
Simulated Annealing, its Parameter Settings
and the Longest Common Subsequence Problem

Dennis Weyland
Fernuniversität in Hagen

Fakultät für Mathematik und Informatik
Lehrgebiet Komplexe Analysis

58084 Hagen, Germany
Dennis.Weyland@FernUni-Hagen.de

ABSTRACT
Simulated Annealing is a probabilistic search heuristic for
solving optimization problems and is used with great suc-
cess on real life problems. In its standard form Simulated
Annealing has two parameters, namely the initial tempera-
ture and the cooldown factor. In literature there are only
rules of the thumb for choosing appropriate parameter val-
ues. This paper investigates the influence of different values
for these two parameters on the optimization process from
a theoretical point of view and presents some criteria for
problem specific adjusting of these parameters.
With these results the performance of the Simulated An-
nealing algorithm on solving the Longest Common Subse-
quence Problem is analysed using different values for the
two parameters mentioned above. For all these parameter
settings it is proved that even rather simple input instances
of the Longest Common Subsequence Problem can neither
be solved to optimality nor approximately up to an approx-
imation factor arbitrarily close to 2 efficiently.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic algorithms;
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures, Pattern matching

General Terms
Algorithms, Performance, Theory

Keywords
Simulated Annealing, Run Time Analysis, Longest Common
Subsequence Problem

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

1. INTRODUCTION
Randomised search heuristics like Simulated Annealing,

evolutionary algorithms and local search algorithms are ap-
plied successfully in many different fields. The most impor-
tant area is optimization and approximization of problems
where no efficient problem specific algorithm is known. In
this field theoretical analyses of these heuristics are way be-
hind their practical applications.
Rigorous performance and runtime analysis of evolutionary
algorithms started about 15 years ago. At that time very
simple search algorithms on artificial problems were consid-
ered. Today more complex algorithms are subject in this
field and the analyses are no longer restricted to artificial
problems. Concrete examples for combinatorial optimiza-
tion problems considered in the last years are the Maximum
Matching Problem [3], the computation of an Eulerian cycle
[10], the computation of Minimum Spanning Trees [11], the
Single Source Shortest Paths Problem [12], the Permutation
Sorting Problem [12] and the Longest Common Subsequence
Problem [6].
In this paper we focus on Simulated Annealing and anal-
yse its performance on the Longest Common Subsequence
Problem. With our investigations we target two different
goals. On the one hand it is not clear how the performance
of Simulated Annealing depends on its parameter settings.
This topic is covered in the first part of this paper and leads
to some general results that should be considered for ad-
justing the parameters in a problem specific way. On the
other hand we investigate the runtime performance of Sim-
ulated Annealing with different parameter settings on cho-
sen input instances of the Longest Common Subsequence
Problem. This work is based on an analysis of evolutionary
algorithms for the Longest Common Subsequence Problem
[6]. It has been shown that certain input instances cannot be
solved efficiently by a huge class of evolutionary algorithms.
The main problem was that there are local optima with huge
basins of attraction preventing the algorithms from finding
optimal solutions or even (2− ε)-approximations efficiently.
An open question was, if there are other (not problem spe-
cific) search heuristics that can perform better on those in-
put instances or on the Longest Common Subsequence Prob-
lem in general. Since Simulated Annealing has the ability to
leave local optima such an algorithm would be a promising
approach.
We begin with a formal definition of the Simulated Anneal-
ing Algorithm we use in our investigations, including its
parameters. After that we will prove some general results

803

about the influence of the parameters on the algorithm’s
performance. Then we will introduce the Longest Common
Subsequence Problem, a coding for candidate solutions and
three fitness functions in a formal way. With these com-
ponents we can prove some performance bounds on certain
input instances followed by a sketch of some further results.
At the end we will discuss the obtained results and give an
outlook about possible starting points for future work on
this topic.

2. SIMULATED ANNEALING AND ITS PA-
RAMETERS

For a rigurous theoretical analysis it is of course necessary
to specify exactly what algorithm is analyzed. In this sec-
tion we specify the algorithm that is subject of the following
analyses together with its parameters.
The algorithm we investigate is a kind of standard Simulated
Annealing Algorithm operating on fixed length bit strings.
This algorithm has, besides the fitness function and the in-
put length, two different parameters, namely the initial tem-
perature and the cooldown factor. These two parameters do
not change during the execution of the algorithm.
At the beginning the temperature is set to the value of the
initial temperature and an initial solution is created uni-
formly at random. In each iteration the current solution is
modified by means of 1-bit mutation (1-bit mutation flips
exactly one bit, this bit is chosen uniformly at random). If
the fitness value of the new solution is better or equal than
the fitness value of the current solution, the new solution will
replace the current solution for the next iteration, otherwise
the new solution will replace the current solution only with a
probability of exp

`
−∆f

T

´
, where ∆f is the (positive) differ-

ence of the fitness values and T is the current temperature.
If the current solution after that step fulfills the stopping cri-
terion, the algorithm stops, otherwise the temperature will
be updated by multiplying the current temperature with the
cooldown factor and the algorithm continues with the next
iteration. The following definition is a precise description of
this algorithm in pseudo-code for a maximization problem.

