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ABSTRACT 
In this paper, we report on our investigation of factors affecting 
the performance of various parallelization paradigms for multi-
objective evolutionary algorithms. Different parallelization 
paradigms emphasize separate development of sub-populations 
versus communication and coordination between sub-populations 
to greater or lesser degrees. We hypothesized that the 
characteristics of a particular problem will favour some paradigms 
over others. We tested this hypothesis by creating variations on 
test problems with different characteristics, and testing the 
performance of different paradigms in a cluster environment. 

Categories and Subject Descriptors 
G.1.6 [Optimization]: Global Optimization 

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords: Multi-objective evolutionary algorithms, 
parallelization, test problem characteristics 

1. INTRODUCTION 
In this paper, we report on our investigations into performance 
differences between various parallelization paradigms for multi-
objective evolutionary algorithms (MOEAs). 
A number of paradigms have been proposed and explored, but 
there currently exists little guidance as to when and where to use 
which parallelization paradigm. This is our aim in the work 
reported in this paper – to make a contribution towards 
understanding which parallelization paradigms are best suited to 
which kinds of optimization problems. 

2. EXPERIMENTS 
For these experiments, we implemented various (parallel or serial) 
versions of a popular MOEA, Deb’s NSGA-II [1]. We used a 
crossover probability of 0.9, mutation probability of 0.033, 
distribution index for SBX crossover of 15, and distribution index 
for polynomial mutation of 20. 
We used the Message Passing Interface (MPI) specification for 
parallelizing MOEAs. We used a homogenous cluster of 21 
processors set up as follows: Processors: x86 architecture, single 
2.6GHz Pentium 4 processor with 512MB of memory; Operating 
system: Rocks 3.3.0 (Makalu); Network: Ethernet based 10/100 
LAN; MPI implementation: MPICH version 1.2.5.2. 

The models implemented were (see [4] for details): 

Master-slave: We distributed the population members evenly 
across slave processors. Each slave performs objective function 
evaluations for all population members it receives, and sends the 
objective values back to the master processor. 

Island-10 (IS10): For the two Island models, we chose a variation 
in which islands are connected in a ring structure and all islands 
execute identical MOEAs (NSGA-II) with identical parameters. 
We used a uniform elitist migration scheme. Migration and 
replacement was performed at fixed intervals of 10 generations. 

Island-100 (IS100): This was the same as Island-10, with 
migration every 100 generations. 
We constructed the test problems for this study using the WFG 
toolkit [2]. The test problems are all bi-objective problems with 
20 real-valued parameters in the range [0...1]. All problems were 
based on the shape function of the I1 problem from [2], which has 
a connected concave Pareto front. Transformations were applied 
to create eight problems with all combinations of the binary 
characteristics listed below: 

• Uni-modal problems (UM) were created by applying a linear 
shift to distance parameters. Multi-modal problems (MM) 
used a multi-modal shift of position and distance parameters. 

• Non-separable problems (NS) used a non-separable 
reduction. Separable problems (SP) used a weighted sum 
reduction. 

• Biased problems (BI) used a polynomial bias transformation. 
Non-biased problems (NB) used no bias transformation. 

To judge the quality of the solutions found, we used the average 
hypervolume achieved over a given number of independent runs 
of the algorithm in a fixed period, normalized by dividing by the 
average hypervolume achieved using the standard serial MOEA. 
The eight test problems were solved independently 25 times, with 
a 2 minute fixed time period for each problem-solving attempt, 
using total populations of 160 solutions.  

3. RESULTS 
• The two Island models performed similarly, except on 

the SP/BI problems, where IS100 was better than IS10; 

• Island models do better than Master-slave on the 
UM/NS problems;  

• Master-slave was better than the Island models on 
UM/SP/NB, MM/SP/BI, MM/SP/NB and MM/NS/NB, 
suggesting that Master-slave may do better on multi-
modal, separable or non-biased problems. 
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Table 1 – Average relative hypervolumes achieved for each model on different problem types. 

Uni-modal (UM) separable (SP) non-separable (NS) 

non-biased (NB) 

  

biased (BI) 

  

multi-modal (MM) separable (SP) non-separable (NS) 

non-biased (NB) 

  

biased (BI) 
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