
Memetic Algorithms with Variable-Depth Search
to Overcome Local Optima

Dirk Sudholt∗
Fakultät für Informatik, LS 2

Technische Universität Dortmund
Dortmund, Germany

ABSTRACT

Variable-depth search (shortly VDS) is well-known as Lin-
Kernighan strategy for the TSP and Kernighan-Lin for graph
partitioning. The basic idea is to make a sequence of local
moves and to freeze all moved combinatorial objects to pre-
vent the search from looping. VDS stops when no further
local move is possible and returns a best found solution.

We analyze memetic algorithms with VDS for three binary
combinatorial problems: Mincut, Knapsack, and Maxsat.
More precisely, we focus on simply structured problem in-
stances containing local optima that are very hard to over-
come. Many common trajectory-based algorithms fail to
find a global optimum: the (1+1) EA, iterated local search,
and simulated annealing need exponential time with high
probability. However, memetic algorithms using VDS easily
manage to find a global optimum in expected polynomial
time. These results strengthen the usefulness of memetic
algorithms with VDS from a theoretical perspective.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms

Theory, Algorithms, Performance

Keywords

Memetic algorithms, runtime analysis, combinatorial opti-
mization, Kernighan-Lin, variable-depth search, simulated
annealing

∗Supported by the Deutsche Forschungsgemeinschaft (DFG)
as a part of the Collaborative Research Center “Computa-
tional Intelligence” (SFB 531).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07 ...$5.00.

1. INTRODUCTION
Over the past decades, a plethora of randomized search

heuristics has been proposed, analyzed, and applied to prob-
lems from combinatorial optimization. Simulated annealing
is a simple hill-climber that may, however, accept worse so-
lutions with a probability monotone in the current temper-
ature. The temperature is typically decreased over time,
which gradually changes the focus from exploration to ex-
ploitation. Evolutionary algorithms create new solutions by
mutation and/or recombination and try to obtain good so-
lutions by selecting individuals with high fitness. Memetic
algorithms [6] additionally incorporate local search into this
search process to speed up the evolution. One such al-
gorithm is known as iterated local search [13] where local
search is used in every generation to find a local optimum.
Then a large kick move or perturbation is performed in the
hope for a basin of attraction of a better local optimum.

1.1 Strategies to Overcome Local Optima
All these heuristics have to deal with the possibility of

reaching a poor local optimum. Population-based heuristics
usually rely on diversifying the search to explore different
local optima. However, it may happen that the whole popu-
lation converges to non-global local optima and then the sit-
uation is not too different from trajectory-based algorithms,
that is, algorithms maintaining only a single current solu-
tion. These algorithms have to rely on different mechanisms
to overcome local optima.

We describe some common approaches to overcome local
optima and give pointers to related theoretical works, with
a focus on combinatorial optimization.

1. Accept solutions with inferior fitness:
Simulated Annealing may accept solutions with infe-
rior fitness, enabling the algorithm to climb down a
hill. This well-known strategy proved to be effective
for graph bisection (Jerrum and Sorkin [10]), the two-
dimensional Ising model (Fischer [3]), and minimum
spanning trees (Wegener [22]).

2. Decrease the attractiveness of local optima:
Tabu search maintains a tabu list of solutions that are
”taboo” for the algorithm, hence making the local opti-
mum less attractive. Diversity mechanisms like fitness
sharing may as well decrease the attractiveness of a lo-
cal optimum. If many individuals are concentrated on
one local optimum, they are forced to ”share” their fit-
ness according to their similarity. Hence, the algorithm
is encouraged to decrease similarity in the population.

787

The effectiveness of fitness sharing has been shown re-
cently (Friedrich, Oliveto, Sudholt, and Witt [4]) for a
toy problem that, however, has the same structure as
the Mincut instance we will investigate in Section 4.

3. Use larger or multiple neighborhoods:
Evolutionary algorithms like the well-known (1+1) EA
use a stochastic neighborhood where every search point
has a positive probability to be created. This sim-
ple property enables the approximation of maximum
matchings (Giel and Wegener [5]) and balanced par-
titions (Witt [23]). In addition, evolutionary algo-
rithms may use crossover to recombine different local
optima. The usefulness of crossover was first shown
for toy problems (Jansen and Wegener [8]). Moreover,
crossover together with fitness sharing is effective for
(a problem equivalent to) 2-coloring binary trees (Sud-
holt [18]). The idea of using different neighborhoods is
dominant in variable neighborhood search algorithms
(see, e. g., [14]) exploiting that a local optimum w. r. t.
one neighborhood need not be a local optimum w. r. t.
another one. Memetic algorithms like iterated local
search also fall into this category as they combine mu-
tation and local search. Their usefulness so far has
only been proven for artificial problems (Sudholt [20]).

Another common strategy is to restart the algorithm after
convergence to local optima. This can be seen as a very large
perturbation and hence falls into the third category.

1.2 Variable-depth search
In this work we will consider a special local search operator

for use within the framework of iterated local search, so-
called variable depth search (VDS). Variable-depth search is
well-known for the TSP as Lin-Kernighan strategy [12] and
for Maxcut as Kernighan-Lin [11]. The idea is to perform
a sequence of local moves. The next local move is chosen
in a greedy fashion. If there is a local move that increases
fitness, then a move with maximal fitness gain is chosen.
Otherwise, a move with minimal loss in fitness is selected.
To prevent the algorithm from looping, certain parts of the
search space are made ”tabu”. For binary search spaces this
means that if VDS flips some bit, then this bit cannot be
flipped again during the run of VDS. The output of VDS is
then a best solution from the sequence of local moves.

