Focused No Free Lunch Theorems

Darrell Whitley
Computer Science Department
Colorado State University
Fort Collins, CO USA 80534
whitley @ cs.colostate.edu

ABSTRACT

Proofs and empirical evidence are presented which show that
a subset of algorithms can have identical performance over
a subset of functions, even when the subset of functions is
not closed under permutation. We refer to these as focused
sets. In some cases focused sets correspond to the orbit of a
permutation group; in other cases, the focused sets must be
computed heuristically. In the smallest case, two algorithms
can have identical performance over just two functions in
a focused set. These results particularly exploit the case
where search is limited to m steps, where m is significantly
smaller than the size of the search space.

Category and Subject Descriptors: 1.2.8 [Artificial In-
telligence]: Problem Solving, Control Methods, Search

General Terms: Theory, Algorithms

Keywords: Theory, Algorithms

1. INTRODUCTION

This paper presents both theoretical and empirical results
which demonstrate that there can exists a “Focused No Free
Lunch” when a small set of algorithms are compared on a
small set of functions; we will define this set of functions to
be the focused set. Focused No Free Lunch results sometimes
exploit the fact that practical search algorithms are limited
to a small number of sample evaluations, denoted by m, in
a search space that is typically exponentially large. In the
smallest case, Focused No Free Lunch results holds over two
algorithms limited to m steps and the resulting focused set
contains only two functions.

Focused No Free Lunch theorems build on the Sharpened
No Free Lunch theorem which shows that No Free Lunch
holds over sets that are closed under permutation. However,
unlike the Sharpened No Free Lunch theorem, Focused No
Free Lunch theorems can hold over sets that are a subset

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’08, July 12-16, 2008, Atlanta, Georgia, USA.

Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

811

Jonathan Rowe
School of Computer Science
University of Birmingham
Birmingham, Edgbaston, B15 2TT, UK
J.E.Rowe @cs.bham.ac.uk

of the permutation closure. In some cases, a closure ex-
ists which corresponds to the orbit of a permutation group.
In this case, we leverage mathematical concepts from per-
mutation groups to bound the maximal size of the focused
closure. In other cases, particularly when search is limited
to m steps, there can be many focused sets and we construct
a focused set heuristically.

Ultimately, Focused No Free Lunch theorems are con-
cerned with how researchers and practitioners use and com-
pare search algorithms. If algorithm A1l is better than algo-
rithm A2 on a benchmark (3, the Sharpened No Free Lunch
theorem tells us that if we compute the permutation closure
of 8 (denoted by P(83)), then algorithm A2 is equally better
than A1 on the set P(8) — [in the aggregate. The problem
is that usually the size of § is small and P(3) — 3 is enor-
mous. Focused No Free Lunch results show that there can
exists a focused set denoted by C(3) such that when Al is
better than A2 on 3, then A2 is better than A1 on C(8)— .
In some cases, C'(83) can be quite small.

These results also address the concerns raised by Igel and
Toussaint [3] and Streeter [6] who show many broad classes
of problems (for example, consider ONEMAX, MAXSAT,
trap functions, or N-K Landscapes) are not closed under
permutation. Focused No Free Lunch theorems demonstrate
that a subset of algorithms can also display identical perfor-
mance over focused sets that are smaller than the permuta-
tion closure.

1.1 Background

Wolpert and Macready’s original “No Free Lunch Theo-
rems for Search” [9] can be summarized as follows:

For all possible metrics, no search algorithm is
better than another when its performance is av-
eraged over all possible discrete functions.

Schumacher et al. [5] sharpened the No Free Lunch the-
orem by formally relating it to the permutation closure
of a set of functions. Let X and Y denote finite sets and
let X — Y be a function where f(z;) = y;. Let o be
a permutation such that ¢ : X — X. We can permute
functions as follows:

af(z) = flo~ ' (z))

Since f(z;) = yi, the permutation of(x) can also be
viewed as a permutation over the values that make up the
codomain (the output values) of the objective function.

We can now define the permutation closure P(F') of a set
of functions F.

P(F)={of:f € F and o is a permutation}

This provides the foundation for the following result.

