051 0.4325
AMGA 0.4590 0.9150 0.0035 0.4477

DTLZ2

NSGA-II-1 0.0748 0.0386 0.0030 0.1526
NSGA-II-2 0.0708 0.0161 0.0054 0.1406
FastPGA 0.0728 0.0357 0.0029 0.1493
AMGA 0.0725 0.0264 0.0035 0.1127

problems, AMGA and FastPGA have similar performance;
both of which outperform NSGA-II. The performance of
the two implementations of NSGA-II is different. It can
be attributed to the fact that, the performance of a non-
deterministic algorithm using probabilistic operators depends
on the i) method used for generating the initial population,
ii) random number generator used, and iii) specific imple-
mentation of the probabilistic operators. The test problems
used for this study are unconstrained and form a very small
set. To gain more confidence in the performance of AMGA
and to assess its usefulness, it is therefore imperative to
benchmark more test problems especially the problems with
constraints. Test problems ZDT4 and DTLZ1 have 99 and
161,050 local Pareto optimal fronts respectively and there-
fore challenge the capability of an algorithm to converge to
the global Pareto optimal frontier.

AMGA places much larger emphasis on the diversity as-
pect as compared to NSGA-II because, for highly multi-
modal problems or for problems with an uneven distribu-
tion of points on the Pareto-optimal frontier, maintaining
diversity helps in achieving good convergence. The diversity
operator used in AMGA is of O(A2 log(A)) complexity and
thus increasing the size of the archive significantly increases
the required computation time. A faster yet equally effi-
cient diversity preservation technique can help in reducing
the computational complexity of AMGA. In most MOEAs,

Table 2: The Median value for all the performance
indicators

Problem Algorithm Del. Dis. Div. Hyp.

ZDT1

NSGA-II-1 0.0521 0.0532 0.0873 0.0895
NSGA-II-2 0.0488 0.0494 0.0720 0.0802
FastPGA 0.0237 0.0230 0.0388 0.0454
AMGA 0.0045 0.0016 0.0062 0.0074

ZDT2

NSGA-II-1 0.0914 0.0934 0.3115 0.2868
NSGA-II-2 0.0887 0.0874 0.2981 0.2617
FastPGA 0.0392 0.0391 0.1434 0.1320
AMGA 0.0044 0.0011 0.0059 0.0114

ZDT3

NSGA-II-1 0.0311 0.0296 0.1120 0.0911
NSGA-II-2 0.0308 0.0280 0.1130 0.0978
FastPGA 0.0128 0.0116 0.0619 0.0478
AMGA 0.0033 0.0007 0.0406 0.0050

ZDT4

NSGA-II-1 0.8963 1.4332 2.0251 0.9815
NSGA-II-2 0.7863 0.7822 1.5788 0.8684
FastPGA 0.7171 0.7698 1.3636 0.9082
AMGA 0.1355 0.1416 0.2207 0.2190

ZDT6

NSGA-II-1 0.2733 0.2756 0.7498 0.6060
NSGA-II-2 0.1194 0.1244 0.3378 0.3115
FastPGA 0.0467 0.0488 0.1363 0.1334
AMGA 0.0047 0.0015 0.0167 0.0133

DTLZ1

NSGA-II-1 0.6569 1.1633 0.0027 0.8794
NSGA-II-2 0.7525 2.0924 0.0035 0.9427
FastPGA 0.1492 0.8567 0.0021 0.1806
AMGA 0.1276 0.0809 0.0029 0.1277

DTLZ2

NSGA-II-1 0.0739 0.0372 0.0024 0.1533
NSGA-II-2 0.0711 0.0164 0.0029 0.1399
FastPGA 0.0725 0.0374 0.0026 0.1486
AMGA 0.0703 0.0269 0.0029 0.1108

increasing the population size while keeping the number of
generations constant, increases the total number of function
evaluations. AMGA removes this coupling and thus facili-
tates independent tuning of the population size (size of the
archive) and the number of function evaluations.

5. CONCLUSION
In this paper, a new multi-objective optimization algo-

rithm namely AMGA is proposed. AMGA is designed to
work with a very small population size and maintains an
external archive of good solutions obtained. AMGA also
benefits from the existing literature in that it borrows sev-
eral concepts from existing algorithms. Improved formula-
tion for diversity preservation techniques is proposed and
is incorporated into the AMGA. AMGA has been designed
to facilitate independent tuning of algorithm parameters in
that the size of the initial population, the size of the archive,
and the size of the parent population (working population)
can be independently fine-tuned. Such a design allows for
choosing a small size for the parent population which signif-
icantly speeds up the search process. AMGA also attempts
to minimize the impact of variation in distribution index for
crossover and mutation on the performance of the algorithm.
The performance comparison of AMGA with NSGA-II and
FastPGA demonstrates the superior performance of AMGA
on the two objective test problems. For the case of three

735

objectives, AMGA and FastPGA have similar performance.
The research and development of AMGA can be perceived
as an exercise in combining and improving the best features
of different algorithms and best practices into a unified op-
timization procedure. The two guiding principles that have
shaped the design of AMGA are i) focus on reducing the
number of function evaluations required for the same degree
of convergence, and ii) making the algorithm immune to
changes in tuning parameters. AMGA has partially achieved
both of these goals. Some resources on AMGA are available
at http://people.clemson.edu/∼stiwari/amga.html.

