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ABSTRACT
In recent years, the development of multi-objective evolu-
tionary algorithms (MOEAs) hybridized with mathematical
programming techniques has significantly increased. How-
ever, most of these hybrid approaches are gradient-based,
and tend to require a high number of extra objective func-
tion evaluations to estimate the gradient information re-
quired. The use of nonlinear optimization approaches taken
from the mathematical programming literature has been,
however, less popular (although such approaches have been
used with single-objective evolutionary algorithms). This
paper precisely focuses on the design of a hybrid between
a well-known MOEA (the NSGA-II) and two direct search
methods taken from the mathematical programming liter-
ature (Nelder and Mead’s method and the golden section
algorithm). The idea is to combine the explorative power
of the evolutionary algorithm with the exploitative power of
the direct search methods previously indicated (one is used
for unidimensional functions and the other for multidimen-
sional functions). Clearly, these mathematical programming
techniques act as local search engines, whose goal is to refine
the search performed by the MOEA. Our preliminary results
indicate that this sort of hybridization is quite promising.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search.

General Terms
Algorithms, Performance, Theory.

Keywords
Multi-objective optimization, hybrid algorithms, NSGA-II,
Nelder-Mead method.

1. INTRODUCTION
Despite the current widespread use of evolutionary al-

gorithms for solving multi-objective optimization problems,
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their computational cost (measured in terms of the objec-
tive function evaluations that they require) remains as one
of their main limitations when applied to real-world appli-
cations.

In order to address this issue, a variety of hybrid ap-
proaches have been proposed in the last few years, mainly
focusing on the use of local search engines coupled to differ-
ent types of MOEAs. Most of these hybrid approaches rely
on local search engines based on gradient information. Few
of these approaches, however, attempt to hybridize direct
search methods (which do not require gradient information)
with a MOEA.

In this paper, we present a new multi-objective hybrid al-
gorithm based on the NSGA-II [1], coupled with two mathe-
matical programming methods: Nelder and Mead’s method
[2] (which is used for multidimensional optimization) and the
golden section (which is used for unidimensional optimiza-
tion). Both approaches act as local search engines, whereas
the NSGA-II evidently acts as the global search engine.

2. OUR PROPOSED APPROACH
Our proposed approach is called Nonlinear Simplex Search

Genetic Algorithm (NSS-GA), and combines the explorative
power of a MOEA with the exploitative power of the Nelder
and Mead method (nonlinear simplex search (NSS)), which
acts as a local search engine. Below, the general approach
of the NSS-GA is described.

2.1 Local search
The general idea of this phase is to intensify the search

towards better solutions for each objective function, based
on an individual of the population.

The main goal of this phase is to obtain the λ set us-
ing classical optimization methods. Because the Nelder and
Mead algorithm was designed to optimize multidimensional
functions, when dealing with unidimensional optimizations,
the golden section method is used instead. Thus, the λ set
is defined as:

λ = λ1 ∪ λ2 ∪ · · ·λk ∪ Υ

where λi is a set of optimal solutions for the i-th objective
function of the MOP and Υ is a set of optimal solutions for
the aggregating function described in Section 2.1.2.

2.1.1 Selection Mechanism
In the population P , we choose the individual xΔ ∈ P to

optimize its i-th objective:

xΔ = xl|xl = min
∀xl∈P∗{fi(xl)} (1)
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where P∗ is a set of nondominated solutions within the pop-
ulation P . In other words, the selected individual is the best
nondominated solution with respect to the i-th objective
function.

2.1.2 Aggregating Function
The vector �H = [f∗

1 , f
∗
2 , . . . , f

∗
k ], consists of the minimum

values f∗
i of the k objective functions in the current gener-

ation. We select individual xa from the population P , such
that we minimize:

G(xa) =

kX
i=1

| �H [i] − fi(xa)|
| �H[i]| (2)

In this way, the local search minimizes the aggregating func-
tion defined by:

ψ(x) = ED( �H, �F (x)) (3)

where �F is vector of objective functions values of each indi-
vidual and ED is the Euclidean distance between the �F and
�H vectors

2.2 Considerations for the NSS Algorithm
There are functions for which the NSS algorithm becomes

inoperable. In order to deal with these and other more com-
plex functions, the NSS method has undergone some mod-
ifications. We propose here a new strategy to guide the
improvement process towards promising areas during each
generation of the hybrid algorithm. Such strategy is de-
scribed next.

2.2.1 Building the Simplex
The selected solution xΔ (xa for the case of the aggre-

gating function) is called “simplex-head”, which is the first
vertex of the n-simplex. The remaining n vertices are cre-
ated in two phases:

1. Reducing the Search Domain: We use a strategy based
on genetic analysis of a sample taken from the popu-
lation. From this sample, we identify the average and
standard deviation of the genes (decision variables) in
each individual. Based on that information, we define
the new search space as:

low boundj
new = m(Pm(j)) − σ(Pm(j))

up boundj
new = m(Pm(j)) + σ(Pm(j))

(4)

where Pm represents the individuals in the sample taken
from the population (such individuals are those with
the best fitness with respect to the objective function
to optimize), m(Pm(j)) is the average and σ(Pm(j))
is the standard deviation in the j-th parameter of the
sample Pm.

2. Build Simplex Vertices: The remaining vertices are
determined using either the Halton or the Hammer-
sley sequence (each has a 50% probability of being se-
lected). For both sequences, the components are in
[0, 1] and are mapped to the new interval acording to:

c′ = low boundnew +c ·(up boundnew − low boundnew)

where c is the component to be mapped to the interval
[0, 1] and c′ is the component already mapped to the
desired interval.

2.2.2 Bounded Variables for the NSS Algorithm
The NSS method was conceived for unbounded domain

problems. When dealing with bounded variables, the cre-
ated vertices can be located outside the allowable bounds
after some movements of the NSS method. We adopted a
simple strategy to deal with bounded variables:

Let Δnew be the new vertex created by some NSS move-
ment. The j-th component of the vertex is established as:

Δ
(j)
i =

8><
>:

low boundj , if Δ
(j)
i < low boundj

up boundj , if Δ
(j)
i > up boundj

Δ
(j)
i , otherwise.

(5)

where low boundj and up boundj are the lower and upper
bounds in the j-th parameter, respectively.

2.2.3 Stopping Criteria
Two stopping criteria are adopted in this work. The first

criterion imposes convergence towards a vertex better than
the worst vertex within the simplex (xw).

However, adopting this stopping criterion does not guar-
antee that the NSS method has an efficient performance.
Convergence can be slow and may require a large number
of evaluations of the objective function. For this reason, we
use a second stopping criterion which consists of defining a
convergence threshold ε. Thus, the local search is stopped
if:

1. It does not generate a vertex better than xw after per-
forming (n+ 1) iterations, or

2. if after performing 2(n+1) iterations, the convergence
is ≤ ε.

where n is the number of decision variables of the function
to be optimized.

3. CONCLUSIONS
We have proposed a hybridization of the NSGA-II with

the Nelder and Mead method, in which the former acts as a
general search engine, and the latter works as a local search
engine. For the local search, we use a nonlinear aggregat-
ing function. The proposed approach, called NSS-GA, was
found to be competitive with respect to the original NSGA-
II over a set of test functions taken from the specialized
literature and results were assessed using the Inverted Gen-
erational Distance, Spacing and Coverage Indicator metrics,
when performing only 4,000 fitness function evaluations.

We consider that the strategies adopted to reduce the
search domain and to construct the initial simplex, signif-
icantly enhance the performance of the Nelder and Mead
method, with respect to its traditional implementation.
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