Definition 1. Standard Simulated Annealing on fixed
length bit strings

Parameters are the initial temperature T0, the cooldown
factor α (0 < α < 1), the bit string length (resp. the input
size) n ∈ N and the fitness function f : {0, 1}n → R.

1. Create x ∈ {0, 1}n uniformly at random.

2. Set the iteration count t := 0.

3. Create y from x by 1-bit mutation.

4. If f(y) ≥ f(x), set x := y,

otherwise set x := y with probability exp
“
− f(x)−f(y)

T0·αt

”
.

5. If the stopping criterion is fulfilled, then stop.

6. Set t := t + 1.

7. Go to step 3.

In our analyses we are interested in the number of iter-
ations until the current solution is a global optimum or a
sufficient approximation for the first time. As usual we are

mainly interested in an asymptotic value for the number of
iterations regarding the bit string length. For the remainder
of this section, we will be occupied with the initial tempera-
ture and the cooldown factor and we will show some general
results regarding these parameters.
In [14] the author suggests to use a high initial temperature
and a cooldown factor between 0.8 and 0.99 for solving op-
timization problems in practice. Other sources suggest an
initial temperature that implies an acceptance probability
of about 80% for worse solutions at the beginning of the al-
gorithm. For theoretical analyses these general suggestions
are not very helpful, since the probability for accepting a
worse solution is independent of the input size and so it de-
creases too fast below an exponentially small value. That
means, the number of iterations to leave a local optimum
is too small with constant values for the initial temperature
and the cooldown factor. So far it is not clear, which pa-
rameter values are sensible and therefore we will investigate
many different classes of parameter values in this paper.
In the remaining part of this section we will discuss some
classes of parameter settings. We will assume that the dif-
ference of fitness values for any two solutions is either 0 or
at least 1 (instead of 1 any constant c > 0 can be used, not
changing the results). This assumption holds for the fitness
functions fmax, flcs and fjh, that we will use later for the
analyses of Simulated Annealing on the Longest Common
Subsequence Problem, and it also holds for many other well
known fitness functions. Examples for such fitness functions
can be found in [5] for the Longest Common Subsequence
Problem, in [12] for the Permutation Sorting Problem and in
[3] for the Maximum Cardinality Matching Problem. Fur-
thermore other combinatorial optimization problems have
natural fitness functions with this property. So it is not a
strong restriction and some of the following results also hold
without this restriction. The second assumption is that we
have to leave at least one local optimum during the run
of the algorithm (with certainty or with high probability).
This is not a restriction at all, because Simulated Annealing
should have the property to leave local optima and if there
are no local optima, Randomised Local Search would be the
better choice.
First, we assume that T0 = o(ln(poly(n))−1) holds for ev-
ery polynomial poly(n) in n. The cooldown factor α can
be any value between 0 and 1. With this initial tempera-
ture, the probability to accept a worse solution in the first
iteration is at most exp(− 1

T0
) = o(poly(n)−1) for every poly-

nomial poly(n) in n. Since the acceptance probabilites are
decreasing, the expected number of iterations for the accep-
tance of a worse solution is superpolynomial and so is the
expected number of iterations for leaving a local optimum.
Furthermore the probability to leave a local optimum within
t iterations can be bounded from above by t · o(poly(n)−1)
using any polynomial. That means such parameter settings
do not lead to an efficient Simulated Annealing Algorithm
for solving problems with local optima and so these settings
are not part of the later analyses.
Now, let us assume that we have an arbitrary initial tem-
perature and a cooldown factor of α = 1 − O(c−n) with
a constant c > 1. Then we need exponentially many iter-
ations to achieve a cooldown of a constant factor. So it is
likely that the algorithm behaves within exponentially many
iterations like the Metropolis Algorithm, i.e. Simulated An-

804

nealing with a constant temperature. This fact in mind, we
will handle this case in a separate analysis later.
The remaining parameter settings define the number of iter-
ations, in which the algorithm is able to leave local optima.
A low initial temperature and a small cooldown factor lead
to a small time window for leaving local optima, a high ini-
tial temperature and a cooldown factor very near to 1 lead
to a huge time window for leaving local optima. On the
other hand, once the basin of attraction of a global optima
is reached, a low initial temperature and a small cooldown
factor lead to a faster convergence to this optimum in gen-
eral, whereas an algorithm with a high initial temperature
and a cooldown factor near to 1 needs more iterations to
reach that optimum. So there is a kind of tradeoff between
the number of iterations, within local optima can be left,
and the number of iterations the algorithm needs to reach
a global optimum once there is a solution in its basin of at-
traction.
With this very general investigations of the parameter set-
tings, we can draw the following conclusions. A very low
initial temperatur T0, with T0 = o(ln(poly(n))−1) for ev-
ery polynomial poly(n) in n, is not useful at all. With a
cooldown factor of α = 1 − O(c−n), with a constant c > 1,
the algorithm behaves like the Metropolis Algorithm within
exponentially many iterations. And the different values in
the remaining class of parameter settings represent a tradeoff
between the number of iterations, within local optima can
be left, and the number of iterations the algorithm needs
to reach a global optimum once there is a solution in its
basin of attraction. So this values should be chosen in a
problem specific way regarding the fitness function. Figure
1 illustrates these facts.

