
Pattern Identification in Pareto-Set Approximations

Tamara Ulrich, Dimo Brockhoff and Eckart Zitzler
Computer Engineering and Networks Lab

ETH Zurich
8092 Zurich, Switzerland

firstname.lastname@tik.ee.ethz.ch

ABSTRACT

In a multiobjective setting, evolutionary algorithms can be
used to generate a set of compromise solutions. This makes
decision making easier for the user as he has alternative
solutions at hand which he can directly compare. However, if
the number of solutions and the number of decision variables
which define the solutions are large, such an analysis may
be difficult and corresponding tools are desirable to support
a human in separating relevant from irrelevant information.

In this paper, we present a method to extract structural
information from Pareto-set approximations which offers the
possibility to present and visualize the trade-off surface in
a compressed form. The main idea is to identify modules
of decision variables that are strongly related to each other.
Thereby, the set of decision variables can be reduced to a
smaller number of significant modules. Furthermore, at the
same time the solutions are grouped in a hierarchical man-
ner according to their module similarity. Overall, the output
is a dendrogram where the leaves are the solutions and the
nodes are annotated with modules. As will be shown on
knapsack problem instances and a network processor design
application, this method can be highly useful to reveal hid-
den structures in compromise solution sets.

Categories and Subject Descriptors

I.5.2 [Pattern Recognition]: Design Methodology—Pat-
tern analysis; I.2.8 [Artificial Intelligence]: Problem Solv-
ing, Control Methods, and Search—Heuristic methods

General Terms

Algorithms

Keywords

decision making, heuristics, multi-objective optimization, rep-
resentations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08 July 12-16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07 ...$5.00.

1. INTRODUCTION
In a multiobjective optimization scenario, it is often useful

to approximate the set of Pareto-optimal solutions in order
to learn about the underlying problem and to achieve infor-
mation that provides a better basis for decision making. By
presenting such a set of compromise solutions, the so-called
Pareto-set approximation, to the user, he can not only study
the relationships among the objectives, but also gain insights
about the inherent structure of the problem. This requires,
though, that the number of solutions, the number of prob-
lem parameters, and the number of objectives are reasonably
small. Nowadays, increased computing resources allow to
cope with problems that have more and more decision vari-
ables and objectives, e.g., see [15, 9]. Therefore, in practice
all three entities can become large and tools are needed that
help the decision maker in analyzing the trade-off surface.

The issue of dealing with many objective functions has
been recently addressed in a few studies (see [2] for an over-
view). Different methods have been proposed to reduce the
number of objective functions by omitting certain criteria
such that the resulting error is minimized; this can be helpful
both for assisting in decision making and for speeding up the
search. The problem of many decision variables has been
mainly studied in the context of search, e.g., [17, 7]; only
few contributions exist in the context of Pareto-set analysis,
e.g., [12]. However, Deb and Srinivasan [3] have shown that
important structural information in the decision space may
be contained within a non-dominated set.

In this paper, the focus lies on decision making and on how
an automated technique can be used to achieve a more com-
pact representation of a Pareto-set approximation. Here, we
aim at reducing along two dimensions simultaneously: the
number of decision variables and the number of solutions.
The first aspect is tackled using biclustering techniques in
order to find interesting modules of decision variables which
have similar values and are jointly represented in many solu-
tions. As to the second aspect, a greedy strategy is proposed
to group solutions containing similar modules hierarchically.
In detail, the paper contains the following main contribu-
tions:

• we formalize the general problem of module identifica-
tion and solution grouping (as a first study, we only
consider Boolean decision variables here);

• we propose two contrary methods to generate dendro-
grams of a solution set that are annotated by modules;

• we validate and empirically investigate the proposed
methods for instances of the 0-1 knapsack problem;

737

• we demonstrate the usefulness of the proposed ap-
proach for a network processor design problem.

The remainder of the paper is structured as follows. After
discussing related work in Sec. 2, we formalize the two-step
decision space reduction in Sec. 3. The proposed algorithms
are presented in Sec. 4, and Sec. 5 shows the results of the
algorithm comparison. Sec. 6 applies the proposed deci-
sion space reduction approach to a network processor design
problem and Sec. 7 concludes the paper.

2. RELATED WORK
The approach of pattern identification in Pareto-set ap-

proximations presented in this paper is strongly related to
the concepts of building blocks as well as to biclustering.
In this work, we are aiming at finding modules or building
blocks [8] of the decision variables; in other words we would
like to identify structure in Pareto-optimal sets or approxi-
mations thereof.

Building blocks have already been used explicitly dur-
ing both single-objective search, e.g., in the messy GA [5],
and multiobjective search [17]. In the messy GA, promis-
ing building blocks are generated prior to the search. Here,
we argue that an automated identification of those build-
ing blocks in a given Pareto-set approximation makes also
sense after the search to assist in decision making. Unlike
in the messy GA, we would like to generate building blocks
based on problem specific information that is provided in
the decision space. The consideration of the decision space
is in fact crucial in the case of multiobjective optimization,
as was indicated recently by Preuss et al. [14].