Iterated local search using VDS combines approaches from
all three mentioned categories to overcome local optima.
Firstly, it easily traverses solutions with inferior fitness if no
fitness-improving move is available. Secondly, starting with
a local optimum this local optimum is made ”tabu” like in
tabu search since steps moving back towards the local opti-
mum are not allowed. The only difference to classical tabu
search is that we do not keep a tabu list of single individu-
als, but render large parts of the search space tabu. Finally,
we employ different neighborhoods: VDS and mutation as
perturbation.

This combination of strategies makes it easy for VDS to
overcome local optima. Another remarkable aspect is the
greedy component in VDS since we always choose a best
move among the feasible local moves. We will in the fol-
lowing give examples where this greedy behavior provides
a good guidance for the algorithm in order to find a global
optimum.

1.3 Our Results
We will investigate memetic algorithms with VDS on com-

binatorial problems using rigorous runtime analyses. Such
rigorous results for memetic algorithms are scarce; the only
rigorous runtime analyses of memetic algorithms appeared
only recently (Sudholt [19, 20]). The investigated problems
are artificial pseudo-Boolean functions, defined to demon-
strate the impact of the parametrization on the performance
of memetic algorithms. Our goal is to extend such analyses
to problems from combinatorial optimization.

We investigate instances of problems from combinatorial
optimization, namely Mincut, Knapsack, and Maxsat. Defi-
nitions and descriptions of these problems are postponed to
the following sections. The chosen instances contain non-
global local optima with large basins of attraction that are
hard to overcome. We will see that memetic algorithms
with VDS are efficient on these functions while common
trajectory-based algorithms like the (1+1) EA, traditional
iterated local search algorithms, and simulated annealing
fail to find a global optimum, even if they are given expo-
nential time.

The instances we consider have a very simple structure.
This helps to keep the argumentation simple and to focus
on the essentials. We assume that the reader is familiar
with basic knowledge on common combinatorial optimiza-
tion problems. For details, we refer to appropriate text
books, e. g. [16, 1, 21].

The remainder of this paper is structured as follows. First,
we define all investigated algorithms in Section 2. Section 3
contains lower bounds on the runtime after the population
has converged to local optima. In Sections 4, 5, and 6 we
then deal with instances for the problems Mincut, Knapsack,
and Maxsat, respectively. We conclude in Section 7.

2. ALGORITHMS
The most natural metric in the search space {0, 1}n is

the Hamming distance H (x, y) between x and y, i. e., the
number of bits differing in these two search points. With
N 1(x) = {y | H (x, y) = 1} we denote the open Hamming
neighborhood of x. In general, N d(x) contains all y with
Hamming distance exactly d to x.

These notions are extended to a set S ⊆ {0, 1}n as follows.
H (x, S) = miny∈S{H(x, y)} denotes the Hamming distance
from x to S. Similarly, N d(S) = {y | H(y, S) = d} contains
all points with Hamming distance d to S. The diameter of a
neighborhood N is defined as the largest Hamming distance
between any x, y ∈ N (z). We restrict ourselves to symmetric
neighborhoods in a sense that H (x, z) = H (y, z) implies
either x, y ∈ N (z) or x, y /∈ N (z).

We first define two local search operators used throughout
this work. Standard local search accepts any neighbor with
strictly larger fitness and stops whenever a local optimum
is reached or the number of iterations exceeds a predefined
value δ(n) called local search depth. The pivoting rule is ran-
dom, here, although results can easily be adapted to other
pivoting rules like always choosing the best neighbor.

Operator 1 (Standard local search).

For δ(n) iterations do
Choose a random z ∈ N (y) with f(z) > f(y)

or stop with output y if no such z exists.
Let y := z.

Return y.

788

We already explained the concept of VDS. In the following
procedure Z denotes the sequence of solutions encountered
during VDS and L is a set of indices for all bits that have
been locked.

Operator 2 (Variable-depth search).
Z, L := ∅.
While Vy := {z ∈ N (y) | ∀i : (yi 6= zi ⇒ i /∈ L)} 6= ∅ {

Choose a random z ∈ Vy with maximal f -value.
Z := Z ∪ {z}.
L := L ∪ {i | yi 6= zi}.
y := z.

}
Return a random z ∈ Z with maximal f -value.

Note that one VDS takes at most n iterations since in every
iteration of the loop at least one index is added to L (we
assume y /∈ N (y)). Using one of these local search oper-
ators, we now define a memetic algorithm with population
size 1, the (1+1) Memetic Algorithm or shortly (1+1) MA.
Mutation is done by flipping each bit independently with a
fixed mutation probability pm.

Algorithm 1 ((1+1) Memetic Algorithm).
Choose x uniformly at random.
Repeat

Mutation: Create y by flipping each bit in x
with probability pm.

Local Search: Decide whether to use local search.
If ”yes” then y := local search(y).

Selection: If f(y) ≥ f(x) then x := y.

The (1+1) MA never using local search equals the evolu-
tionary algorithm called (1+1) EA (see, e. g., [5, 9, 23]).
Alternatively, local search may be applied with a fixed fre-
quency [19]. We may also choose to apply local search prob-
abilistically with a fixed probability as done in [7]. The
algorithm where local search is called in each generation is
called iterated local search [13]. In particular, we will often
refer to iterated VDS as the (1+1) MA calling VDS in every
generation.