3. THE LONGEST COMMON
SUBSEQUENCE PROBLEM

In this section we will give a precise definition of the
Longest Common Subsequence Problem. After that we will
present the search space and representation of individuals
used in [7] together with the fitness functions used in [7]
and [6] that are relevant for our analyses.
Before we are able to define the Longest Common Subse-
quence Problem we have to clarify some terms. The Longest
Common Subsequence Problem is defined over some finite
alpabet Σ. In computer science the alphabet Σ = {0, 1}
is commonly used, in bioinformatics an alphabet with 4 ele-
ments, Σ = {A, C, G, T}, for the coding of DNA sequences is
of particular interest and for our analyses we use the alpha-
bet Σ = {X, Y } for a better distinction between bitstrings
and the individuals they represent. We consider sequences
of letters from Σ, also called strings, of finite lengths. For
a given string s we denote by |s| the length of s, i.e. the
number of letters from Σ in s. For a letter l ∈ Σ we write
|s|l to refer to the number of occurrences of l in s. For ex-
ample, for the string s = XXXY XY X over the alphabet
Σ = {X, Y, Z} we have |s| = 7, |s|X = 5, |s|Y = 2 and
|s|Z = 0. Furthermore, we write s(i) with i ∈ {0, 1, . . . , |s|}
for the prefix of length i of s. As usual, we use ε as the sym-
bol for the empty string of length 0. For convenience, we use
the notation si for a sequence s and i ∈ N0 for a repetition of
s for i times. Thus, X3 = XXX and (Y X)2 = Y XY X. Us-
ing this notation and writing concatenations of strings with-
out any special symbol, we have XXXY XY X = X3(Y X)2.

For an alphabet Σ, we refer to the set of all strings of lengths
exactly i, i ∈ N0, with Σi. The set of all strings of finite
length over Σ is called Σ? =

S
i∈N0

Σi.
Now some terms, that lead us directly to the definition of the
Longest Common Subsequence Problem. Given two string
A = a1a2 . . . an ∈ Σn and B = b1b2 . . . bm ∈ Σm we call
B a subsequence of A if there is a increasing sequence of
indices 0 < i1 < i2 < . . . < im ≤ n such that aij = bj

holds for all j ∈ {1, 2, . . . , m}. For example, XXY XX is
a subsequence of XXXY XY X while XXY Y XX is not a
subsequence of this string. The sequence of indices proving
that some string is a subsequence of another string is not
necessarily unique. For example 1, 2, 4, 5, 7 and 1, 3, 4, 5, 7
are both valid sequences that prove that XXY XX is a sub-
sequence of XXXY XY X.
For a given finite set of strings A1, A2, . . . , Am ∈ Σ? over the
same alphabet Σ, we call a string B ∈ Σ? a common subse-
quence, if B is a subsequence of Ai for all i ∈ {1, 2, . . . , m}.
B is actually called a longest common subsequence, if it has
maximum cardinality, that means, if for all other strings
B′ ∈ Σ? that are common subsequences of A1, A2, . . . , Am

the condition |B′| ≤ |B| holds.
With these terms we are now able to define the Longest
Common Subsequence Problem precisely. Given a finite
number of strings A1, A2, . . . , Am ∈ Σ? over some finite al-
phabet Σ, the task is to find a longest common subsequence
of the given strings. As the problem formulation suggests,
the solution is not uniquely determined in general. For ex-
ample, considering A1 = Y XXXY Y , A2 = XY Y Y XXXX
and A3 = XXY Y XX, we see that XY Y and Y XX are
both longest common subsequences.
At this point it should be mentioned that the Longest Com-
mon Subsequence Problem is one of the fundamental prob-
lems in computer science and it has many applications, espe-
cially in bioinformatics. There exists a problem specific algo-
rithm (based on a dynamic programming approach) solving
the problem for a fixed number of m sequences of lengths l1,
l2, . . . , lm in time O

`Qn
i=1 li

´
[2].

To be able to use Simulated Annealing we need a precise def-
inition of the search space and the coding of search points,
in this context also called individuals. For our analysis
we use a simple binary encoding that has been proposed
and used by Julstrom and Hinkemeyer in [5] and [7]. Let
A1, A2, . . . , Am ∈ Σ? be the given strings. Without loss of
generality we assume that A1 is a shortest of this strings,
i.e. |A1| ≤ |Ai| for all i ∈ {1, 2, . . . , m}. Clearly, the length
of a longest common subsequence is bounded above by the
length of the shortest sequence. Let n = |A1|, then we can
represent a candidate solution B ∈ Σ? by some bitstring
s ∈ {0, 1}n of fixed length n. A bit set to 1 indicates a letter
in A1 that is used for the candidate solution, while a bit
set to 0 indicates, that the corresponding letter is left out.
For example, for A1 = ACGTA, 00010 represents T , 11101
represents ACGA. The all 1-string 1n represents A1, while
the all 0-string 0n represents ε. This way s ∈ {0, 1}n may
represent strings that are not common subsequences. We
will have to take care of such infeasible solutions when we
define a fitness function. Note that with the all 0-string 0n a
trivial feasible candidate solution is known. In the following
we use a function c : {0, 1}n → Σ? that maps bit strings to
the candidate solutions they represent.
The last ingredient we need for using Simulated Annealing is
a fitness function. In this paper we will focus on three fitness

