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ABSTRACT
This paper proposes a new algorithm which promotes well dis-
tributed non-dominated fronts in the parameters space when a sin-
gle-objective function is optimized. This algorithm is based on
ǫ-dominance concept and maxmin sorting scheme. Besides that,
the paper also presents the results of the algorithm when it is used
in the automated synthesis of optimum performance CMOS radio-
frequency and microwave binary-weighted differential switched ca-
pacitor arrays (RFDSCAs). The genetic synthesis tool optimizes a
fitness function which is based on the performance parameter of the
RFDSCAs. To validate the proposed design methodology, a CMOS
RFDSCA is synthesized, using a 0.25 µm BiCMOS technology.

Categories and Subject Descriptors
I.0 [General]: [Genetic Algorithms, Multi-Objective]

General Terms
Algorithms, Design

1. SINGLE-OBJECTIVE OPTIMIZATION
In multi-objective problems there are many approaches to find

the Pareto front. One of them is based on ǫ-dominance concept [1].
This technique is used to get a set of solutions with good spread and
diversity over the objective space. The proposed algorithm uses this
concept and the maximin technique [2] as the main ideas to achieve
good diversity in the parameter space. Initially, the objective space
is divided in several ranks, being each one characterized with a
ǫ-distance (Figure 1(a)). Inside each rank, all the solutions have
the same preference, even when their objective values are differ-
ent. In the next algorithm iteration, the best n distributed solutions
are selected from a set with m solutions (m > n). Therefore, to
select a population of popdim solutions, the algorithm begins by se-
lecting the solutions with lower rank (rank 1 of Figure 1(a)) until
the last allowed rank being considered has more solutions than the
remaining slots in the new population. In this case we select the
best dispersed solutions of that rank based on the maximin scheme.

The main concept behind the maximin sorting scheme is to se-
lect the solutions in order to decrease the large gap areas existing
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Figure 1: (a) Problem with one objective and one parameter
{x}. (b) Solutions in a bidimensional parameter space {x1, x2}.

in the already selected population. For example, consider the solu-
tions of one rank depicted in figure 1(b). In this case two param-
eters {x1, x2} are considered. Initially the two extreme solutions
of each parameter are selected, {a, b} and {d, c} for x1 and x2,
respectively. Through this selection the set S ≡ {a, b, c, d} is ini-
tialized. Then, solution e is selected because it has the larger dis-
tance to the set S. After that, solution f is selected for inclusion
into the set S ≡ {a, b, c, d, e}, for the same reasons. The process
is repeated until S population is completed.

The maximin sorting scheme is depicted in Algorithm 1. In each
generation the new offsprings (set D) are merged with their progen-
itors (set P ), according with the Algorithm 1, resulting in the new
set R (line 1). After that, the algorithm may select, for each one of
the optimization parameters (npar), the extreme solutions (getMin
and getMax functions) from rank 1 (lines 5-7) and introduces them
into the final population (set S). Then the individuals of lower rank
are removed (getRankMin function) from the auxiliary population
A and inserted into the set S until the number of solutions of the
current rank surpass the allowed number of solutions of set S (lines
9-12). Next, the distance squared, caj (1a), between each rank so-
lution, aj , and the solutions already selected, si, is evaluated. Then,
the solution aj , whose squared distance to the set S is the larger (k
solution), is selected (1b) (getMaxCi function). Each time a solu-
tion enters into the set S, the cost cal

of the set A is reevaluated
(lines 19-21). This process ends when the set S is completed.

caj
= min

si∈S,aj∈A
‖ aj − si ‖

2 (1a)

S = S ∪ {aj : caj
= max

ai∈A
cai

} (1b)
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Algorithm 1 : Single-objective maximin algorithm.
1: R = P ∪ D

2: S = ∅
3: A = getRankMin(R)
4: if #A > popdim then
5: for i = 1 to npar do
6: S = S∪ getMin(A, i)∪ getMax(A, i)
7: end for
8: end if
9: while #S + #A ≤ popdim do

10: S = S ∪ A

11: A = getRankMin(R)
12: end while
13: for j = 1 to #A do
14: caj

= min
si∈S

{‖aj − si‖
2}

15: end for
16: while #S < popdim do
17: k = getMaxCi(A)
18: S = S ∪ k

19: for l = 1 to #A do
20: cal

= min{‖al − k‖2, al}
21: end for
22: end while

2. CIRCUIT DESIGN AND RESULTS
To access the algorithm performance, an application example

in the area of RF integrated circuits is used. In this sense, the
optimization procedure is employed to automate the design of a
RFDSCA circuit with the goal of finding the component values that
maximize its performance. The circuit is developed in a 0.25 µm
BiCMOS technology and it is intended to be a cell of a ku-band
voltage controlled oscillator (VCO) [3].