All algorithms considered so far have in common that the
best-so-far fitness cannot decrease. Simulated annealing al-
ways accepts better solutions, but it also allows worse so-
lutions to be accepted. This decision is made dependent
on the size of the fitness decrease and a parameter called
the temperature. If the temperature equals 0, simulated an-
nealing behaves like a hill-climber, i. e., it doesn’t accept
worsenings. The larger the temperature, the more likely it
is to accept worse solutions. It is common practice to start
with a high temperature and then to decrease the temper-
ature over time. This way, simulated annealing can explore
the search space in the beginning and then gradually turns
into a hill-climber focusing on exploitation. A strategy to
turn down the temperature is called a cooling schedule. Un-
less otherwise noted, simulated annealing uses the Hamming
neighborhood N = N 1. It is formulated for maximization
to match previously defined algorithms.

Algorithm 2 (Simulated Annealing).
Choose x uniformly at random.
Let t := 0.
Repeat

Choose y ∈ N (x) uniformly at random.
Set x := y with prob. min{1, exp((f(y) − f(x))/T (t))}.
t := t + 1.

Simulated annealing with a fixed temperature is called
Metropolis algorithm. It was long unknown whether cooling
down the temperature is essential for natural problems, i. e.,
whether simulated annealing outperforms the Metropolis al-
gorithm with an optimal temperature. This question was
recently solved in the affirmative by Wegener [22] for the
natural problem of computing a minimum spanning tree.

For the efficiency of an algorithm a plausible performance
measure is the number of generations until a global opti-
mum is found. We will also consider the number of function
evaluations, referred to as optimization time. Thereby, we
in particular account for the computational effort of local
search. Note that the number of function evaluations in a
generation with local search is bounded above by δ(n) · | N |
for greedy local search and by n · | N | for VDS.

3. LOWER BOUNDS WHEN STUCK IN

LOCAL OPTIMA
We start our investigations with lower bounds for differ-

ent algorithms after convergence to local optima. A local
optimum is difficult for an algorithm if it has a large basin
of attraction. This is especially true if the fitness decreases
with any local move leading away from the local optimum.
Combinatorial fitness landscapes often contain several local
optima that are close to one another. Therefore, it makes
sense to group such local optima into sets.

Definition 1. A non-empty set S∗ ⊆ {0, 1}n is called α-
difficult for α = α(n) w. r. t. the function f and a neighbor-
hood N if z ∈ N (y) and H (y, S∗) < H(z, S∗) ≤ α implies
f(y) > f(z) for any y, z ∈ {0, 1}n and S∗ does not contain
global optima.

The definition of α-difficulty implies that all search points
with Hamming distance less than α to S∗ have worse fit-
ness than any point in S∗. This immediately leads to lower
bounds for the (1+1) MA once S∗ has been reached.

Lemma 1. Let S∗ be α-difficult. If the (1+1) MA us-
ing standard local search with neighborhood of diameter d =
O(1) and mutation probability pm ≤ (1 − ε) · α/n for some
ε > 0 reaches S∗, the remaining time until a global optimum
is found is 2Ω(α) with probability at least 1 − 2−Ω(α).

Proof. W. l. o. g. α grows with n, otherwise the theorem
is trivial. Apart from individuals in S∗, the (1+1) MA only
accepts an offspring if mutation creates a solution with Ham-
ming distance at least α − d to its parent as otherwise local
search runs back into S∗ or the generation ends with an infe-
rior solution. With mutation probability at most (1−ε)·α/n
the expected number of flipping bits in one mutation is at
most (1 − ε) · α. The probability that at least α − d bits

flip is at most 2−Ω(α) by Chernoff bounds (see, e. g., [15]).
The probability that this happens at least once in 2cα steps,
c > 0 a small enough constant, is still of order 2−Ω(α).

Simulated annealing can accept worse solutions with a cer-
tain probability that depends on the loss in fitness and the
current temperature T = T (t). Escaping a single local op-
timum is easy if the temperature is high enough such that
all local moves have a good chance to be accepted. The
reason is simple: if the current solution is close to the local
optimum, there are more local moves leading away from it
than moving closer to it. If the temperature is too low (or

789

has been cooled down too fast), escaping a local optimum
is much more difficult. We can make this precise for a sce-
nario where the temperature leaves us with a noticeable bias
towards search points with high fitness.

Lemma 2. Let S∗ be α-difficult and let |f(x) − f(y)| ≥
∆ = ∆(α) if y ∈ N (x) and x, y have Hamming distance
at most α to S∗. If simulated annealing with temperature
T (t) ≤ ∆/(ln(4n/α)) reaches a search point with Hamming
distance at most α/2 to S∗, the remaining optimization time

is 2Ω(α) with probability 1 − 2−Ω(α).

Proof. Observe H (y, x∗) ≥ H (y, S∗) for any y and any
x∗ ∈ S∗. This allows us to focus on a single search point
x∗ ∈ S∗ with minimal Hamming distance to the current
search point x. If H (x,S∗) = k and α/2 ≤ k < α, the
probability to increase the Hamming distance to x∗ (and
hence S∗) by 1 is

p+ ≤ n − k

n
· e−∆/T < e−∆/T ≤ α

4n

due to the assumption on T . On the other hand, the prob-
ability to decrease the Hamming distance to S∗ by 1 is

p− ≥ k

n
≥ α

2n

as all k steps moving closer to x∗ are accepted. Hence,
conditional on an exchange of the current search point, the
probability to move away from S∗ is at most 1/3.