805

cooldown factor
(order of growth)

1 1 − ln(n)−1 1 − n
−1 1 − poly(n)−1 1 − c

−n

initial temperature

(order of growth)

n
−1

ln(poly(n))−1

1

n

poly(n)

c
n

not useful parameter combinations

Metropolis

Algorithm

like

behaviour

tradeoff between time to leave local
optima and optimization speed

more

optimization speed

more time to leave
local optima

Figure 1: Simulated Annealing parameter settings

functions. The first one has been proposed by Julstrom and
Hinkemeyer in [5] and [7], the other ones are more artificial
and have been used for the analyses in [6].
We call the fitness function proposed by Julstrom and Hinke-
meyer fjh. This fitness function maps search points repre-
senting feasible candidate solutions to positive fitness val-
ues and search points representing infeasible candidate so-
lutions to negative values. Assuming A1, A2, . . . , Am ∈ Σ?

are the input strings for the Longest Common Subsequence
Problem, |A1| ≤ |Ai| holds for all i ∈ {1, 2, . . . , m} and
c : {0, 1}n → Σ? is defined as above, we can define the
fitness function as follows.

Definition 2. Fitness function fjh : {0, 1}n → Z

fjh(s) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

3000(|c(s)|+ 30k(s) + 50),

if |c(s)| = n and k(s) = m.

3000(|c(s)|+ 30k(s)),

if |c(s)| < n and k(s) = m.

−1000(|c(s)|+ 30k(s) + 50)(m− k(s)),

if |c(s)| = n and k(s) < m.

−1000(|c(s)|+ 30k(s))(m− k(s)),

if |c(s)| < n and k(s) < m.

Here k(s) is the number of strings of A1, A2, . . . , Am for
which c(s) is a subsequence.

It is not clear, why the special case |c(s)| = n gets extra
reward and extra attention. In general, no feasible solution
with |c(s)| = n needs to exist. Fortunately this aspect is not
relevant for our theoretical analyses.
The idea behind the next fitness function, fmax, is to map

the letters in c(s) from left to right to letters in each of the
strings A1, A2, . . . , Am. Each letter that can be mapped (for
all strings A1, A2, . . . , Am) leads to a reward of +1, letters
that cannot be mapped (for at least one of the strings) lead
to a decrease by −1. For i ∈ {1, 2, . . . , m} we call the length
of the longest prefix of c(s) that is a subsequence of Ai

pref(i) = max{ k ∈ {0, 1, . . . , |Ai|} :

c(s)(k) is a subsequence of Ai}.

Then the number of letters that lead to a reward of +1 is
gain(s) := min{pref(i) : i ∈ {1, 2, . . . , m}} and the number
of letters that cause a decrease by −1 is |c(s)| − gain(s).
With these notations we can define the fitness function in
the following way.

Definition 3. Fitness function fmax : {0, 1}n → Z

fmax(s) = gain(s)− (|c(s)| − gain(s))

= 2 · gain(s)− |c(s)|.

This fitness function also maps feasible solutions to non-
negative values, but it is not the case that infeasible solutions
have negative fitness values in general. Because of its easy
structure, this fitness function has some properties that can
be verified easily. Removing a letter from a feasible solu-
tion decreases its fitness value by −1. Adding a letter, that
can be mapped leads to a reward of +1 and adding a letter
that cannot be mapped leads to an infeasible solution with
a lower fitness value. For infeasible solutions this is a bit
more complicated. Adding letters can lead to a gain of +1
if this letter can be mapped successfully or a loss of at least
−1 if this letter cannot be mapped. Removing a letter that
could not be mapped leads to a reward of at least +1, while

806

removing a letter that could be mapped leads to a decrease
of −1. The analyses in the following sections use these prop-
erties and distinguish between the seven different cases that
could occur.
Our last fitness function is called flcs. In this fitness function
the very simple left-to-right mapping is replaced by the best
possible mapping, the mapping induced by a longest com-
mon subsequence. Since for such a mapping the Longest
Common Subsequence Problem needs to be solved, such a
fitness function makes no sense at all with respect to prac-
tical applications. But, since it is the best possible map-
ping, this fitness function is interesting from a theoretical
point of view. Using a similar notation as for fmax, for
i ∈ {1, 2, . . . , m} we call the length of a longest common
subsequence of c(s) and Ai

lcs(i) = |l|, where l is a longest common

subsequence of c(s) and Ai.

Here the number of letters that lead to a reward of +1 is
gain′(s) := min{lcs(i) : i ∈ {1, 2, . . . , m}} and the number
of letters that lead to a loss of −1 is |c(s)| − gain′(s). Now
we can define flcs in a formal way.

Definition 4. Fitness function flcs : {0, 1}n → Z

flcs(s) = gain′(s)− (|c(s)| − gain′(s))

= 2 · gain′(s)− |c(s)|.

Having clarified which kind of Simulated Annealing algo-
rithm and which fitness functions we are using, we can now
proceed to the analyses.