6. REFERENCES
[1] M. R. Garey and D. S. Johnson. Computers and

Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[2] R. Dawkins. The Selfish Gene. Oxford University
Press, New York, 1976.

[3] N. Eldredge. Macro-Evolutionary Dynamics: Species,
Niches and Adaptive Peaks. McGraw-Hill, New York,
1989.

[4] J. Holland. Adaptation in natural and artificial
systems. Technical report, University of Michigan,
1975.

[5] D. E. Goldberg. Genetic Algorithms for Search,
Optimization, and Machine Learning. Reading, MA:
Addison-Wesley, 1989.

[6] K. Deb. Multi-objective Optimization Using
Evolutionary Algorithms. Chichester, UK: Wiley, 2001.

[7] C. A. Coello. A comprehensive survey of
evolutionary-based multiobjective optimization
techniques. Knowledge Information Systems,
1(3):269–308, 1999.

[8] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the strength pareto evolutionary algorithm
for multiobjective optimization. In Proceedings of the
EUROGEN2001 Conference, pages 95–100, 2001.

[9] D. W. Corne, J. D. Knowles, and M. J. Oates. The
pareto envelope-based selection algorithm for
multi-objective optimization. In Parallel Problem
Solving from Nature, pages 839–848, Berlin, 2000.
Springer.

[10] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A
fast and elitist multi-objective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[11] S. Watanabe, T. Hiroyasu, and M. Miki. NCGA:
Neighborhood cultivation genetic algorithm for
multi-objective optimization problems. In Proceedings
of the Genetic and Evolutionary Computation
Conference GECCO 2002, pages 458–465, 2002.

[12] G. G. Yen and L. Haiming. Dynamic multiobjective
evolutionary algorithm: adaptive cell-based rank and
density estimation. IEEE Transactions on
Evolutionary Computation, 7(3):253–274, June 2003.

[13] M. Kim, T. Hiroyasu, and M. Mikiand S. Watanabe.
SPEA2+: Improving the performance of the strength
pareto evolutionary algorithm 2. In Parallel Problem
Solving from Nature PPSN VIII, pages 742–751, 2004.

[14] S. Y. Ho, L. S. Shu, and J. H. Chen. Intelligent
evolutionary algorithms for large parameter
optimization problems. IEEE Transactions on
Evolutionary Computation, 8(6):522–541, 2004.

[15] K. Deb, M. Mohan, and S. Mishra. Evaluating the
ε-domination based multi-objective evolutionary
algorithm for a quick computation of pareto-optimal
solutions. Evolutionary Computation Journal,
13(4):501–525, 2005.

[16] K. Deb and S. Tiwari. Omni-optimizer, a generic
evolutionary algorithm for single and multi-objective
optimization. European Journal of Operational
Research, 185(3):1062–1087, 2008.

[17] H. Eskandari, C. D. Geiger, and G. B. Lamont.
Fastpga: A dynamic population sizing approach for
solving expensive multiobjective optimization
problems. In Evolutionary Multiobjective Optimization
Conference EMO-2007, pages 141–155. LNCS 4403
Springer-Verlag Berlin Heidelberg, 2007.

[18] Y. Sensor. Pareto optimality in multi-objective
problems. Applied Mathematics and Optimization,
4(1):41–59, March 1977.

[19] W. L. Loh. On latin hypercube sampling. Annals of
Statistics, 33(6):2058–2080, 2005.

[20] S. Kukkonen and K. Deb. Improved pruning of
non-dominated solutions based on crowding distance
for bi-objective optimization problems. Technical
Report 7, Indian Institute of Technology Kanpur,
India, 2006.

[21] S. Kukkonen and K. Deb. A fast and effective method
for pruning of non-dominated solutions in
many-objective problems. Technical Report 4, Indian
Institute of Technology Kanpur, India, 2007.

[22] K. Deb and R. B. Agrawal. Simulated binary crossover
for continuous search space. Complex Systems,
9(2):115–148, 1995.

[23] K. Deb and M. Goyal. A combined genetic adaptive
search (geneas) for engineering design. Computer
Science and Informatics, 26(4):30–45, 1996.

[24] M. T. Jenson. Reducing the run-time complexity of
multiobjective eas: The nsga-ii and other algorithms.
IEEE Transactions on Evolutionary Computation,
7(5):503–515, 2003.

[25] Juan J. Durillo, Antonio J. Nebro, Francisco Luna,
Bernabe Dorronsoro, and Enrique Alba. jmetal: a java
framework for developing multi-objective optimization
metaheuristics. Technical report, E. T. s. Ingenieria
Informatica Campus de Teatinos 29071 Malaga Spain,
2006.

[26] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler.
Scalable multi-objective optimization problems. In
Proceedings of IEEE Congress on Evolutionary
Computation, volume 1, pages 825–830, Honolulu, HI,
USA, 12–17 May 2002.

736