THEOREM 1. For any two arbitrary algorithms A and B,
the performance of A and B will be identical over a set of
functions if and only if that set of functions is closed under
permutation.

Proofs are given by Schumacher et al. [5]. Related proofs
are given by by Droste, Jansen and Wegener [1]. One thing
that should be clearly stated about current No Free Lunch
theorems is that these theorems addresses questions about
all possible algorithms and all possible functions, or all pos-
sible functions in a permutation closure. Focused No Free
Lunch theorems address questions about the specific behav-
ior of a specific subset of algorithms.

Schumacher et al. [5] and Whitley [8] also point out that
when No Free Lunch holds over sets of function closed under
permutation, the permutation closure may be compressible
or the permutation closure may be incompressible. English
[2] noted that NFL can hold over sets of functions such as
needle-in-a-haystack functions, which are both closed under
permutation and compressible.

Igel and Toussaint [3] show that if one considers all the
possible ways that one can construct subsets over the set
of all possible functions, then those subsets that are closed
under permutation is a vanishing small percentage of all pos-
sible subsets.

On the other hand, Droste et al. have also shown that for
any function for which a given algorithm is effective, there
exists related functions for which the performance of the
same algorithm is substantially worse [1].

So when is one algorithm really better than another? What
do experimental evaluations of algorithm really tell us about
comparative performance?

Over the next few sections, this paper presents examples
of Focused No Free Lunch results.

1.2 Gray and Binary Representations

The section presents an example of a Focused No Free
Lunch result that relates to Binary and Gray representa-
tions. This result is already well known.

Consider a benchmark test function, f, : {0,1,...,2% —
1} — R, where R is some finite subset of real numbers and L
a positive integer. Let algorithm Ag be a search algorithm
using a bit encoding with a Gray code representation. Let
algorithm Ap use the same search algorithm except Ap uses
a Binary representation. (It does not matter what search
algorithm is used, as long as it uses a bit representation of
a parameter optimization problem.)

We now ask a normal No Free Lunch question: over what
sets of functions do the two algorithms have the same per-
formance?

The Sharpened No Free Lunch theorem proves that Ag
and Ap will have the same performance when compared over
the permutation closure of f,. The same result also follows
from Whitley’s NFL for binary and gray representations [7],
and from Radcliff and Surry’s representation results [4].

However, because we are talking about two specific al-
gorithms, not just any two arbitrary algorithms out of the
space of all possible algorithms, there is a more focused re-
sult. Let string s, be any binary string; we can also treat

812

sp as a column vector. There exists matrix M such that
(sp)T M = s, where the addition is mod 2 and s is the Gray
encoding corresponding to s,. We can also “Gray” a string
multiple times. Thus (((s)” M)M) = (s)T M? produces a
string to which Gray coding has been applied twice.

It is straight forward to prove for strings of length L that
there exists an integer L < i < 2L such that M*® = I where
I is the identity matrix.

This means that for any function f, there exists a focused
set of functions (which are a subset of the permutation clo-
sure), with less than 2L members that can be generated by
repeated application of Gray code.

The following is an example for a 3 bit representation

sp: 000 001 010 011 100 101 110 111
(sp)™M': 000 001 011 010 110 111 101 100
(sp)TM?: 000 001 010 011 101 100 111 110
(sp)"M3: 000 001 011 010 111 110 100 101
(sp)"M*: 000 001 010 011 100 101 110 111

where (s3)T M* = 5.

If we then interpret all of the bit strings as standard binary
strings, then we can use the following permutation of indices
into f to create a subset of 4 functions.

P1: 0 1 2 3 4 5 6 7
P2: 0 1 3 2 6 7 5 4
P3: 0 1 2 3 5 4 7 6
P4: 0 1 3 2 7 6 4 5

We can convert these permutations into functions as fol-
lows. Let o; be the i'" element in a permutation o. A new
function g is generated by the mapping g(i) = fi(03).

This produces a focused subset of 4 functions, such that
the performance of Ag and Ap will be identical when com-
pared over all functions in the focused subset. Technically,
a group has been defined that is closed with respect to the
application of M to the bit representation.