The methods proposed in this thesis try to identify sets of
decision variables that exhibit homogeneous behavior over
a large number of solutions. This approach corresponds to
the concept of biclustering. Biclustering is a recent exten-
sion of standard clustering which, roughly speaking, aims at
finding large homogeneous submatrices in a matrix, the so-
called biclusters. Biclustering has become popular especially
in computational biology, see [11] for a survey. Biclustering
methods mainly differ in the definition of homogeneity, the
distribution of the biclusters found and the strategies which
are used to find the biclusters. One of the first biclustering
algorithms presented in the literature was the one of Har-
tigan [6] which is, due to its simplicity, also used in this
paper. However, Hartigan’s algorithm is not able to find
biclusters that overlap which is its main drawback. An al-
gorithm which not only allows the biclusters to overlap but
also finds the exhaustive set of all biclusters1 is Bimax [13].
Such an exhaustive search, however, is only applicable for
small and/or sparse matrices.

3. PROBLEM FORMULATION
Suppose we have a multiobjective maximization problem

f : X → Z with Z ⊆ Rk and a multiobjective evolutionary
algorithm that generates a Pareto-set approximation. Such
a Pareto-set approximation can be considered as a set of
decision vectors {x1, . . . , xm} ⊆ X that are mutually non-
dominated. A decision maker can analyze these decision vec-
tors and needs to choose one out of them. In this paper, we
consider only binary decision vectors, i.e., X = {0, 1}n and
represent a Pareto-set approximation as a decision matrix

1Except for biclusters that are entirely contained in larger ones.

Ξ ∈ Mm,n({0, 1}) where Mm,n({0, 1}) is the set of binary
matrices with m rows and n columns.

Definition 1. A decision matrix Ξ = (ξi,j)m×n is a ma-
trix with n columns and m rows that is composed of the deci-
sion vectors xr = (ξr,1, . . . , ξr,n) of m solutions (1 ≤ r ≤ m).

In practice, two main problems emerge. The first problem
is that there are too many decision variables. The methods
proposed in this thesis tackle this problem by merging the
decision variables into so-called modules.

Definition 2 (module). A module is a subset S ⊆
{1, . . . , n} of the decision variables.

These modules are then used to generate a new reduced
representation of the decision variables.

The second problem is that there are too many solutions.
This problem is tackled by grouping solutions hierarchically.
Sec. 4 introduces a method to generate such a grouping
based on modules. Both the problem of finding the best
reduced representation and the problem of grouping the so-
lutions are formalized in the following.

3.1 Transformation to a New Representation
When identifying modules, the goal is to find a small set

of large modules. By representing modules instead of sin-
gle decision variables, a reduced representation of a decision
matrix can be achieved. More precisely, given a set of mod-
ules S = {S1, . . . , Sl}, we would like to transform the de-
cision matrix Ξ ∈ Mm,n({0, 1}) into a new representation,
the module matrix Υ wherein the rows correspond to the
original solutions in Ξ and the columns correspond to the
modules in S. For a certain solution xr, the ith bit in the
new representation yr is set to 1 if and only if the original
representation contains the module Si, i.e., if and only if all
decision variables belonging to Si are set to 1 in xr.

Definition 3. Given a decision matrix Ξ = (ξi,j)m×n ∈
Mm,n({0, 1}) and a set of modules S = {S1, . . . , Sl}, the
function TΞ→Υ(Ξ, S) yields a corresponding module matrix
Υ = (υi,j)m×l, which is defined as υr,c = 1 ⇔ ∀i ∈ Sc :
ξr,i = 1 for all 1 ≤ r ≤ m and 1 ≤ c ≤ n. Each row of Υ is
called a module vector.

Note that we here assume that whenever a module is se-
lected, all contained decision variables are set to 1. In gen-
eral, one could consider an arbitrary variable assignment
representing the module; for reasons of simplicity, we do not
consider this further in this paper.

Example 1. Consider a decision matrix Ξ with five so-
lutions and decision vectors of length 5 as depicted on the
left of Fig. 1. In addition, the module set S consists of three
modules S1 = {1, 2, 3}, S2 = {2, 3, 4}, and S3 = {4, 5}. The
above defined transformation TΞ→Υ maps the decision ma-
trix Ξ to the new representation Υ = TΞ→Υ(Ξ, S) as shown
on the right of Fig. 1. For example, the decision vector x3

has ones at the positions 1 to 4 and therefore contains both
modules S1 = {1, 2, 3} and S2 = {2, 3, 4} but not module S3

since the fifth bit is not set to 1. Therefore, its corresponding
module vector y3 in Υ contains ones at the positions 1 and
2 and a zero at position 3.

Note that in the above example, the module matrix can
cover all 1s in the original decision matrix. In general, this
is not the case as the following example shows.

738

x1

x2

x3

x4

x5

1 2 3 4 5

1 1 1 0 0
1 1 1 0 0
1 1 1 1 0
0 1 1 1 0
0 0 0 1 1

decision matrix Ξ = (ξij)
with decision vectors xr

TΞ→Υ
−−−−−→

y1

y2

y3

y4

y5

S1 S2 S3

1 0 0
1 0 0
1 1 0
0 1 0
0 0 1

module matrix Υ = (υij)
with module vectors yr

Figure 1: Illustration of the decision matrix/module
matrix concept for the given modules S1 = {1, 2, 3},
S2 = {2, 3, 4}, and S3 = {4, 5}.

Example 2. Consider the decision vector x1 in Fig. 2
and the same modules as in Example 1. Since x1 only con-
tains module S3 but not S1 and S2, the bit ξ1,2 cannot be
reconstructed with the module representation Υ. Therefore
with the transformation TΞ→Υ information is lost.

To measure the information loss described in the previous
example, we interpret a module matrix again as a decision
matrix by retransforming it with the following function.

