
Parallel Hyperheuristic

A Self-Adaptive Island-Based Model for Multi-Objective Optimization

Coromoto León
Dpto. Estadistica, I. O. y

Computación
Universidad de La Laguna

38271, Tenerife, Spain
cleon@ull.es

Gara Miranda
Dpto. Estadistica, I. O. y

Computación
Universidad de La Laguna

38271, Tenerife, Spain
gmiranda@ull.es

Carlos Segura
Dpto. Estadistica, I. O. y

Computación
Universidad de La Laguna

38271, Tenerife, Spain
csegura@ull.es

ABSTRACT
This work presents a new parallel model for the solution
of multi-objective optimization problems. The model com-
bines a parallel island-based scheme with a hyperheuristic
approach in order to raise the level of generality at which
most current evolutionary algorithms operate. This way, a
wider range of problems can be tackled since the strengths of
one algorithm can compensate for the weaknesses of another.
Computational results demonstrate that the model grants
more computational resources to those algorithms that show
a more promising behaviour.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Inteligen-
ce—Problem Solving, Control Methods and Search Heuris-
tic Methods; D.1.3 [Software Engineering]: Program-
ming Techniques—Concurrent Programming Parallel Pro-
gramming

General Terms
Algorithms

Keywords
Multi-objective Optimization, Evolutionary Algorithms, Island-
Based Models, Hyperheuristics, Hybrid Algorithms

1. INTRODUCTION
Multi-objective optimization evolutionary algorithms (moeas)

have shown great promise for calculating solutions to large
and difficult multi-objective optimization problems (mops) [1].
Several studies have been performed in order to reduce the
resource expenditure when using moeas. These studies nat-
urally lead to considering the moeas parallelization [3]. Among
the existing parallel moeas (pmoeas), standard island-based
models appear to be the most efficient method. If there

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

exists a moea that clearly outperforms the other ones in
solving one type of problem, the homogeneous island-based
model using such moea allows to obtain good quality solu-
tions. However, it is difficult to know a priori which moea is
the most appropriate to solve a problem. By contrast, het-
erogeneous models allows to execute different moeas and/or
parameters on each processor at the same time, but if some
of the moeas are not suitable to optimize the problem, a
waste of resources is done.

2. SELF-ADAPTIVE PARALLEL MODEL
The proposed pmoea model breaks from the island-based

model adding a self-adaptive property behaviour to it. The
self-adaptive property allows, by applying a hyperheuristic,
to change in an automatic and dynamic way the moeas
and/or parameters that are used in the islands along the
pmoea run. The architecture of the new hybrid model is
similar to the island-based model, i.e. it is constituted by a
set of slave islands that evolve in isolation applying a cer-
tain evolutionary algorithm to a given population (see Algo-
rithm 1). The number of islands and the different moeas
to execute over the local populations are defined by the
user. Also, as in the island-based model, a tunable migration
scheme allows the exchange of solutions between neighbour
islands. However, a new special island is introduced into
the scheme. That island is called the master island (see
Algorithm 2) and it is in charge of maintaining the global
solution achieved by the pmoea and selecting the moea con-
figurations that are executed on the slave islands. The global
solution is obtained by joining the local solutions achieved
by each one of the slave islands.

In the proposed model, besides the global stop criterion,
local stop criterions are defined for the execution of the
moeas on the islands. When a local stop criterion is reached,
the island execution is stopped and the local results are sent
to the master. The master scores, by means of the contribu-
tion metric, the configurations defined by the user according
to their obtained results. Based on such quality indicator,
the hyperheuristic is applied and the master selects the con-
figuration that will continue executing on the idle island.

3. EXPERIMENTAL EVALUATION
The two-objective zdt [4] test problems have been chosen

to test the behaviour of the designed model. The moeas
that have been implemented to test the model are: spea [6],
spea2 [5] and nsga-ii [2].

757



Algorithm 1 Slave Islands Pseudocode

1: configureMigration()
2: lastMOEA ← NULL
3: while (not globalStopCriterion()) do

4: newMOEA ← receiveMOEAConfiguration()
5: if (newMOEA != lastMOEA) then

6: lastMOEA ← initMOEA(newMOEA)
7: receiveInitialPopulation()
8: end if

9: while (not localStopCriterion()) do

10: runGeneration()
11: migrate()
12: end while

13: sendLocalSolution()
14: end while

Algorithm 2 Master Island Pseudocode

1: globalSolution ← ∅
2: initAdaptiveModel()
3: assignInitMOEAConfigsToIslands()
4: while (not globalStopCriterion()) do

5: island ← checkForIdleIsland()
6: if (island != NULL) then

7: islandLocalSol ← receiveIslandSolution(island)
8: globalSolution ← globalSolution ∪ islandLocalSol
9: scores ← scoreMOEAConfigs()
10: nextMOEAConf ← selectMOEAConfig(scores)
11: if (nextMOEAConf != currentMOEAConf(island)) then