Consider the first point of time where simulated annealing
creates a search point x with H (x, S∗) = α/2 + 1 (w. l. o. g.
assuming α to be even). We now argue that with high prob-
ability simulated annealing returns to distance α/2 before
reaching distance α. By gambler’s ruin arguments [15], this
probability is at least

2α/2 − 2

2α/2 − 1
= 1 − 1

2α/2 − 1
= 1 − 2−Ω(α).

If we create a search point with distance at most α/2, we
wait until the next solution with distance α/2 +1 is created
and repeat the argumentation. The time for one such trial is
trivially bounded below by 1. By the union bound, the prob-
ability that 2cα trials fail to create a solution with distance
α is still of order 2−Ω(α) if c > 0 is small enough.

An α-difficult local optimum is challenging for memetic
algorithms and simulated annealing as both have difficulties
with large ”valleys” in the fitness landscape. This similarity
between evolutionary algorithms and simulated annealing
has already been recognized by Jansen and Wegener [9].

4. MINCUT
Given an undirected graph G = (V, E), the problem Min-

cut is to partition all vertices into two non-empty subsets
V0, V1 such that the number of edges between V0 and V1

is minimized. Such edges are called cut edges. We remark
that specialized algorithms can solve the Mincut problem in
polynomial time, even in the case of weighted graphs [17].

Given an ordering of the vertices V = {v1, . . . , vn}, we
obtain a binary representation x = x1 . . . xn ∈ {0, 1}n for
n = |V | such that vi ∈ Vxi for every i. If V0 and V1 are
non-empty, the fitness function is encoded as follows. The
fitness is chosen as the number of non-cut edges, written as
P

{u,v}∈E(xuxv + (1 − xu)(1 − xv)). However, if V0 or V1

cut

cut

Figure 1: A global optimum (top) and a local opti-
mum (bottom) for the Mincut instance with n = 16.

is empty, i. e., x ∈ {0n, 1n}, the non-emptiness constraint
is violated and we penalize such a solution by assigning a
negative f -value.

f(x) :=

8

<

:

P

{u,v}∈E

(xuxv + (1 − xu)(1 − xv)) if x /∈ {0n, 1n}

−1 if x ∈ {0n, 1n}

Consider the following instance G = (V, E) that consists of
two cliques of size n/2, each (see Figure 1).

V = {u1, . . . , un/2, v1, . . . , vn/2},
E = {{ui, uj}, {vi, vj} | 1 ≤ i < j ≤ n/2}.

Consider a partition V = V0 ∪V1 where w. l. o. g. u1 ∈ V0.
Obviously, the optimal partition is V0 = {u1, . . . , un/2} with
a cut of size 0. All partitions with |V0| = 1 or |V0| = n − 1
are locally optimal with a cut size of n/2 as V0 and V1 are
constrained to be non-empty (see Figure 1). These points
form a set S∗ that is α-difficult for α = ⌊n/4 − 1⌋ w. r. t.
N 1 as every local move shifting a vertex to the smaller set
of the partition increases the cut size, unless it contains at
least half of a clique.

Theorem 1. Consider the (1+1) MA with standard lo-
cal search using neighborhood N 1 and mutation probability
pm ≤ 1/5. The optimization time for the Mincut instance

is at least 2Ω(n) with probability 1/2 − O(1/
√

n).

Proof. We already argued that all local optima are α-
difficult for α = ⌊n/4 − 1⌋. If n is large enough, we have
1/5 ≤ (1−ε) ·α/n for an appropriate ε > 0, hence the claim
follows from Lemma 1 if we can prove that the algorithm
reaches S∗ with probability 1/2 − O(1/

√
n).

Let S0 contain all four (feasible and infeasible) solutions
with no cut edge. Let S1 = N 1(S0). We now argue that with
high probability the algorithm evaluates a solution in S1

before evaluating one from S0. Consider the first generation
where a solution in S0 ∪S1 is created. Let p0 and p1 denote
the probabilities that this solution belongs to S0 and S1,
respectively. We claim that p1 = Ω(p0 · √n). This implies
that S1 is found before S0 with probability 1 − O(1/

√
n).

Initialization creates a search point in S0 with probability
2−n+2. Assume that the algorithm doesn’t start in S0 ∪ S1.

790

Consider a generation with current solution x /∈ (S0∪S1) and
the next offspring creation. If S0 ∪ S1 is reached during local
search, the claim is trivial. Hence we focus on mutation only
and fix a search point z ∈ S0. If x has Hamming distance k
to z, we have k solutions in S1 with Hamming distance k−1
to x and n−k solutions in S1 with Hamming distance k+1.
The probability of reaching a specific y ∈ N 1(z) differs from
the probability P (z) to reach z in just one bit position. More
precisely, the probabilities differ by factors pm/(1 − pm) or
(1−pm)/pm, dependent on whether this bit has to be flipped
or not. Let P (N 1(z)) denote the probabiliy to reach N 1(z),
then

P (N 1(z)) ≥ k · P (z) · 1 − pm

pm
+ (n − k) · P (z) · pm

1 − pm

= P(z)

„

k(1 − pm)2 + (n − k)p2
m

pm(1 − pm)

«

= P(z)

„

k(1 − 2pm) + np2
m

pm(1 − pm)

«

We see that this term is increasing with k, hence in the worst
case k = 2. Along with pm ≤ 1/5, we arrive at the bound

P (N 1(z)) ≥ P (z)

„

1 + np2
m

pm

«

.