This group has two cycles of length 1, a cycle of length 2,
and a cycle of length 4, which can be denoted by:

(0)(1)(2 3)(4 6 5 7), or more concisely (2 3)(4 6 5 7)

Closure is achieved when all of the cycles synchronize. The
orbit of the permutation cycle defines both the size of the
closure and the time required for the permutation cycles to
synchronize. Since 2 and 1 are factors of 4, the orbit is 4.

Note that the group action just described can be viewed
in three ways: a subset of functions is generated; a subset of
different representations is generated, or a subset of different
algorithms is generated. When this process is viewed as a
change in representation, the Focused No Free Lunch result
holds even if the search algorithms are nondeterministic.

This result can be extended to any pair of algorithms
whose only difference is a choice of representation (of what-
ever the search space happens to be). Since a change in
representation is the same as applying a bijection ¢ to the
domain, this means that such a pair of algorithms Al and
A2 have the property that running A1 on f is the same as
running A2 on o f, for all functions f. Then given any par-
ticular function f, we get a focused set f,of,0%f, ..., whose
size is the same as the order of o (i.e. the smallest integer k
such that o* is the identity). In the Gray-Binary case, o is
calculated using the M matrix, whose order is < 2L.

2. FOCUSED NO FREE LUNCH

The thesis of this paper is that many such examples of
“Focused No Free Lunch” exist. In particular, when com-
paring one algorithm A1l to another algorithm A2, what we
should care about is the not the permutation closure, but
rather what other smaller closures or focused sets may exist.

Permutation groups are one mechanism that leads to fo-
cused sets. Permutation cycles can show up in various ways
when comparing algorithms. We next look at this on a spe-
cial class of algorithms.

2.1 Path-Search Algorithms

We first define a special class of algorithms called path-
search algorithms.

DEFINITION 1. A path-search algorithm searches a func-
tion using a predefined sequence of points in the domain X.
The sequence of points determines a permutation of X.

This means a path-search algorithm does not use any in-
formation about the set of codomain values that are ob-
served during search. Given N values in the domain of a
function, there are N! search path algorithm.

Path-search algorithms are strongly deterministic in as
much as their behavior (and therefore their performance)
is predetermined before search begins. This also means the
path of a path-search algorithm and the resulting trace of
the codomain values is strongly coupled as well.

Given two path-search algorithms, there is a unique set of
cycles that describes the difference in the behaviors of the
two path-search algorithms. This is not always true for other
search algorithms. For now, this simplifies our discussion of
permutation cycles.

We next construct an example using the domain X =
{1,2,3,4,5,6,7} and codomain Y = {a, b, ¢, d, e, f, g} where
a to g will represent any arbitrary real values. Consider the
following path-search algorithms:

A, =<1234567>
A, =<2341657>

There again exists permutation cycles that define a clo-
sure: (123 4)(56)(7).

Thus, there are three cycles in the two permutations that
define the two path-search algorithms. Since all three cycles
are synchronized after a period of 4, there exists an orbit of
4 functions that define a closure. Given any test function
f1 we can define three more functions f2 and f3 and fi
such that the performance of algorithm A, and A, will be
identical over these four functions.

For example, if fi =< abcdefg> then:

fi=<abcdefg>
fa=<bcdafeg>
fa=<cdabefg>
fai=<dabcfeg>

Path-search algorithms A, and A, will have identical be-
haviors when compared over this set of functions.
We next formalize these ideas.

2.1.1 Path Search and Closure

Given finite sets X and Y, then Y is the set of all func-
tions from X to Y. Given a deterministic black box search
algorithm A for such functions then let tra(f) (the trace of

813

A on f) be the sequence of codomain values generated as A
searches through X. If we let T be the set of all possible
sequence of codomain values, then one of the consequences
of the NFL theorem is that tra : YX — T is a bijection for
all algorithms A. It follows that, given any two algorithms
A and B that the function (trA)*1 otrp is a permutation of
the set of functions Y*. There are, of course, many possi-
ble permutations of this set, and they form a group under
function composition.

DEFINITION 2. Let 7 : X — X be a bijection. Then the
map v (f) = fom is a permutation of Y called a value-
permutation.

The set of all value-permutations forms a subgroup of per-
mutations of Y. This kind of permutation appears in the
Sharpened NFL, which states that any set S C Y is closed
under value-permutations if and only if tra(S) = tra(S)
for all algorithms A, B. However, if we only consider some
subset of algorithms, then S needn’t be closed under value-
permutations for the result to hold.