4. SOME PERFORMANCE BOUNDS
In this section we will prove some bounds on the runtime

of the Simulated Annealing Algorithm that hold with cer-
tainty or very high probability for all of the three fitness
functions. Our analyses cover all useful combinations of the
initial temperature and the cooldown factor. But before we
can start with the analyses we need a result about biased
random walks.
Let us assume that we start with a certain value of x = n. In
each step we either decrease the value by −1 or increase the
value by +1. If we have 0 < x ≤ 2n the probability for de-
creasing the value is ≤ p− and the probability for increasing
the value is ≥ p+. p− and p+ are constants independent of
n with p− < 1/2 and p+ > 1/2. The transition probabilities
for values greater than n can be arbitrary. We are interested
in an upper bound of the probability that we reach the value
x = 0 within t steps.
Therefore we investigate n time steps starting at a value of
x = n. We can model each of the n steps by a random vari-
able Xi, 1 ≤ i ≤ n. We set Xi = 1 if and only if the value
increases by 1 in time step i. Since the value x in all of the
n time steps we investigate is between 0 and 2n, we have n
independent 0/1 random variables each set to 1 with proba-
bility ≥ p+ and to 0 with probability ≤ p−. Now we focus on
the sum of these random variables, X = X1 +X2 + . . .+Xn.
The expected value of X is µX ≥ np+. With the use of Cher-
noff bounds, we can bound the probability that X ≤ n/2.

With δ = 2p+−1
2p+ we have

Prob(X ≤ n/2) ≤ Prob(X ≤ (1− δ)µX)

≤
„

e−δ

(1− δ)1−δ

«µX

≤ cΘ(n) with c < 1.

That means starting at the value x = n we do not reach the
value 0 within n time steps and we do not have a smaller
value than n after those steps with a probabiltiy of at least
1 − cΘ(n), with a constant c < 1. Calling n time steps, be-
ginning with a value of x = n, a phase, we have at most
t/n phases within t time steps. The probability that we do
not reach the value 0 within t time steps can therefore be
bounded from below by 1 − t/n · cΘ(n). From another per-
spective, the probability that we reach a value of 0 within t
time steps can be bounded from above by t/n · cΘ(n).
With this result for biased one dimensional random walks,
we can begin with our actual analyses.
We start with an analysis of the Metropolis Algorithm on
a very trivial input instance, namely the input instance
A = Xn consisting of only one string. Clearly this problem is
equivalent to the well known OneMax for all three fitness
functions. The following analysis also holds for the Simu-
lated Annealing Algorithm with a cooldown factor exponen-
tially close to 1 within exponentially many steps. We will
now show that both algorithms have problems reaching the
global optimum, if the acceptance probability for worse solu-
tions is high enough. Therefore we assume that the probabil-
ity for accepting worse solutions is paccept = Ω(n−1/2). For
the Simulated Annealing Algorithm with a cooldown factor
exponentially close to 1 this property holds for at least ex-
ponentially many steps.
For an individual s with |c(s)|X ≥ n − n1/3 the probabil-
ity for creating a worse solution and then accepting it is

p+ ≥ n−n1/3

n
· paccept. (Here, and also in later analyses,

we use p+ and p− according to the notation of the biased
one dimensional random walk.) The probability for creat-

ing a better solution is p− ≤ n1/3

n
. Ignoring steps that do

not change the individual, we can model this behaviour by
a biased random walk. With our choise of paccept we have
p+/p− ≥ 2 for sufficiently large values of n and therefore
we can apply the result from the beginning of this section
obtaining the following theorem.

Theorem 1. The probability that the Metropolis Algorithm
finds an optimal solution for the Longest Common Subse-
quence Problem on the input instance A = Xn for any of
the three fitness functions fmax, flcs and fjh within t iter-

ations is bounded from above by t · cΘ(n1/3) for sufficiently
large values of n and a constant c < 1, if the acceptance
probability for worse solutions is paccept = Ω(n−1/2).
Within exponentially many iterations, this result also holds
for the Simulated Annealing Algorithm with a cooldown fac-
tor of α = 1 − O(c−n), c > 1, if the initial probability for

accepting worse solutions is paccept = Ω(n−1/2).

Of course, we could obtain a stronger result with a more
precise analysis, in particular the fraction p+/p− is of order

Θ(n1/6) and not only a constant ≥ 2. But for our purpose,
to show that this trivial problem instance cannot be solved

807

efficiently, we are satisfied with this result; and we also use
this approach for the following analyses.
Now we still have to analyse the case paccept = o(n−1/2).
Here the idea is that it is hard to leave local optima with
large basins of attraction. We will see that the following
proofs for fmax and flcs are independent of the acceptance
probability and so they hold for any combination of the pa-
rameters initial temperature and cooldown factor. For fjh

this is slightly more complicated and we need to distinguish
the two cases paccept = Ω(n−1/2) and paccept = o(n−1/2).
Moreover for fjh we need a different analysis for values of
the cooldown factor that are not exponentially close to 1.
More about these analyses later, now we will give detailed
proofs for fmax and flcs.

Theorem 2. With a probability exponentially close to 1
the probability that the Simulated Annealing Algorithm (resp.
the Metropolis Algorithm) finds an optimal solution for the
Longest Common Subsequence Problem on the input instance
A = X(3/5)nY (2/5)n, B = Y nX(13/40)n for the fitness func-
tion flcs within t iterations is bounded from above by t ·cΘ(n)

for sufficiently large values of n and a constant c < 1.