Definition 4. Given a set S = {S1, . . . , Sl} of modules,
a module vector yr = (υr,1, . . . , υr,l) can be interpreted as
the decision vector TΥ→Ξ(yr, S) = (ξr,1, . . . , ξr,n) where a
bit ξr,c is set to 1 if at least one entry υr,i in yr is set to 1
for which the module Si contains the column c, i.e., ξr,c =
1 ⇔ ∃Si ∈ S : υr,i = 1 ∧ c ∈ Si for all 1 ≤ r ≤ m and
1 ≤ c ≤ n.

When reducing the decision matrix to the module matrix,
we want to achieve the smallest representation while most of
the information has to be preserved. More formally, we as-
sess a certain transformation by computing an error function
e(Ξ, TΥ→Ξ (TΞ→Υ (Ξ, S) , S)) between the original decision
matrix Ξ and the corresponding retransformed module ma-
trix TΥ→Ξ (TΞ→Υ (Ξ, S) , S). This error can be defined with
respect to both decision space and objective space. Here,
we use the following two error functions:

Definition 5. Let Ξ = (ξi,j)m×n ∈ Mm,n({0, 1}) and
ΞT = (ξT

i,j)m×n ∈ Mm,n({0, 1}) be two decision matrices.
Then, one possible error function with respect to decision
space is the Hamming distance between the matrices:

edec(Ξ, ΞT) :=
X

1≤i≤m

X

1≤j≤n

|ξi,j − ξT
i,j |.

An error function with respect to to objective space can be
defined as

eobj(Ξ, ΞT) :=
X

1≤i≤m

Iε

“

f((ξT
i,1, . . . , ξ

T
i,n)), f((ξi,1, . . . , ξi,n))

”

where Iε is the binary additive epsilon indicator of [21]. Note
that other quality indicators like the hypervolume indicator
in [21] can be used as well. The second error function gives
an idea of the change in objective vector values if the new
module representation is used.

Now, we can state the problem of finding a best set of mod-
ules according to a given error function:

Problem 1 (bi-objective module selection). Let
Ξ ∈ Mm,n({0, 1}) be a decision matrix and e : Mm,n({0, 1})

x1

x2

x3

x4

1 2 3 4 5

0 1 0 1 1
0 1 1 1 1
1 1 1 1 0
0 1 1 1 0

decision matrix Ξ

6=

retransformed matrix
TΥ→Ξ (TΞ→Υ (Ξ, S) , S)

t1

t2

t3

t4

1 2 3 4 5

0 0 0 1 1
0 1 1 1 1
1 1 1 1 0
0 1 1 1 0

TΞ→Υ−−−−−−−→

←−−−−−−−
TΥ→Ξ

y1

y2

y3

y4

S1 S2 S3

0 0 1
0 1 1
1 1 0
0 1 0

module matrix Υ

Figure 2: An example where the retransformation
does not yield the original decision matrix. The
modules are defined as S1 = {1, 2, 3}, S2 = {2, 3, 4},
and S3 = {4, 5}.

×Mm,n({0, 1}) → R an error function that computes an
error between two arbitrary decision matrices. Then, the
bi-objective problem of simultaneously selecting a module
set and minimizing the number of modules can be stated
as finding a set S = {S1, . . . , Sl} such that both the number
of modules l and the error e(Ξ, TΥ→Ξ (TΞ→Υ (Ξ, S) , S)) are
minimized.

This problem is NP-hard; the proof is given in the ap-
pendix. Methods to tackle this module selection problem
will be presented in Sec. 4.

3.2 Grouping Solutions by Using Structure
Information

Given a set of modules, we would like to reduce the num-
ber of solutions by merging them into hierarchical groups.
The goal is to generate groups whose solutions are as similar
as possible. This in general corresponds to the task of clus-
tering. Instead of setting the number of groups a priori, we
would like to be able to traverse the group hierarchy from
the largest group, which contains all solutions, to the small-
est groups where each group consists of only one solution.
To achieve this, we propose to use dendrograms to represent
the grouping structure. The resulting groups should strongly
depend on the modules found, such that each group can be
uniquely defined by a sequence of modules that are selected
in this group. To this end, module-annotated dendrograms
are introduced.

In general, a dendrogram is a binary tree which can be
used to represent a hierarchically organized grouping struc-
ture. An example is given in Fig. 3. The nodes are dis-
tributed on so-called levels, i.e., each node has a fixed dis-
tance from the root. In a module-annotated dendrogram,
each level has exactly one node, reflecting the order in which
modules are selected for the grouping. Each node is associ-
ated with one module, where solutions containing the mod-
ule all belong to the left branch of the node, and solutions
that do not contain the module belong to the right branch.
The leaves represent the rows of the decision matrix, i.e.,
the solutions in a Pareto-set approximation. The branches
represent groups which contain all solutions (leaves) below

739

S1 S2 S3 S4 S5S6
S1

S2

S3

S4

S5

S6

53 41 2 6 7

cut

Figure 3: Example of a dendrogram with additional
module annotations (right) for a given decision ma-
trix (left). The solutions are denoted by the num-
bers from 1 to 7 and the modules by S1 to S6. The
vertical lines on the right of the decision matrix in-
dicate the corresponding groups.

that branch. In general, solutions and groups of solutions
which lie close to each other have many modules in common
and therefore have a high similarity.