To design high performance RFDSCAs it is necessary to obtain
the components values that maximize the RFDSCA quality factor
(QRFDSCA). Because of that, the fitness function used in the auto-
mated RFDSCA circuit design algorithm (fv = 2πfQRFDSCA) is
the one defined in (2). In this equation the number of cells N , the
two reference capacitors, both with value C, and the number of
basic switches M are the optimization parameters. The technolog-
ical parameters are the ON and OFF resistances of the basic switch
(RBS-{ON, OFF}, respectively) and its OFF capacitance (CBS-OFF). Fi-
nally, the independent variable is defined by the control word D.

To fulfill the required VCO tuning range, the RFDSCA capac-
itance must present, at least, a minimum capacitance of 72 fF, a
maximum capacitance of 108 fF and a maximum tuning step of
8 fF. These three capacitance constraints are evaluated from the
RFDSCA capacitance equation (defined in (3)).

The algorithm uses 103 potential solutions, each one represented
by N , M and C. These floating point values are randomly initial-
ized in an appropriate range (N = 1-64, M = 1-64 and C = 1 fF-
1 pF). The search is then carried out with this population over 107

generations. The fitness value, fv , is given by (2) if the solution ver-
ifies the capacitance constraints, otherwise takes a negative value,
proportional to the distance to the feasible decision region, if at
least one restriction is not satisfied. The successive generations of
new solutions are reproduced based on a linear ranking scheme and
simulated binary crossover [4]. Finally, when mutation occurs the
operator replaces the value of one optimization parameter accord-
ing to a uniform distribution function. The uniform function varies
in the range [−U, U ] where U = {0.2, 0.2, 0.4 fF} for N , M and
C, respectively. The crossover and mutation probabilities are 0.6
and 0.05, respectively. The height of each rank is ǫ = 1011.

fv(N, M, C) =

(

1+
2MCBS-OFF

C

)(

1+ D
Dmax

C
2MCBS-OFF

)

RBS-OFFCBS-OFF

1 + D
Dmax

[

(

C
2MCBS-OFF

+ 1
)2 RBS-ON

RBS-OFF
− 1

] (2)
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Figure 2: (a) Optimal parameters front in the N×M×C space.
(b) Projections of the front in the N × C and M × C planes.

CRFDSCA(N, M, C) =
D C

2 + Dmax MCBS-OFF

1 +
2MCBS-OFF

C

(3)

The RFDSCA circuits with optimum performance obtained by
the genetic algorithm (GA) can be directly defined by the dot-points
of figures 2(a) and 2(b). Figure 2(a) shows the optimum solution
front in a 3D space and Figure 2(b) the corresponding projections
in N × C and M × C planes. These two figures clearly show that
the algorithm finds a front with good diversity. An important aspect
about the algorithm performance is its convergence to the optimum
solutions. The algorithm convergence ability is very good since all
the solutions are in the same rank, where the maximum variation
between the best and worst fitness solutions are lower than 2.25%.
These charts reveal that the circuit can have several possible im-
plementations with the same performance (the problem has not a
single isolated optimum point, but, in fact an optimal front).

To infer the validity of the synthesis results, three RFDSCAs
were implemented (defined by a, b and c in Figure 2(a)) and simu-
lated on SpectreRF. The simulation results obtained on SpectreRF
are very similar to the ones obtained with the proposed algorithm.

3. CONCLUSIONS
A synthesis procedure to automate the design of RFDSCAs is

presented in this paper. The synthesis is carried on by a GA that
promotes the distribution of the solution along the parameters space
in order to give several optimal solutions. This method is based
on closed-form symbolic mathematical expressions of the input
impedance and quality factor of the RFDSCA. To verify the pro-
posed synthesis method, three RFDSCAs were designed using three
different solutions provided by the GA for the same design con-
straints. The results show that the synthesis and simulated out-
comes are in very good agreement and also demonstrate that the
GA is able to reach optimal solutions regarding the optimization
objective. Moreover, the GA obtains a set of solutions along the
optimal front in one run of the algorithm.
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