Proof. With Chernoff bounds we can show that for the
initial solution s the properties

|c(s)|X ≥ (11/40)n and |c(s)|Y ≤ (9/40)n

hold with probability exponentially close to 1. In particular
we have |c(s)|X > |c(s)|Y . The crucial point in this analysis
is that this property is preserved with high probability dur-
ing the run of the algorithm. More precisely we show that
|c(s)|X ≥ (21/80)n and |c(s)|Y ≤ (19/80)n is preserved with
high probability. As long as we have |c(s)|X > |c(s)|Y we
can analyse the behaviour of the numbers of letters X and
Y separately.
At first we focus on the behaviour of the number of the letter
X. For an individual s with (21/80)n ≤ |c(s)|X ≤ (22/80)n
an additional letter X leads to a better fitness value whereas
removing an X leads to a worse fitness value. Since the
number of bits that can be flipped in order to add an X
is bounded from below by (26/80)n and the number of bits
that can be flipped in order to remove an X is bounded from
above by (22/80)n we have, independent of the acceptance
probability, a biased random walk in this interval with favor
for larger numbers of the letter X. Analogue we can show
that we have a biased random walk on the number of letters
Y in the interval between (18/80)n and (19/80)n favoring
smaller numbers of the letter Y , also independent of the ac-
ceptance probability.
Since the optimal solution, Y (2/5)n does not have the prop-
erty mentioned above, we can bound the number of itera-
tions until an optimal solution is reached for the first time
from below by the number of iterations until the property
is not preserved for the first time. Together with the result
about biased random walks this observation concludes the
proof.

Theorem 3. With a probability exponentially close to 1
the probability that the Simulated Annealing Algorithm (resp.
the Metropolis Algorithm) finds an optimal solution for the
Longest Common Subsequence Problem on the input instance
A = X(1/4)nY (3/4)n, B = Y (3/4)nX(1/4)n for the fitness
function fmax within t iterations is bounded from above by
t·cΘ(n) for sufficiently large values of n and a constant c < 1.

Proof. For an initial solution s we can show with Cher-
noff bounds that |c(s)|X ≥ (3/32)n holds with probability
exponentially near to 1. The global optimum for the given
problem instance is Y (3/4)n and so we need to remove all let-
ters X from our candidate solution to reach that optimum.
The decisive aspect in this analyse is that the number of let-
ters X develops independently of the number of letters Y as
long as the number of X is greater than 0. So we can focus
on iterations that only affect the number of letters X in the
candidate solution and do not count iterations not changing
the candidate solution or only chaning the number of letters
Y .
On this assumption, for individuals s with |c(s)|X ≥ (3/32)n,
the probability p− to create and then accept an individ-
ual s′ with |c(s′)|X = |c(s)|X − 1 is bounded above by
(3/8)paccept ≤ 3/8. On the other hand the probability p+ to
create an individual s′ with |c(s′)|X = |c(s)|X +1 is bounded
from below by 5/8. Again we can conclude the proof by
applying the result about the biased random walk in this
particular situation.

As we mentioned above for fjh the situation is more com-
plicated, because infeasible solutions have negative fitness
values and so we do not have such simple properties as we
had for fmax and flcs. Fortunately for the acceptance prob-
abilities we consider in this case, the probability of creating
and accepting infeasible solutions can be neglected. Due to
space restrictions we will only sketch the following proof.

Theorem 4. With a probability exponentially close to 1
the probability that the Metropolis Algorithm finds an opti-
mal solution for the Longest Common Subsequence Problem
on the input instance

A = X(1/4)nY (3/4)n, B = Y (3/4)nX(1/4)nY (13/32)n

for the fitness function fjh within t iterations is bounded from

above by t · cΘ(n) for sufficiently large values of n and a con-
stant c < 1, if the acceptance probability for worse solutions
is paccept = o(n−1/2).
Within exponentially many iterations, this result also holds
for the Simulated Annealing Algorithm with a cooldown fac-
tor of α = 1−O(c−n), c > 1, if the initial acceptance prob-

ability for worse solutions is paccept = o(n−1/2).

Proof. (Sketch) This proof is similar to that for the fit-
ness function fmax. Unfortunately fjh penalizes infeasible
solutions with negative values and once such a solution is
reached it is very likely that many bits are flipped from 1 to
0 until we have again a feasible solution.
During the analysis on fmax we only had to consider so-
lutions of length Θ(n). And fortunately the difference of
fitness values of feasible and infeasible solutions of length
Θ(n) is also Θ(n). With an (initial) acceptance probability
for a worse solution which fitness value differs by exactly 1 of
paccept = o(n−1/2) the (initial) acceptance probability for a
solution which fitness value differs by Θ(n) is exponentially
small in n. Since we start with probability exponentially
close to 1 with a feasible solution (Chernoff bounds), we can
rate the creation and acceptance of an infeasible solution as
a success for the algorithm. So the algorithm can succeed by
removing all letters X in the candidate solution or by creat-
ing and accepting an infeasible solution. Both events occur
only with an exponentially small probability in n. Omitting
technical details, this concludes the proof.