We consider the goal of identifying the dendrogram that
minimizes the distances of the solutions within the groups.
As a distance measure of a group G ⊆ {1, . . . , m} of solu-
tions, we use the average pairwise Hamming distance s(G) :=

1/
`

|G|
2

´

P

r,s∈G
dH(xr, xs) where the Hamming distance be-

tween two points xr = (xr
1, . . . , x

r
n) and xs = (xs

1, . . . , x
s
n) is

defined as dH(xr, xs) =
P

1≤j≤n
|xr

j −xs
j |. For evaluating an

entire dendrogram, we use the intra-group distance measure
as defined above averaged over all groups in a level cut and
averaged over all these cuts. A level cut divides the den-
drogram horizontally, such that with each level cut a set of
groups is associated. For example, the level cut between S2

and S3 in Fig. 3 contains three groups: The one where all
solutions contain S1 and S2 (left subtree), one where all so-
lutions contain S1 but not S2 (middle) and the third where
all solutions neither contain S1 nor S2 (right subtree).

Definition 6. As distance measure s of a dendrogram D
with the level cuts C1, . . . , Cm ⊆ 2{1,...,m}, where each level
cut Ci is a set of groups Ci = {Gi,1, . . . , Gi,|Ci|} (Gi,j ∈
{1, . . . , m}) we propose the average pairwise intra-group Ham-
ming distance, averaged over all groups and all cuts. The
number of groups associated with a cut is equal to the number
of intersections between the cut and the dendrogram branches.

s(D) :=
1

m

X

1≤i≤m

1

|Ci|

X

1≤j≤|Ci|

1
`

|Gj |
2

´

X

r,s∈Gi,j

dH(xr, xs).

Overall, this leads to the following problem which has been
shown to be NP-hard [10].

Problem 2 (Finding the Optimal Dendrogram).
Given a decision matrix Ξ, the problem of finding the opti-
mal module-annotated dendrogram corresponds to finding
the dendrogram D with the lowest distance measure s(D) as
defined in Definition 6.

4. APPROACHES
Since the two problems presented in the previous section

are NP-hard, we propose corresponding heuristics in the
following. More precisely, we propose (i) two approaches
based on biclustering for approximating the module selection
problem and (ii) a method to construct a dendrogram on
that basis to deal with Problem 2.

4.1 Module finding
As described in Sec. 3 we would like to find modules that

exhibit homogeneous behavior over many solutions. This
problem corresponds to the task of biclustering. In the fol-
lowing, a bicluster is defined as a submatrix of Ξ that only
contains ones. Each of these biclusters forms a module con-
sisting of the bicluster’s columns. In Sec. 2 we have decided
to use two exemplary biclustering algorithms: Hartigan’s
algorithm [6] and Bimax [13].

Both algorithms have their advantages and drawbacks but
due to their complementary behavior, we selected them as
representative examples of biclustering algorithms. The Har-
tigan algorithm is the first proposed biclustering algorithm,
and many other algorithms are based on its principles, cf.
[11]; it is simple and fast. In contrast to the Bimax algo-
rithm, it limits the number of possible biclusters substan-
tially as it does not find overlapping biclusters. The Bimax
algorithm, however, finds all possible inclusion maximal bi-
clusters, i.e., all biclusters which are not contained in larger
ones. As the number of all biclusters is in general exponen-
tial in the matrix size this algorithm is impractical for larger
matrices.

Hartigan’s Algorithm: Hartigan’s algorithm is based
on a simple divide-and-conquer strategy; it iteratively di-
vides the decision matrix into smaller submatrices. Due to
this strategy, the order of the rows and columns of the de-
cision matrix is fixed as soon as the splitting starts. The
matrix therefore has to be sorted prior to algorithm execu-
tion. To be able to identify large biclusters, an appropriate
sorting measure is essential.

In this thesis, we use two criteria for the initial sorting:
one sorts according to the Hamming distances in decision
space and the other sorts according to the objective space
values. The first criterion places the two solutions with the
highest Hamming distance as first and last row, making
them the upper and lower border solution. It then itera-
tively selects the solution with the smallest Hamming dis-
tance to either border solution, places it next to this border
solution and makes it the new respective border solution.
The second criterion is restricted to two-objective problems;
it simply sorts the solutions in the decision matrix according
to their values of the first objective.

After sorting, the iterative splitting of the matrix takes
place. In each step, the theoretical best split for each ex-
isting submatrix is calculated and the best overall split is
performed by splitting one of the existing submatrices into
two new submatrices. The algorithm stops as soon as each
submatrix contains only ones or only zeros. As a splitting
measure for Hartigan’s algorithm, we take the following per-
centage split measure, defined as

Q(M1, M2) =

˛

˛

˛

˛

ones in M1

|M1|
−

ones in M2

|M2|

˛

˛

˛

˛

where M1 and M2 are the two submatrices resulting from
the split. This split measure has to be maximized in order
to find the best split.

Bimax: The recursive Bimax algorithm performs an ex-
haustive search for the set of all biclusters using a branch-
and-bound strategy. Even for reasonably sized matrices, the
number of biclusters found can become very high. There-
fore, we use a heuristic method to prune the set of biclusters
found. The pruning method iteratively selects the bicluster
which covers most of the remaining 1s. The remaining 1s are

740

defined as the 1s not yet covered by any selected bicluster.
This iteration stops if either a predefined number of selected
biclusters is reached or all 1s of the matrix are covered by
the selected biclusters.

4.2 Grouping Solutions Within Dendrogram
To create a module-annotated dendrogram, hierarchical

clustering could be used on the reduced representation, in
which case each module would contribute equally to the
grouping. Here, however, we would like a group to be defined
by the sequence of modules that are selected in all solutions
of the group. We propose the following simple approach.
The grouping starts according to the largest bicluster. This
bicluster divides the solutions into two groups, namely those
solutions which contain the module given by the bicluster
and those that do not. This already defines the root of the
dendrogram completely. Then, the next largest bicluster has
to be selected where the size of a bicluster is defined as the
number of ones covered by this bicluster which are not cov-
ered by any previously chosen bicluster. The generation of
the dendrogram stops if all groups contain only one solution.