In case pm ≤ 1/
√

n the term in brackets is at least 1/pm ≥√
n. If pm > 1/

√
n, then this term is at least npm ≥ √

n as
well. We conclude

P (N 1(z)) ≥ P (z) · √n.

Since this holds for all z ∈ S0, p1 ≥ p0 · √n/2 follows and
S1 is found before S0 with probability 1 − O(1/

√
n).

As long as no local optimum is found, the fitness is indif-
ferent to the question whether the majority of the u-vertices
is in V0 or in V1. The same holds independently for the v-
vertices. Hence, if the first cut in S1 is created, given that S0

has not been found yet, all cuts in S1 have the same proba-
bility to be found. Half of these cuts are local optima, hence
the probability that a local optimum is found equals 1/2. By
the union bound, the probability to reach a local optimum
is at least 1/2 − O(1/

√
n) − 2−n+2 = 1/2 − O(1/

√
n).

Reusing ideas from the proof of Theorem 1, we show that
also simulated annealing fails with probability close to 1/2.

Theorem 2. Simulated annealing with an arbitrary cool-
ing schedule where T (t) is monotone decreasing needs at

least 2Ω(n) steps for the Mincut instance with probability
1/2 − 2−Ω(n).

Proof. We divide a run into two phases: the first phase
ends when the temperature first drops to n/12 and then the
second phase starts. Let T1 be the number of generations
in Phase 1 and let S0 and S1 be defined as in the proof of
Theorem 1. We first prove that in Phase 1 no solution in S0

will be evaluated in exponential time, with high probability.
Consider a search point x with H (x, S0) = k ≤ n/(4e6).

The probability to increase the Hamming distance to S0 is

p+ ≥ n − k

n
· e−n/(2T) ≥ 1

2
· e−6

as the worst fitness decrease equals n/2. The probability to
decrease the Hamming distance to S0 equals

p− =
k

n
≤ 1

4
· e−6.

Together, the conditional probability to decrease the Ham-
ming distance is bounded by 1/3, provided that the Ham-
ming distance is changed.

The probability of initializing simulated annealing with
a search point x such that H (x,S0) ≤ n/(4e6) is 2−Ω(n).
Repeating the gambler’s ruin arguments from the proof of
Lemma 2, the probability that S0 is reached before a point
with Hamming distance larger than n/(4e6) to S0 is reached

is 2−Ω(n). The probability that this happens within the first
min{T1, 2

cn} steps is still of the same order if c > 0 is small
enough.

This concludes the proof if T1 ≥ 2cn. Otherwise, we con-
sider Phase 2 and assume that S0 has not been reached in
Phase 1. By the locality of the search operator S1 is reached
before S0 and the probability that a local optimum is found
equals 1/2.

Given a fixed Hamming distance k ≤ n/12 from S0, the
minimal fitness difference ∆ between two neighbors, as de-
fined in Lemma 2, is attained when only one clique is cut.
In that case the cut clique has k vertices on one side of
the partition and when moving a (k + 1)-st vertex, the fit-
ness decreases by n/2 − 2k ≥ n/3. Applying Lemma 2
with α = n/12 and ∆(α) = n/3 proves the claim for T ≤
∆/(ln(4n/α)) = 1/(3 ln(48)) and hence for T ≤ n/12.

We have seen that the local optima of the Mincut instance
are extremely hard for standard evolutionary algorithms,
memetic algorithms, and simulated annealing. In contrast
to this, iterated VDS easily escapes from this local optimum.
The following proof is surprisingly simple.

Theorem 3. Iterated VDS without mutation optimizes
the Mincut instance in at most 2 generations with proba-
bility 1.

Proof. The first VDS reaches a global or local optimum.
Assume that a local optimum is reached and that w. l. o. g.
V0 consists of a single u-vertex. In the next call, VDS starts
moving u-vertices to V0 as these operations lead to a minimal
fitness decrease. If at least half of the u-clique is contained in
V0, the fitness even increases when adding more u-vertices.
Once all u-vertices have been moved to V0, a global optimum
is found.

5. KNAPSACK
The Knapsack problem is a well-known NP-hard combi-

natorial problem. Suppose we are given a knapsack that
can hold objects up to a specified weight limit G. Among
a set of objects with associated profit values v1, . . . , vn and
weights g1, . . . , gn, we have to select objects for the knapsack
such that the total profit is maximized while respecting the
weight limit.

As a fitness function, we take the profit of all chosen ob-
jects if the weight limit is respected. Otherwise, the fitness
function gives hints to drop selected objects.

f(x) :=

(

Pn
i=1 xivi if

Pn
i=1 xigi ≤ G

−Pn
i=1 xi if

Pn
i=1 xigi > G

Consider the following Knapsack instance I for odd n and
N = (n + 1)/2.

1 ≤ i ≤ N : vi = gi = n

N < i ≤ n : vi = gi = n + 1

G = N · n

791

For all objects profit equals weight. Hence, this instance
also represents an instance of the subset sum problem, a
restricted formulation of Knapsack.

Call the objects with weight n + 1 big and the other ones
small. The weight limit is chosen such that all N small
objects exactly fit into the knapsack. This selection yields
a total profit of (n2 + n)/2. On the other hand, if one big
object is chosen, there is only space for a total number of
N − 1 objects. If the current packing also contains at least
one small object, the profit may be increased by dropping
a small object and adding a big object, which increases the
profit by 1. Thus, a packing of all N−1 big objects is locally
optimal with a profit of (N − 1) · (n + 1) = (n2 − 1)/2.