808

Although we only focused on the Metropolis Algorithm
and the Simulated Annealing Algorithm with a cooldown
factor exponentially near to 1 we have formulated and proved
results for the fitness functions fmax and flcs that hold for the
Simulated Annealing Algorithm and all usable combinations
of the parameters initial temperature and cooldown factor.
For the fitness function fjh the situation is more complicated.
Our proofs so far only cover the Metropolis Algorithm and
the Simulated Annealing Algorithm with a cooldown factor
exponentially near to 1 for this fitness function. Until the
end of this section we will focus on the general case for the
fitness function fjh.
The problem in the general case is that infeasible solutions
could be created and accepted with a probability that can
not be neglected anymore. We will use the same problem
instance,

A = X(1/4)nY (3/4)n, B = Y (3/4)nX(1/4)nY (13/32)n,

for the analysis of the general case but we have to modify
the proof. We will split the run of the algorithm into two
phases. The main idea for the analysis is that in the first
phase infeasible solutions will only be created with very low
probability and in the second phase the acceptance probabil-
ity for infeasible solutions will be exponentially small. The
second idea is that we focus on the cardinality of the letters
X and Y in the candidate solution string independently.
As long as no infeasible solution occurs, we can bound the
probability that the number of letters X reach the value 0
within t steps as in the previous proof. The candidate so-
lution gets infeasible if the number of letters Y exceeds the
value of (13/32)n. For the initial solution s we can show with
Chernoff bounds that |c(s)|Y ≤ (25/64)n with probability
exponentially close to 1. Now we apply the idea formulated
above. As long as the temperature is high enough and the
acceptance probability is paccept ≥ 24/25, the behaviour of
the number of letters Y in the interval between (25/64)n and
(26/64)n can be modeled by a biased random walk favoring
less letters of Y . So it is not likely that infeasible solutions
occur in this case. If the acceptance probability drops below
24/25, we can no longer model the behaviour that way. But
fortunately in that case the acceptance probability for worse
solutions which fitness value differs by Θ(n) is exponentially
small in n. All these observations build the foundation of
the proof.
Omitting technical details, this leads us to the following re-
sult.

Theorem 5. With a probability exponentially close to 1
the probability that the Simulated Annealing Algorithm (resp.
the Metropolis Algorithm) finds an optimal solution for the
Longest Common Subsequence Problem on the input instance

A = X(1/4)nY (3/4)n, B = Y (3/4)nX(1/4)nY (13/32)n

for the fitness function fjh within t iterations is bounded from

above by t · cΘ(n) for sufficiently large values of n and a
constant c < 1.

In this section we have shown that there are problem in-
stances where the Metropolis Algorithm and the Simulated
Annealing Algorithm with certain parameter combinations
cannot find the global optimum efficiently. Our investiga-
tions cover the Metropolis Algorithm with all possible tem-
perature settings and the Simulated Annealing Algorithm

with all usable combinations of the paramters initial tem-
perature and cooldown factor. These results will be gener-
alized in the next section.
With the order of our analyses we have tried to illustrate
the optimization process and the influence of the different
parameters of the Simulated Annealing Algorithm and to
emphasize the different reasons for the observed behaviour.

5. FURTHER RESULTS
In this section we generalize the results from the previ-

ous section to results about the runtime until a (2 − ε)-
approximation is reached for the first time. After that we
show, that the results even hold, if we do not allow more
than a constant number of repetitions of the same letter in
each input string.
To generalize the results to (2 − ε)-approximations, we can
use the same proofs as in the previous section and we only
need to modify the input instances a little bit. For exam-
ple, in one analysis with the fitness function flcs we used the
input instance

A = X(3/5)nY (2/5)n, B = Y nX(13/40)n.

There we showed, that it is not likely to get individuals s
with |c(s)|X < |c(s)|Y . Without reaching an individual with
this property, we cannot get a fitness value of more than
(13/40)n. Since the fitness value of the global optimum is
(16/40)n, we only get 16/13-approximations. We now can
modify the ratio between the number of X and Y in the first
input string and adjust the second input string properly.
With

A′(k) = X((k+1)/(2k+1))nY (k/(2k+1))n,

B′(k) = Y (k/(2k+1))nX(1/k)nY ((4k+5)/(16k+8))n,

k ≥ 2, we have a family of input instances, which can be
used in the same proof. In this way we can generalize
the results about the runtime until an optimal solution is
reached for the first time to results about the runtime until
an a-approximation, for any approximation ratio a < 2, is
reached for the first time. In particular, for each a < 2 there
exists a k ≥ 2 such that we can proof the desired result by
using the existing proof on the input instance A′(k), B′(k).
The other results can be transformed in a similar way to
results about (2− ε)-approximations.
Until the end of this section we will consider certain subsets
of input instances. At first, we have restricted the analy-
ses to input instances consisting of exactly two input strings
with two different letters. Of course, input instances con-
sisting of only one string or of strings with only one letter
would be trivial (that does not mean trivial to solve for all
paramter settings, as we have seen).
We can create input instances with more strings by dupli-
cating the second input string and not changing the results.
Furthermore we can increase the alphabet size and append
each of the new letters in the same order to each of the input
strings and again preserve the results. So we have analyzed
the easiest, non-trivial class of input instances regarding the
number of input strings and the alphabet size.
The next restriction to our class of input instances would be
to allow only a constant number of repetitions of the same
letter in each input string. In all our analyses we used input
instances containing repetitions of length Θ(n) of the same
letter. But analogous to [6] we can construct input instances

809

for all of our problems (now with 3 or 4 different letters) that
only consist of a constant number of repetitions of the same
character and use the same proofs as before. So all our re-
sults also hold for certain instances of this restricted subset
of input instances.