5. EXPERIMENTAL VALIDATION
In this section, we address two questions: (i) are the algo-

rithms successful in finding meaningful groups, and (ii) are
there interesting structures present in Pareto-optimal sets
and approximations thereof. These aspects are studied on
the basis of the bi-objective 0-1-knapsack problem [20].

5.1 Proof-of-principle Results on
Well-structured Matrices

To show that both methods presented in the last sec-
tion can find known structures in a given decision matrix
Ξ, we implant random biclusters, each defining a particu-
lar module, into a matrix2 and analyze the capability of the
two biclustering algorithms to find the corresponding mod-
ules. In detail, biclusters that contain the same solutions
are merged to constitute one bicluster beforehand. Each of
these enlarged implanted biclusters corresponds to a mod-
ule which contains all columns the bicluster contains. To
check whether both Hartigan’s algorithm and Bimax find
these modules, we use the following measure. For each im-
planted module, we compute the module found by the bi-
clustering algorithms that matches the implanted module
best, i.e., which has the highest ratio of shared columns to
the union of both column sets. The average of these best
ratios over all implanted modules indicates the percentage
of implanted modules that are covered by the automatically
identified modules.

The results for different matrix sizes and different densi-
ties are shown in Table 1. Two major observations can be
made. First, Bimax finds more of the implanted structure
than Hartigan due to its exhaustive search for biclusters.
The covering is not 100% for Bimax because it only finds
inclusion maximal biclusters, which can be larger than the
implanted biclusters. Second, the results for the sparse ma-
trices are in all cases better than for the dense matrices. This
can be explained by the high number of implanted biclusters

2To this end, random biclusters are generated until the desired
number of ones is reached. The biclusters are then placed in
the matrix randomly in order of their sizes—starting with the
largest—with the restriction that biclusters cannot overlap.

matrix percentage of percentage of covering

size ones in matrices Hartigan Bimax

50x50 20 69.72 99.11
50x50 50 61.11 82.74

100x100 20 75.22 93.73
100x100 50 49.97 71.72
300x300 20 51.65 75.92
300x300 50 35.56 n/a

Table 1: Percentage of modules found in structured
random matrices that are covered by implanted
modules. Note that the number of biclusters found
by Bimax on the dense 300x300 matrix was already
too large, i.e., its running time longer than one day.

in the dense matrices and the issue that even Bimax does
not find all of these biclusters since the pruning heuristic of
Sec. 4 was used.

5.2 Pareto-Optimal Sets Contain Structure
We would now like to show that Pareto-optimal sets actu-

ally contain structure. As a test case, the knapsack problem
is chosen, as its Pareto-optimal set can be calculated exactly
using an integer linear programming solver. If the hypoth-
esis that a Pareto-optimal set actually contains structure
holds, then the corresponding decision matrix should con-
tain larger and fewer modules then a random matrix; this,
in turn, should be reflected in a smaller error as defined in
Definition 5.

Here, we compare the Pareto-optimal sets of 11 different
bi-objective knapsack instances including 100 items with 11
randomly generated matrices of similar size3 with respect
to the structure that is found by the two proposed meth-
ods based on Hartigan’s algorithm and Bimax. The random
matrices are generated by setting every entry to ’1’ indepen-
dently with probability 0.5; the solution’s objective vectors
are also randomly chosen by assigning randomly generated
profits and weights to the 0-1-knapsack problem.

The results as depicted in Fig. 4 indicate that the Pareto-
optimal fronts contain more structure than the random ma-
trices. In detail, both Bimax and Hartigan find modules
that yield smaller errors for the Pareto-optimal fronts than
for the random matrices if the same number of modules are
taken into account. Note that although the objective space
values are not taken into account by either method, the error
in objective space is significantly smaller for Pareto-optimal
fronts than for random matrices. Furthermore, we have to
note that Bimax was not applicable on the random matrices
since the number of biclusters found is too high. However,
Bimax finds better modules in the structured Pareto-optimal
sets yielding a lower error than those found by Hartigan’s
algorithm. An error of zero is already reached with about 50
modules which results in a reduction of the decision variables
of about 50% in the corresponding module matrix.

3The size is chosen by calculating the average length and width
of the knapsack Pareto-optimal sets. In this case, there are on
average 150 solutions and 55 items which are neither contained
in all nor in none of the solutions. Note that we are not inter-
ested in decision variables that are contained in all or no solution.
Therefore, such columns are deleted prior to module finding.

741

0 100 200 300
0

0.1

0.2

0.3

0.4

0.5

Number of Modules

E
rr

o
r

in
 D

e
c
is

io
n
 S

p
a
c
e

Front, Bimax

Front, Hartigan

Random, Hartigan

0 100 200 300
0

0.5

1

1.5

Number of Modules

E
rr

o
r

in
 O

b
je

c
ti
v
e

 S
p

a
c
e

Front, Bimax

Front, Hartigan

Random, Hartigan

Figure 4: Comparison between Pareto-optimal sets
and random matrices with respect to error function
edec (left) and eobj (right) averaged over 11 instances.
The error is plotted against the number of mod-
ules taken into account if the modules are chosen
as in the dendrogram, i.e., according to their size—
starting with the largest.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Generation

M
o
d
u
le

 C
o
v
e
ra

g
e

Figure 5: Average coverage of the modules found
by Hartigan’s algorithm on SPEA2’s current non-
dominated individuals plotted over time.