We see that we have a non-optimal local optimum with
all big objects and a unique global optimum with N small
objects. Furthermore, when reaching the local optimum ex-
changing a big object for a small one decreases the fitness.
Only after all big objects have been exchanged for small
ones, an N-th small object may be added to yield a global
optimum.

Theorem 4. Consider the (1+1) MA with standard local
search using any neighborhood with diameter d = O(1) and
mutation probability pm ≤ 1/2. The optimization time for

the Knapsack instance is 2Ω(n) with probability 1 − 2−Ω(n).
The same holds for simulated annealing with constant-diam-
eter neighborhood and an arbitrary cooling schedule.

Proof. Let Sk be the set of packings with k selected
objects. Let A <f B for A,B ⊆ {0, 1}n if all search points
in A have lower fitness than all search points in B. For the
instance I then

S0 <f S1 <f · · · <f SN−1 and

Sn <f Sn−1 <f · · · <f SN+1 <f (SN \ OPT)

where OPT denotes the unique global optimum 1N0N−1.
This also holds for a modified instance I∗ containing n ob-
jects with profit and weight n + 1 and weight limit G∗ = G.
As long as OPT has not been found, both the (1+1) MA
and simulated annealing behave similarly on I and I∗. Only
when choosing between two packings within Sk a different
behavior may occur: on I a solution with more big objects
will be preferred, while the situation is completely symmet-
ric on I∗. By the assumption pm ≤ 1/2 a tendency towards
big objects cannot help to find solutions with many small
objects. We will in the following estimate the probability of
getting close to the global optimum, that is, to have signifi-
cantly more small objects than big ones. Therefore, we are
pessimistic when considering I∗ instead of I .

The global optimum OPT for I can only be found if mu-
tation and/or local search create a search point in Z = {x |
H (x,OPT) ≤ d}. Let xt be the t-th evaluated search point.
The probability that during the first T evaluations no search
point in Z is found is at most

PT
t=1 P (xt ∈ Z). Fix t, then

P (xt ∈ Z) =
n
X

k=0

P (xt ∈ Z | xt ∈ Sk) · P (xt ∈ Sk) .

Observe that due to the perfect symmetry of Sk, each point
in Sk is equally likely to be xt. Moreover, the size of Z
is polynomially bounded while Sk has size 2Ω(n) for k =
n/2 ± O(1). Hence, P (xt ∈ Z | xt ∈ Sk) = 2−Ω(n) and the

probability to find Z within the first T generations is at most

T
X

t=1

P (xt ∈ Z) ≤
T
X

t=1

n
X

k=0

2−Ω(n) · P (xt ∈ Sk) = T · 2−Ω(n).

Choosing T = 2cn for a small enough positive constant c
proves that on instance I∗ the algorithm doesn’t create OPT
or a point in its neighborhood in exponential time, with
overwhelming probability. As chances to reach the optimum
on I are not better than for I∗, the theorem follows.

Theorem 5. Iterated VDS using neighborhood N 1 ∪N 2

without mutation optimizes the Knapsack instance within
2 generations with probability 1.

Proof. After initialization, VDS either runs into the lo-
cal or the global optimum. Suppose that we have found the
local optimum of N − 1 big objects and consider the next
call of VDS. The least decrease in fitness is to exchange a big
object for a small one. This is repeated until all big objects
have been replaced by small ones and then the last small
object is added.

6. MAXSAT
Maxsat is another well-known and important combinato-

rial problem. Given n Boolean variables x1, . . . , xn a literal
is either a variable or a negated variable. A clause is a dis-
junction of literals; for example (x1 ∨ x3 ∨ x4) is a clause
with three literals. We say that a clause is satisfied w. r. t.
an assignment x to the variables if the clause evaluates to
true. Given a set C of clauses, the problem Maxsat asks
for an assignment of the variables such that the number of
satisfied clauses is maximized. This problem is known to be
NP-hard even if all clauses only contain 2 literals.

A natural choice of the fitness function is to choose the
number of satisfied clauses. This function has already been
investigated by Droste, Jansen, and Wegener [2] on the fol-
lowing instance.

∀i 6= j 6= k 6= i : (xi ∨ xj ∨ xk) ∈ C

(x1), (x2), . . . , (xn) ∈ C

An important observation is that this instance is symmetric
in a sense that all variables are treated equally. Note that
every clause has exactly one non-negated literal, hence the
assignment 1n satisfies every clause. On the other hand,
most clauses contain two negated literals. This gives strong
hints for a search heuristic to set variables to 0. Due to
this deceptive property Papadimitriou [16] first defined this
instance as a worst-case example for the performance of a
heuristic algorithm for Maxsat.

Due to symmetry of the instance, we can formulate the
fitness as a function of unitation, i. e., f(x) only depends on
the number of 1-bits in x, denoted by |x|1. If |x|1 = i, then i
unit clauses (i. e. clauses with just one literal) are satisfied.
Among the other

`

n
3

´

clauses there are n ·
`

i
2

´

clauses where
the last two literals evaluate to false. Moreover, there are
(n− i) choices for the first variable such that the first literal
also evaluates to false. Hence, (n − i) ·

`

i
2

´

clauses of length
3 are unsatisfied. We conclude that the number of satisfied
clauses and hence the fitness is given by the formula

f(x) =

n

3

!

− (n − |x|1) ·

|x|1
2

!

+ |x|1 .

792

f(x)

|x|1
0 1 2n/3 n

Figure 2: Sketch of the fitness landscape according
to the Maxsat instance with n = 30.