LEMMA 1. Given a subset A of algorithms, let G be the
group of permutations of Y= generated by maps of the form
(tra)~' o trp, for pairs of algorithms A, B € A. Then for a
given function f: X — Y, the orbit of f under G, defined
by

Gf ={f'|f' = g(f) for some g € G}
has the property that tra(Gf) = tre(Gf) for all A,B € A.
Moreover, it is the smallest subset containing f for which
this is the case.

PROOF. tra(Gf) trp(Gf) follows immediately from
the definition of the group G. Now let S C Y¥ with f € S
such that tra(S) = trg(S) for all A, B € A. It follows that
S = g(9) for all g € G. Therefore g(f) € S for all g € G
which shows that Gf C S. 0O

The orbit of a function f (corresponding to some set of
algorithms A) is the smallest set of functions containing f
for which all the algorithms in A have equal performance.
The orbits corresponding to different functions partition the
set Y. The union of two such orbits is another set for which
the algorithms have equal performance. We therefore get a
lattice (under set inclusion) of sets of functions for which
NFL results hold for a given set of algorithms.

Of course, the orbit Gf must be contained within the
value-permutation closure of f, as the following lemma ver-
ifies.

LEMMA 2. Given a permutation of the form (tra) ‘otrg
and a function f : X — Y, there is a value-permutation v
such that (tra)~' o tre(f) = vx(f).

PROOF. Let g = (tra) ' otrp(f). Then the trace of A
on g is the same as the trace of B on f. Since the trace lists
all the codomain values of a function, it follows that g and
f are value-permutations of each other. [

From this result, the Sharpened No Free Lunch theorem
follows.

COROLLARY 1 (SHARPENED NFL). If G is the group
generated by all deterministic black box algorithms on Y=
and V s the group of value-permutations, then G(F)
V(F) for any set of functions F C YX. In other words,
the NFL result holds over a set of functions if and only if it
1s closed under (value-)permutations.

It may well be the case that the orbit is by no means the
whole of the value-permutation closure. Consider the exam-
ple where there are just two algorithms A, B € A. Then the
group G is generated by the single element z = (tra) otrp
and is a cyclic group. If f is a one-one function then the size
of the orbit of f is the order of the element z. That is, it is
the smallest integer k for which z* is the identity. Examples
can be given where this is considerably smaller than the size
of the value-permutation closure, as follows.

We now turn again to path-search algorithms.

LEMMA 3. Given two path-search algorithms A, B the per-
mutation (tm)*1 o trp s a value-permutation.

PrROOF. Let ma and wp be the permutations of X that
give the sequence of points searched by algorithms A and B
respectively. Let m = mp o 7r;1. Without loss of generality,
we think of the points of X as indexing the elements of the
traces. Now given any f, let

f =va(f)=fompomy'

Then

tra(f)e = f'(ma(k)) = fomp(k) = trp(f)k
Therefore v, (f) = (tra) ' otrp(f) for all f as required. [

Now suppose our two algorithms are path-search algorithms.
Then the generator of G is a value-permutation (that is, a
permutation of X).

The maximum order of such a permutation is given by
Landau’s function. For example, when |X| = 10, then
the biggest orbit is of size 30. In general, Landau’s func-
tion grows with upper bound O(e¥) which is considerably
smaller than the size of the value-permutation closure which
is N!. Since Landau’s function is an upper bound, the actual
orbit can be much smaller in many cases.

Lemma 3 looks at what happens when we compare just
two path-search algorithms. It is reasonable to ask how
many algorithms need to be considered before the orbit is in
fact the same as the whole value-permutation closure. This
depends, of course, on the choice of algorithms. Consider the
domain X = {1,2,3,...,n}. We define three path-search
algorithms, A1, A2, A3, as follows:

A1l: Search in order 1,2,3,...,n.

A2: Search the same as Al, but exchange the
first two elements; i.e., search in order 2,1,3,4,...,n.

A3: Search in shifted order 2,3,4,...,n,1.