5.3 Progress of Structure During Search
To study the change of the structure of the Pareto-optimal

set approximation during the run of a multiobjective evolu-
tionary algorithm, we apply the SPEA2 algorithm [19] to one
of the 0-1-knapsack instances of the previous section4. This
is the first step towards an automated detection of problem
structure to speed up the search. However, it remains fu-
ture work to study an online search space reduction in depth.
Figure 5 shows the progress of similarity between the pop-
ulation’s modules and the modules contained in the Pareto-
optimal set over time. In this case, Hartigan’s algorithm
was applied both to the sets of non-dominated solutions in
each generation and on the Pareto-optimal set itself to find
the contained modules. The similarity of modules is defined
as the deviation between the two column sets as described
in Sec. 5.1.

Figure 5 shows the trend of the covering over time. As
expected, the modules found in the population become more
and more similar to the ones contained in the Pareto-optimal
set as the population converges to the Pareto-optimal set,
although the fluctuations of the similarity are quite large.

5.4 Running Times
The Bimax algorithm has a worst-case running time which

is exponential in the matrix size. This is mainly due to the
number of biclusters found, which limits the usage of Bimax.

4For SPEA2, the implementation from the PISA toolbox with
standard parameter values is used [1]. The population size is set
to 300 and the knapsack instance has 100 items.

50 100 150 200 250
0

100

200

300

400

500

Number of Decision Variables

R
u
n
n
in

g
 T

im
e
 [

s
]

Min. Bicluster Size: 1

Min. Bicluster Size: Matrix Dimensions/5

Min. Bicluster Size: Matrix Dimensions/10

Min. Bicluster Size: Matrix Dimensions/20

Figure 6: Running time of Hartigan’s algorithm on
Pareto-optimal sets of the 0-1-knapsack problem for
different input sizes and different minimal biclus-
ter sizes. Note that the number of solutions in the
Pareto-optimal sets is 142 on average for the 100
item instances and 344 for the 250 item instances.

For example, the decision matrix of size 701×123 containing
the solutions of a Pareto-optimal set from a 250 items knap-
sack instance produce more than 2 GB of data. One way
to reduce this huge amount of data is to restrict the mini-
mum bicluster size. However, this cannot solve the problem
completely. Although structured matrices of size 300 × 300
can be processed, Bimax needs more than one day on an
AMD 64bit linux machine with 4 cores and 2.6GHz to pro-
cess random matrices of the same size. The usage of Bimax
is therefore limited to small instances. However, it served as
a reference method that yields—due to its exhaustive search
for biclusters—better results than Hartigan’s algorithm.

For Hartigan’s algorithm, a similar restriction on the min-
imum bicluster size can be used which makes the algorithm
applicable to matrices of reasonable size, see Fig. 6. For
example, the computation of the modules within a Pareto-
optimal set of a 250 item knapsack instance with 344 solu-
tions takes about one minute on the AMD linux machine
mentioned above if the minimum bicluster size is set to 10%
of the matrix dimensions.

6. APPLICATION
In this section, we apply the proposed approaches of mod-

ule identification and grouping of solutions to two examples
to show what can be gained from an analysis of the structure
in Pareto-optimal sets.

6.1 Knapsack Problem
For the two-objective 0-1-knapsack problem, we focus on

the grouping according to both similarity in decision space
and objective space. This is not directly provided by the
proposed approaches but can be gained indirectly by sorting
the decision matrix within the Hartigan framework accord-
ing to objective space and doing the grouping according to
decision space. For sets of non-dominated solutions of a two-
objective problem, the sorting of the decision matrix accord-
ing to objective space values can be achieved without loss
of generality by sorting according to the values of the first
objective. Figure 7 shows a grouping example for a Pareto-
set approximation of a 0-1-knapsack problem instance with
100 items, generated by SPEA2 as in the previous section,
using the settings of [20].

For illustrating the similarities within the groups, we can
additionally plot the profit-to-weight ratios of the items of

742

0 2 4 6 8
0

1

2

3

4

5

6

Profit 1 / Weight 1

P
ro

fi
t
2
 /
 W

e
ig

h
t
2

Upper Group

none

all

Items contained in

of the solutions of
the upper group

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Profit 1 / Weight 1

P
ro

fi
t
2
 /
 W

e
ig

h
t
2

Middle Group

none

all

of the solutions of
the middle group

Items contained in

2800 3000 3200 3400 3600 3800
2400

2600

2800

3000

3200

3400

Sum of Pro!t 1

S
u

m
 o

f
P

ro
!

t
2

Upper

Group

Middle

Group

Lower

Group

0 2 4 6 8
0

1

2

3

4

5

6

Profit 1 / Weight 1

P
ro

fi
t
2
 /
 W

e
ig

h
t
2

Lower Group

none

all

Items contained in

of the solutions of
the lower group

Figure 7: Grouping of a Pareto-optimal set approxi-
mation for the knapsack problem with 300 solutions
and 11 groups (lower left) and item representation of
three exemplary groups: the group with highest f1

values is shown in the lower right figure, the group
with the highest f2 values is shown in the upper left
figure, and the upper right figure shows a group with
intermediate objective values. The grouping is done
with modules of Hartigan’s algorithm.

the knapsack instance and indicate for each group which
items are included in all solutions of the considered group
(black), and included in no solution of the group (white).
Figure 7 shows the profit-to-weight ratio plots for three ex-
emplary groups of the investigated knapsack instance. For
clarity, items that are contained in all or in no solutions of
the entire Pareto-optimal set are not plotted. Interestingly,
the analyzed Pareto-optimal set contains structure within
both decision and objective space: solutions which are neigh-
bored in objective space also show similarities in their deci-
sion vectors. Solutions located on the same extreme of the
Pareto-optimal frontier have similar items selected whereas
solutions on opposite extremes have complementary decision
vectors; for solutions that have a high f1 value, items with
high f1 profit are selected, whereas solutions with high f2

values contain more items with high f2 profit.