It is easy to see that |x|1 = n implies a global optimum with
fitness

`

n
3

´

+ n. The search point 0n has fitness
`

n
3

´

and all

x with |x|1 = 1 have fitness
`

n
3

´

+ 1 as
`

1
2

´

= 0. Assuming
n ≥ 6 and n multiple of 3, the fitness decreases with |x|1 in
the interval [1, 2n/3]. Thus, S∗ = {x | |x|1 = 1} is 2n/3-
difficult for the neighborhood N 1. A sketch of the function
f is shown in Figure 2.

Droste, Jansen, and Wegener [2] proved for a very large
class of evolutionary algorithms with mutation probability
pm ≤ 1/2 that these algorithms need exponential time with
overwhelming probability. A look at their proof reveals that
they even show a stronger result. The borderline between
the basin of attraction of all local optima and the globally
optimal one is located around search points with 2n/3 1-bits.
Droste, Jansen, and Wegener even prove that the consid-
ered algorithms fail in creating a search point with at least
(1/2 + ε)n 1-bits for an arbitrary small positive constant ε.
Choosing ε < 1/6 we can safely conclude that even if stan-
dard local search with constant-diameter neighborhood is
applied after mutation no search point with at least 2n/3
1-bits is found.

We give a self-contained formulation of their result, de-
scribing all necessary properties of the investigated class of
algorithms.

Theorem 6 (Droste, Jansen, and Wegener [2]).
Let A be an evolutionary algorithm with a population of at

most polynomial size initialized uniformly at random. Allow
A to perform an arbitrary combination of two types of op-
erators: mutation with mutation probability pm ≤ 1/2 and
selection. The only requirement to selection operators is that
with f(x) ≥ f(y) the probability to select x is not less than
the probability to select y.

Then the probability that during the first 2o(n1/2) offspring
creations A finds an individual with at least (1/2+ε)n 1-bits,

ε > 0, is bounded by 2−Ω(n1/2).

We see that this claim covers the (1+1) EA with mutation
probability pm ≤ 1/2 as well as simulated annealing with
an arbitrary cooling schedule. Choosing, say, ε = 1/8 yields
that the algorithm with overwhelming probability even stays
at a distance Ω(n) to all search points with at least 2n/3
1-bits. Hence, even if standard local search with constant-
diameter neighborhood is applied at any time, the algorithm
cannot create a search point with more than (5/8)n 1-bits.

This argument not only holds for one step. Instead, Theo-
rem 6 remains valid if we allow standard local search as ad-
ditional operator. Exploiting t ·2−Ω(n) = 2−Ω(n) for t = 2cn,
c a small enough positive constant, yields the following the-
orem.

Theorem 7. Consider the (1+1) MA with standard lo-
cal search using any neighborhood with diameter d = O(1)
and mutation probability pm ≤ 1/2. The optimization time

for the Maxsat instance is at least 2Ω(n) with probability
1 − 2−Ω(n). The same also holds for simulated annealing
with an arbitrary cooling schedule.

Again, we ask ourselves what iterated VDS can do. Inter-
estingly, iterated VDS without mutation is not effective for
the Maxsat instance.

Theorem 8. Iterated VDS with neighborhood N 1 without
mutation finds the global optimum of the Maxsat instance
only with probability 2−Θ(n).

Proof. The lower bound on the success probability fol-
lows trivially from the fact that random initialization creates
the global optimum with probability 2−n.

For the upper bound, Chernoff bounds yield that the prob-
ability to start with x such that 2 ≤ |x|1 < 2n/3 is 1−2−Ω(n).
In that case flipping a single 1-bit increases the fitness as long
as the offspring has at least two 1-bits left. Since this bit
cannot flip back to 1, VDS returns a local optimum with a
single 1-bit.

Having reached a local optimum, the least fitness decrease
is obtained by flipping the unique 1-bit to 0. However, this
implies that 1n cannot be reached. As all other search points
have worse fitness, VDS again returns a local optimum.

In contrast to the previous problems, this is a first example
where mutation is essential to find the global optimum.

Theorem 9. The expected number of generations of iter-
ated VDS with mutation probability pm = 1/n on the Maxsat
instance is O(n).

Proof. The first VDS a local or global optimum. If a
local optimum with a single 1-bit is reached, mutation cre-
ates 0n with probability 1/n ·(1−1/n)n−1 ≥ 1/(en) and the
following VDS reaches 1n with probability 1. The expected
number of generations for this event is at most en.

7. DISCUSSION AND CONCLUSIONS
We have considered single instances for three combinato-

rial problems and shown that memetic algorithms with VDS
drastically outperforms many popular trajectory-based algo-
rithms like the (1+1) EA, iterated local search, and simu-
lated annealing. The list of combinatorial problems where
VDS is effective is not complete. Similar analyses, using
techniques from Section 3, can be performed e. g. for Graph
Bisection, Maximum Clique, and Vertex Cover. We have
chosen Mincut, Knapsack, and Maxsat since they resemble
typical and well-known problems from different classes of
problems: cutting, packing, and constraint optimization.

Furthermore, these three problems pose different chal-
lenges for randomized search heuristics. The Mincut in-
stance yields a multimodal landscape with symmetric slopes.
A search heuristic typically cannot tell in advance which hill
might contain a global optimum. This secret is not revealed

793

until the algorithm climbs to the top of the hill and then
it may have to climb down a long distance. For Maxsat
the fitness landscape is deceptive, leading typical heuristics
away from the global optimum. For the Knapsack instance
we exploited that, from a macro-perspective, optimization is
like searching for a needle in a haystack. All packings with
the same number of objects have similar fitness, but only
those without (or only few) big objects are promising. From
a micro-perspective the instance is even worse since it gives
deceptive hints towards big objects.