The group generated by these algorithms is the entire sym-
metric group of all permutations of X. The orbit of any
function is therefore the full value-permutation closure.

There can also exist large collections of algorithms for
which we do not get the full value-permutation closure. For
example, one can use n!/2 different path-search algorithms
corresponding to elements of the alternating group; by se-
lecting this set of algorithms, an orbit results which is still
half the size of the full value-permutation closure (assuming
the function f we begin with is a one-one function).

2.2 Deterministic Search Algorithms

Clearly path-search algorithms are not practical search
algorithms. Real search algorithms have a history of the
points visited so far, and they use this information to decide

814

where to sample next. In the remainder of this paper, we
limit our attention to deterministic search algorithms.

This then raises two questions: 1) do cycles occur in real
search algorithms that use history information, and 2) how
do we determine if there is a closure that is smaller than the
full permutation closure? Does it make a difference if we
assume a search algorithm exhaustively explores the entire
space (which is also not realistic) so that the search algo-
rithm produce a trace over the entire codomain?

We know cycles occur in real search algorithms. If we
compare any two search algorithms that are identical ex-
cept one uses a Gray code representation and the other uses
a Binary code, then there will exist a closure of not more
than 2L functions over these two algorithms given an L bit
representation. These cycles exist even if we exhaustively
explore the entire search space.

We can induce similar cyclic patterns over other forms
of local search. Assume that we have a deterministic local
search algorithm A; that uses a regular neighborhood of
size k. We then construct a second algorithm Ay which is
identical to A; except when A; samples neighbors in the
order 1 to k, then algorithm Az will sample the neighbors
in the order (2, 3, ... k, 1). After the first move, there will
be k — 1 unvisited neighbors (since the incumbent point was
just visited by both algorithms). Algorithms A; and Az will
induce cycles of length k and k — 1 in the traces that are
generated. The closure must be of at least size k(k — 1);
it can be larger if the number of unvisited points in any
particular neighborhood is less than & — 1. But the orbit
that is induced must be less than k!.

2.3 Algorithms limited to m steps.

What happens when deterministic algorithms are limited
to m steps? Given the pragmatic constraints on search,
we will assume that for an arbitrarily chosen problem the
search space is exponentially large relative to the problem
representation size and that m is polynomial. The size of
the search space is denoted by N.

Sometimes (perhaps most of the time) algorithms that use
history do not induce simple cycles. The focused sets over
which two algorithms have identical performance for only m
steps may not correspond to a formal closure, and there may
exist focused sets that are not minimal in size. How do we
then ask if there exists a Focused No Free Lunch result?

Consider any algorithm A; applied to any function f;. Let
Apply(A;, fj,m) represent a meta-algorithm that outputs a
trace: it executes A; on f; and outputs the order in which
A; visits m elements in the codomain of f; after m steps.
We assume a step does not count previously sampled points.
For every pair of algorithms Ay and A; and for any function
fj, there exists another function f; such that

Apply(As, fj,m) = Apply(Ak, fi, m).

Viewed another way, for every pair of functions f; and
fi and for any algorithm A;, there exists another algorithm
Ay such that Apply(As, fj,m) = Apply(Ak, fi,m). When
m = N and any 3 of the “variables” are determined, the 4th
is also immediately determined.

This meta-algorithm can be used as an operator to gener-
ate traces. Under some circumstances, the traces also fully
define a function. In other cases, the traces do not fully de-
fine a function, but rather specify a set of constraints that
define a family of functions.

Assume we compare algorithm A; to algorithm Az on
function fo. This yields two traces which are generated by

Apply(Aa, fo,m) and Apply(As, fo,m)

For example, given A1, A2 and fy there exists at least two
functions f; and f2 such that:

Apply(Ax, fo,m) = Apply(As, f1,m).

Apply(Az, fo,m) = Apply(Ai, fa,m).

If algorithms A; and Az exhaustively explores the space
(i.e., m = N), then Apply(A, f,m) = tra(f) for function f.
However, if m < N, then we only know that the traces are
the same for the first m steps.

If by coincidence fi f2 then this subset of functions
is closed under the Apply operator when Al, A2 and fo, are
fixed. Thus if Al is better than A2 on function fo (or f1)
then A2 has identical but opposite performance relative to
Al on fi (or alternatively, fo). Of course, we do not nor-
mally expect this to happen. But we might ask under what
circumstances this does happen?