6. CONCLUSIONS
In this paper we have analysed the influence of the two

parameters initial temperature and cooldown factor on the
performance of the Simulated Annealing Algorithm from a
theoretical point of view. We have worked out that some pa-
rameter settings are not useable at all and that others lead
to a Metropolis Algorithm like behaviour. The usable pa-
rameter settings represent a tradeoff between the number of
iterations, within local optima can be left, and the number
of iterations the algorithm needs to reach a global optimum
once there is a solution in its basin of attraction. These re-
sults could be helpful for theoreticians and practitioners for
adjusting the parameters in an appropriate problem specific
way.
The second part of the paper has been about theoretical
investigations of the runtime performance of Simulated An-
nealing on chosen input instances of the Longest Common
Subsequence Problem. Therefore we have used a coding due
to Julstrom and Hinkemeyer [7] and the three fitness func-
tions fjh from [7], fmax and flcs from [6]. For the Simulated
Annealing Algorithm we proved exponential lower bounds
on the expected optimization time for all usable parame-
ter settings. Then we generalized these results to (2 − ε)-
approximations. At the end we could restrict the input in-
stances to strings where the longest repetition of the same
letter is bounded above by a constant. Therefore the alpha-
bet size has to be increased to 4.
We do not believe that our problem instances are worst
case instances in the sense that there are no other prob-
lem instances, where the algorithm performes worse. The
goal was to show that there are problem instances that can-
not be solved or approximated efficiently and this goal has
been achieved. Perhaps there are other problem instances
which give us more insight into the optimization process of
the Simulated Annealing Algorithm, but these problem in-
stances are rather easier ones or classes of easier ones than
real worst case instances. The other point is, that we do
not believe that the approximation ratio of (2− ε) is in any
sense tight. Perhaps new results regarding the approxima-
tion ratio can be achieved in the future.
In [6] the authors pointed out that it would be interesting
to find standard (i.e. not problem specific) evolutionary al-
gorithms that perform well on the given input instances.
For these input instances local optima with large basins of
attraction have been the main problem. Unfortunately Sim-
ulated Annealing has similar problems handling these input
instances and the different analyses should have made this
behaviour clear. We think that most local search algorithms
would have similar problems on these input instances and so
it is still very interesting, if there are standard local search
algorithms that perform better in this setting.
Other interesting aspects would be the analysis of modified
Simulated Annealing Algorithms with other cooling sched-
ules or other mutation operators. We believe that the results
can be generalized to other general (not problem specific)
mutation operators such as k-bit mutation or standard-bit-

mutation and to other cooling schedules without changing
the proof ideas significantly.

7. REFERENCES
[1] H.-G. Beyer, H.-P. Schwefel, and I. Wegener. How to

analyze evolutionary algorithms. Theoretical
Computer Science, 287(1):101–130, 2002.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press, 2001.

[3] O. Giel and I. Wegener. Maximum cardinality
matchings on trees by randomized local search. In
Proceedings of the 8th Annual Genetic and
Evolutionary Computation Conference (GECCO
2006), pages 539–546, 2006.

[4] T. Hagerup and C. Rüb. A guided tour of chernoff
bounds. Information Processing Letters,
33(6):305–308, 1990.

[5] B. Hinkemeyer and B. A. Julstrom. A genetic
algorithm for the longest common subsequence
problem. In Proceedings of the 8th Annual Genetic
and Evolutionary Computation Conference (GECCO
2006), pages 609–610, 2006.

[6] T. Jansen and D. Weyland. Analysis of evolutionary
algorithms for the longest common subsequence
problem. In GECCO ’07: Proceedings of the 9th
annual conference on Genetic and evolutionary
computation, volume 1, pages 939–946, London, 7-11
July 2007. ACM Press.

[7] B. A. Julstrom and B. Hinkemeyer. Starting from
scratch: Growing longest common subsequences with
evolution. In Proceedings of the 9th International
Conference on Parallel Problem Solving From Nature
(PPSN IX), pages 930–938, 2006.

[8] R. Motwani and P. Raghavan. Randomized
Algorithms. Cambridge University Press, 1995.

[9] H. Mühlenbein. How evolutionary algorithms really
work: Mutation and hillclimbing. In Proceedings of the
2nd International Conference on Parallel Problem
Solving from Nature (PPSN II), pages 15–26, 1992.

[10] F. Neumann. Expected runtimes of evolutionary
algorithms for the Eulerian cycle problem. Computers
and Operations Research, 2007. To appear.

[11] F. Neumann and I. Wegener. Minimum spanning trees
made easier via multi-objective optimization. Natural
Computing, 5(3):305–319, 2006.

[12] J. Scharnow, K. Tinnefeld, and I. Wegener. The
analysis of evolutionary algorithms on sorting and
shortest paths problems. Journal of Mathematical
Modelling and Algorithms, 3:349–366, 2004.

[13] I. Wegener. Simulated annealing beats metropolis in
combinatorial optimization. In ICALP, pages 589–601,
2005.

[14] K. Weicker. Evolutionäre Algorithmen. Teubner
Verlag, 2002.

810