6.2 Network Processor Design
As a second application, we choose the problem of a net-

work processor design as described in [16] and as provided
in the PISA framework [1]. The problem is to optimize the
architecture of packet processing devices with respect to the
two objectives performance and cost. In more detail, com-
ponents of the processor have to be chosen and computing
tasks have to be assigned to these components afterwards.
To investigate the underlying structure of this problem, we
use the multiobjective optimizer IBEA [18] to generate a
Pareto-optimal set approximation. To this end, the algo-
rithm is run with a population size of 150 for 300 genera-
tions. Only the 33 non-dominated solutions found are used
in the analysis based on Hartigan’s algorithm.

Figure 8 illustrates the original decision matrix ordered by
objective space similarity together with the largest found bi-
clusters and shows the resulting dendrogram. The modules
found and the dendrogram help to gain a basic understand-
ing of the problem, even when the decision maker cannot be

S1 S2
S3S4

S5 S6

S1

S2

S3

S4

S5

S6

Figure 8: Visualization of structure in a Pareto-
set approximation for the network processor design
problem: (left) decision space values of the 33 non-
dominated solutions found; (right) dendrogram.

sure about whether the known solutions are Pareto-optimal
or not.

For our example instance, 143 out of all 233 decision vari-
ables are set to zero for all 33 solutions, which means that
certain tasks are never mapped to certain components. Four
of the remaining 90 decision variables are set to 1 in all 33
solutions. In this case, it says that in all 33 different pro-
cessor designs, one particular component, namely a digital
signal processor (DSP), is chosen and three of the 25 tasks
are allocated to this component. This can assist in decision
making in a way that these parts do not have to be taken
into account by the decision maker because all known solu-
tions have the same sub-structure. From the dendrogram,
we an also extract some information about the problem. For
example, in the case of three groups (horizontal cut between
S2 and S3), one group contains module S1 (left branch of
the dendrogram) and the second one only module S2 (mid-
dle branch). In the third group, indicated by the rightmost
branch in the dendrogram of Fig. 8, all solutions contain
neither the module S1 nor the module S2. S1 maps all re-
maining tasks to the DSP. S2, on the other hand selects
a cipher and assigns it two other tasks. Interestingly and
similar to the observation for the knapsack problem, all so-
lutions that contain a certain module, here S1, occur on an
extreme of the Pareto-optimal front: the solutions are very
cheap but quite slow.

7. CONCLUSIONS
When solving multiobjective optimization problems, three

problems occur during decision making: (i) the solutions are
represented by too many decision variables, (ii) too many
non-dominated solutions exist, and (iii) too many objec-
tives are involved in the evaluation. This study tackled
the first and second problem simultaneously by proposing
two methods to automatically reduce the number of deci-
sion variables and group similar solutions together by find-
ing so-called modules of the decision space, i.e., subsets of
decision variables that are as large as possible and are set
in as many solutions as possible to the same value. The
proposed methods have been extensively tested and com-
pared on random matrices and the 0-1-knapsack problem.
In addition, we showed the applicability of these methods
in decision making after the search in a case study for both
the knapsack and a network processor design problem.

In the future, it may be promising to extend the proposed
approach to non-binary decision spaces. Here, advanced bi-

743

clustering techniques could be useful [11]. For a more general
approach, modules with arbitrary decision variable values
could be considered. Furthermore, one may think of using
the reduction techniques online, i.e., during the search. The
idea would be to reduce the decision space whenever signifi-
cant modules have been found. Thereby, the search may be
better focused towards promising regions.

8. ACKNOWLEDGMENTS
Dimo Brockhoff has been supported by the Swiss National

Science Foundation under grant 112079.

9. REFERENCES
[1] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler.

PISA—A Platform and Programming Language
Independent Interface for Search Algorithms. In
Conference on Evolutionary Multi-Criterion Optimization
(EMO 2003), pages 494–508, Berlin, 2003. Springer.

[2] D. Brockhoff, D. K. Saxena, K. Deb, and E. Zitzler. On
Handling a Large Number of Objectives A Posteriori and
During Optimization. In Multi-Objective Problem Solving
from Nature: From Concepts to Applications, pages
377–403. Springer, 2007.

[3] K. Deb and A. Srinivasan. Innovization: Innovating Design
Principles through Optimization. In Genetic and
Evolutionary Computation Conference (GECCO 2006),
pages 1629–1636, 2006.

[4] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., 1990.

[5] D. E. Goldberg, B. Korb, and K. Deb. Messy Genetic
Algorithms: Motivation, Analysis, and First Results.
Complex Systems, 3:493–530, 1989.

[6] J. A. Hartigan. Direct Clustering of a Data Matrix.
Journal of the American Statistical Association,
67(337):123–129, 1972.