Iterated VDS is successful on these problem instances.
This is partly due to the fact that VDS can cope with de-
ceptive functions as it always encounters the bit-wise com-
plement of the current search point. One may argue that
iterated VDS is no more than a hill-climber tailored towards
deceptive functions, like for example a hill-climber sampling
around x in addition to the current population x. However,
the Mincut instance cannot be optimized by such a spe-
cialized strategy. Another argument is that for Mincut and
Maxsat VDS after some time discovers a positive gradient
towards the global optimum and then is able to reach it ”on
its own”, without the tabu mechanism. Finally, VDS is ro-
bust w. r. t. modifications of the instance. In the Knapsack
instance the global and the local optimum are complemen-
tary. However, if we add some new objects with low profit
and large weight a simple algorithm for deceptive functions
fails. We conclude that VDS is more powerful than an algo-
rithm tailored towards deceptive functions.

However, we cannot conclude that memetic algorithms
with VDS are, in general, superior to common trajectory-
based algorithms. The perspective taken in this work is
one-sided as we only presented instances where memetic
algorithms with VDS perform well, compared to common
search strategies. It may be possible to find instances where
memetic algorithms with VDS perform badly. Moreover,
theory should not be restricted to single instances. We there-
fore regard the presented analyses as appetizers on the use-
fulness of memetic algorithms in combinatorial optimization
from a theoretical perspective. We are still in need of a com-
plete lunch, that is, broader results for important classes of
instances for combinatorial problems to bring forward the
theoretical understanding of hybrid algorithms.

Acknowledgment

The author thanks Carsten Witt for comments on a draft
version.

8. REFERENCES
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein. Introduction to Algorithms. The MIT Press,
2nd edition, 2001.

[2] S. Droste, T. Jansen, and I. Wegener. A natural and
simple function which is hard for all evolutionary
algorithms. In Proc. of IECON ’2000, pages
2704–2709. IEEE Press, 2000.

[3] S. Fischer. A polynomial upper bound for a
mutation-based algorithm on the two-dimensional
Ising model. In Proc. of GECCO ’04, pages
1100–1112. Springer, 2004.

[4] T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt.
Theoretical analysis of diversity mechanisms for global
exploration. In Proc. of GECCO ’08, to appear.

[5] O. Giel and I. Wegener. Evolutionary algorithms and
the maximum matching problem. In Proc. of
STACS ’03, pages 415–426. Springer, 2003.

[6] W. E. Hart, N. Krasnogor, and J. E. Smith, editors.
Recent Advances in Memetic Algorithms. Springer,
2004.

[7] H. Ishibuchi, T. Yoshida, and T. Murata. Balance
between genetic search and local search in memetic
algorithms for multiobjective permutation flowshop
scheduling. IEEE Transactions on Evolutionary
Computation, 7(2):204–223, 2003.

[8] T. Jansen and I. Wegener. Real royal road functions:
where crossover provably is essential. Discrete Applied
Mathematics, 149(1-3):111–125, 2005.

[9] T. Jansen and I. Wegener. A comparison of simulated
annealing with a simple evolutionary algorithm on
pseudo-boolean functions of unitation. Theor.
Comput. Sci., 386(1-2):73–93, 2007.

[10] M. Jerrum and G. B. Sorkin. The metropolis
algorithm for graph bisection. Discrete Appl. Math.,
82(1–3):155–175, 1998.

[11] B. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. The Bell System
Tech J., 49(2):291–307, 1970.

[12] S. Lin and B. W. Kernighan. An effective heuristic
algorithm for the traveling salesman problem.
Operations Research, 21:498–516, 1973.

[13] H. R. Lourenço, O. Martin, and T. Stützle. Iterated
local search. In Handbook of Metaheuristics, pages
321–353. Kluwer Academic Publishers, Norwell, MA,
2002.

[14] N. Mladenović and P. Hansen. Variable neighborhood
search. Computers & OR, 24(11):1097–1100, 1997.

[15] P. S. Oliveto, J. He, and X. Yao. Time complexity of
evolutionary algorithms for combinatorial
optimization: A decade of results. International
Journal of Automation and Computing, 4(3):281–293,
2007.

[16] C. Papadimitriou. Computational Complexity.
Addison Wesley, 1994.

[17] M. Stoer and F. Wagner. A simple min cut algorithm.
In Proc. of ESA ’94, pages 141–147, 1994.

[18] D. Sudholt. Crossover is provably essential for the
Ising model on trees. In Proc. of GECCO ’05, pages
1161–1167. ACM Press, 2005.

[19] D. Sudholt. Local search in evolutionary algorithms:
the impact of the local search frequency. In Proc. of
ISAAC ’06, pages 359–368. Springer, 2006.

[20] D. Sudholt. On the analysis of the (1+1) memetic
algorithm. In Proc. of GECCO ’06, pages 493–500.
ACM Press, 2006.

[21] I. Wegener. Complexity Theory – Exploring the Limits
of Efficient Algorithms. Springer, 2005.

[22] I. Wegener. Simulated annealing beats metropolis in
combinatorial optimization. In Proc. of ICALP ’05,
pages 589–601, 2005.

[23] C. Witt. Worst-case and average-case approximations
by simple randomized search heuristics. In Proc. of
STACS ’05, pages 44–56. Springer, 2005.

794