12: assignMOEAConfig(nextMOEAConf, island)
13: assignInitialPop(subset(globalSolution), island)
14: else

15: resumeExecution(island)
16: end if

17: end if

18: end while

The experiment compares the proposed model with some
standard pmoeas. For each implemented moea a homo-
geneous scheme is considered: “homo-spea”, “homo-spea2”
and “homo-nsga-ii”. A heterogeneous scheme constituted
by the three implemented moeas is also considered: “het-
erogeneous”. Two self-adaptive executions are tested: “3-
adaptive” and “6-adaptive”. The first one uses the same
properties as previous considered models: it is constituted
by three slave islands, subpopulations on the islands are
fixed to 45 individuals, and the archive size for the spea
and spea2 configurations is fixed to 45. Instead, the 6-
adaptive version uses 6 different moeas configurations: the
same three as the 3-adaptive besides three new ones with
subpopulations and archive sizes of 30 elements. For the
mutation, the uniform mutation operator has been selected.
The uniform crossover operator has been used to perform
the crossover. The mutation and crossover rates has been
fixed to 0.01 and 1, respectively. In all cases, the same mi-
gration scheme is specified. It consists in an unrestricted
topology where the migration is performed from a slave to
a randomly selected partner. The migration probability has
been fixed to 0.05 and the number of migrated individuals
limited to 4 each time. The global stop criterion for every
execution is 90000 evaluations. The local stop criterion in
3-adaptive is fixed to 900 evaluations. In all cases, the final
solution is limited to 100 elements.

Table 1 presents, for each model and test problem, the av-
erage number of evaluations needed to reach the 75%, 95%
and 99% of the best hypervolume [7] achieved. The results
achieved by the 6-adaptive configuration outperforms the
ones of the 3-adaptive configuration. Results obtained by
the new scheme improve the ones reached by the heteroge-
neous model, getting close to the best homogeneous model.

HV 3-adap 6-adap homo homo homo hete

spea spea2 nsga-ii

ZDT1

75% 8173 7840 10617 8833 7910 8339
95% 27549 27142 29685 27423 25282 27555
99% 58451 57110 61327 58869 55779 59436

ZDT2

75% 21928 20391 28653 20853 20108 22467
95% 52623 49557 59722 50335 50295 53301
99% 75928 72668 79110 74077 79110 76714

ZDT3

75% 5734 5419 8121 6422 6153 6033
95% 22049 21360 25223 22203 21304 22414
99% 52800 51403 56039 50914 52279 53864

ZDT4

75% 40392 37496 43580 38628 39371 40468
95% 62763 63344 67778 61064 64810 67470
99% 67758 66710 69893 66522 69558 72835

Table 1: Hypervolume for ZDT Problems

Thanks to the adaptive behaviour of the model, more com-
putational resources are given to the most promising config-
urations, and thus, high-quality solutions are obtained with-
out forcing the user to have a prior knowledge about each
moea behaviour when applied to the considered problem.

4. ACKNOWLEDGMENTS
This work has been supported by the ec (feder) and the

Spanish Ministry of Education and Science inside the ‘Plan
Nacional de i+d+i’ with contract number (tin2005-08818-
c04-04). The work of Gara Miranda has been developed
under grant fpu-ap2004-2290.

5. REFERENCES
[1] C. A. Coello, G. B. Lamont, and D. A. V. Veldhuizen.

Evolutionary Algorithms for Solving Multi-Objective
Problems. Genetic and Evolutionary Computation.
2007.

[2] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A
Fast Elitist Non-Dominated Sorting Genetic Algorithm
for Multi-Objective Optimization: NSGA-II. In VI
Conference on Parallel Problem Solving from Nature,
volume 1917 of LNCS, pages 849–858. Springer, 2000.

[3] D. A. V. Veldhuizen, J. B. Zydallis, and G. B. Lamont.
Considerations in engineering parallel multiobjective
evolutionary algorithms. IEEE Trans. Evolutionary
Computation, 7(2):144–173, 2003.

[4] E. Zitzler, K. Deb, and L. Thiele. Comparison of
multiobjective evolutionary algorithms: Empirical
results. Evolutionary Computation, 8(2):173–195, 2000.

[5] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the Strength Pareto Evolutionary Algorithm
for Multiobjective Optimization. Evolutionary Methods
for Design, Optimization and Control, pages 19–26,
2002.

[6] E. Zitzler and L. Thiele. An Evolutionary Algorithm
for Multiobjective Optimization: The Strength Pareto
Approach. Technical Report 43, Computer Engineering
and Networks Laboratory, Zurich, Switzerland, 1998.

[7] E. Zitzler and L. Thiele. Multiobjective Optimization
Using Evolutionary Algorithms - A Comparative Case
Study. In Parallel Problem Solving from Nature
(PPSN-V), volume 1498, pages 292–301. Springer, 1998.

758