[7] C. Haubelt, S. Mostaghim, J. Teich, and A. Tyagi. Solving
Hierarchical Optimization Problems Using MOEAs. In
Conference on Evolutionary Multi-Criterion Optimization
(EMO 2003), pages 162–176. Springer, 2003.

[8] J. H. Holland. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to
Biology, Control and Artificial Intelligence. MIT Press,
1975.

[9] E. J. Hughes. Radar Waveform Optimization as a
Many-Objective Application Benchmark. In Conference on
Evolutionary Multi-Criterion Optimization (EMO 2007),
pages 700–714, 2007.

[10] M. Křivánek and J. Morávek. NP-hard Problems in
Hierarchical-Tree Clustering. Acta Informatica,
23(3):311–323, 1986.

[11] S. C. Madeira and A. L. Oliveira. Biclustering Algorithms
for Biological Data Analysis: A Survey. IEEE/ACM
Transactions on Computational Biology and
Bioinformatics, 1(1):24–45, 2004.

[12] S. Obayashi. Pareto Solutions of Multipoint Design of
Supersonic Wings Using Evolutionary Algorithms.
Adaptive Computing in Design and Manufacture V, 2002.

[13] A. Prelić, S. Bleuler, P. Zimmermann, A. Wille,
P. Bühlmann, W. Gruissem, L. Hennig, L. Thiele, and
E. Zitzler. A Systematic Comparison and Evaluation of
Biclustering Methods for Gene Expression Data.
Bioinformatics, 22(9):1122–1129, 2006.

[14] M. Preuss, B. Naujoks, and G. Rudolph. Pareto Set and
EMOA Behavior for Simple Multimodal Multiobjective
Functions. In Parallel Problem Solving From Nature
(PPSN IX), pages 513–522. Springer, 2006.

[15] K. Sastry, D. E. Goldberg, and X. Llorà. Towards
Billion-Bit Optimization via a Parallel Estimation of

Distribution Algorithm. In Genetic and Evolutionary
Computation Conference (GECCO 2007), pages 577–584.
ACM, 2007.

[16] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. Design
Space Exploration of Network Processor Architectures. In
Network Processor Design 2002: Design Principles and
Practices. Morgan Kaufmann, 2002.

[17] D. A. Van Veldhuizen and G. B. Lamont. Multiobjective
Optimization with Messy Genetic Algorithms. In ACM
Symposium on Applied Computing, 2000.

[18] E. Zitzler and S. Künzli. Indicator-Based Selection in
Multiobjective Search. In Conference on Parallel Problem
Solving from Nature (PPSN VIII), pages 832–842.
Springer, 2004.

[19] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the Strength Pareto Evolutionary Algorithm for
Multiobjective Optimization. In Evolutionary Methods for
Design, Optimisation and Control with Application to
Industrial Problems (EUROGEN 2001), pages 95–100,
2002.

[20] E. Zitzler and L. Thiele. Multiobjective Evolutionary
Algorithms: A Comparative Case Study and the Strength
Pareto Approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271, 1999.

[21] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and
V. Grunert da Fonseca. Performance Assessment of
Multiobjective Optimizers: An Analysis and Review. IEEE
Transactions on Evolutionary Computation, 7(2):117–132,
2003.

APPENDIX

A. OMITTED NP-HARDNESS PROOF

Theorem 1. Problem 1 with respect to the error function
edec(Ξ, ΞT) :=

P

1≤i≤m

P

1≤j≤n |ξi,j − ξT
i,j | is NP-hard.

Proof. The NP-hardness is shown by a Turing reduction
from the NP-hard SET BASIS problem [4]. Given a collection
C = {C1, . . . , Cm} of subsets of a finite set S and a positive in-
teger K ≤ |C|, the decision problem SET BASIS is the question of
whether there is a collection B of subsets of S with |B| = K, such
that for each c ∈ C there exists a subcollection of B whose union
is exactly c (page 222 of [4]). The polynomial transformation
function we use for the NP-hardness proof is defined as follows:
We define a decision matrix Ξ = (ξi,j)|C|×|S| ∈ M|C|,|S|({0, 1})
such that ∀1 ≤ i ≤ m, 1 ≤ j ≤ n : ξi,j = 1 ⇔ j ∈ Ci. With
the instance (Ξ, K), we ask our oracle for the module set with at
most K modules and the smallest error edec. Then, there exist
a collection B of subsets of S with the properties desired in the
SET BASIS problem if and only if edec = 0.

Assume there exists such a collection B. This can also serve
as a set of modules that yields no error because the following
holds. Let us without loss of generality consider the set C1 and
the corresponding subcollection B′ := {B1, . . . , Bp} ⊆ B with
S

1≤i≤p Bi = C1, i.e., all 1-entries in the first row of Ξ are con-

tained in at least one Bi ⊆ B′ such that all decision variables ξ1,j

with j ∈ Bi are set to 1 as well. Thus, TΥ→Ξ(TΞ→Υ(Ξ)) contains
the same 1-entries as Ξ in the first row and the error is zero.

If B1, . . . , BK , on the other hand, are the modules found by
our oracle and causing no error, the corresponding subsets of S
build an optimal basis for the SET BASIS problem: whenever a set
B1, . . . , BK of modules causes no error, there is for each 1-entry
ξr,c in Ξ at least one module Bi that contains the column j and
where all other columns of Bi are also set to 1 in the rth row of Ξ.
Thus, there exists for each row r in Ξ a subset of the B1, . . . , BK

such that the union of their columns is the same as the columns
that are set to 1 in this row, i.e., the union of the corresponding
subsets of S in the SET BASIS problem instance is exactly Ci.

744