We will also construct a function called APPLY which
returns a trace of a function such that when m = N:

f2 = APPLY(A,B,fo,m) 4
Apply(B, fo,m) = Apply(A, f2,m).

Again, if the entire space is exhaustively explored, then
we have two notations that yield the same results: if g =
(tra) " totrp(f) then the trace of A on function g is the same
as the trace of B on function f. However, when limited to
m steps we can no longer have functions, but rather traces
that define a family of functions.

When m # N we allow APPLY to accept a trace, to as
input. Thus, we want

t] = APPLY(A, B7 to, m)

to be well-defined.

APPLY(A, B,to,m) will sometimes assign a specific
codomain value to the i*" element of trace ¢, and sometimes
the value will be undetermined. Undetermined values can
occur because algorithm A visits a point in the domain that
has not been previously seen by algorithm B. We will as-
sume that APPLY assigns a variable which acts as a place
holder for an unspecified codomain value to the i*" element
of the trace if the value is undetermined. The assignment
of a value to a variable that appears in multiple traces must
be consistent across traces. For the reader wishing to see an
example, this process is illustrated in subsection 2.5.

We will define a potential function as a set of traces which
may contain variable representing undetermined values, as
well as constraint information sufficient to determine the be-
havior of two or more algorithms given those traces. This
means that APPLY must execute algorithms on traces (act-
ing as proxies for functions) with undetermined values, given
that constraint information is provide sufficient to determine
the behavior of the algorithms.

There are two ways we might do this. 1) We could define
APPLY to be a nondeterministic algorithm. In this case,
APPLY would nondeterministically selects functions which
yield the desired traces; as a nondeterministic function, it
can select these functions so that it produces the smallest

815

focused set possible. This view allows us to again blur the
distinction between traces and functions, and we do not have
to worry about undetermined trace values. 2) We can make
APPLY a heuristic procedure that decides where a search
algorithm is going to sample next given the trace it is trying
to generate. To do this, APPLY will need to add additional
constraint information to the trace to allow the execution of

t1 = APPLY(A,B,to,m)

to be both well defined and replicable. In the worst case,
the heuristic may need to assign codomain values to the
undetermined values, but it need never define a complete
function. In other cases, it may only need to indicate infor-
mation about the relative magnitude of undetermined values
in the trace.

We can now define an algorithm to search for focused sets.
BUILD.TRACES generates T, a set of traces; ¢ and j index
the set of traces in T.

BUILD.TRACES

li=1;

25 =2

3 ti = Apply(Az, f1,m);

4 t; = Apply(Ax, f1,m);

5T =t Uty

6 not-closed = CHECK (A1, Az, f1,m,T);
7 While (not-closed)

8 {ti+2 = APPLY(Al,AQ,ti,m);

9 tj+2 = APPLY(AQ,Al,tj,m);

10 i=1i+2

11 i=i+2

12 T=TUt;U ti;

13 not-closed = CHECK (A1, A2, f1,m,T);

14 }

APPLY adds enough additional information to the trace
sufficient to allow an algorithm’s behavior to be both de-
terministic and replicated. However, APPLY has only a lo-
cal point of view. A variable representing an undetermined
codomain value may be propagated from one trace to an-
other. CHECK executes the two algorithms over all of the
traces to make sure all of the traces are feasible and compat-
ible; it never needs to correct APPLY, but it can reduce the
number of variables corresponding to undetermined values;
this has the side-effect of changing T" and the traces.

CHECK can decide that current traces ¢; and t; could be
merged into one trace if the determined and undetermined
codomain values are compatible and there are no conflicting
constraints. If CHECK merges traces ¢; and t; into one
trace, then sets the flag to terminate the loop.

CHECK can decide that ¢; and t; cannot be merged, but
there exists some function g such that Algorithms A; and
Aj yield traces t; and t; when executed on g; in this case,
CHECK also sets the termination flag.

After termination the number of traces in T can be odd
or even. T will contain a set of traces representing behav-
iors over potential functions, such that the performance of
algorithm A; and A2 over the set of potential functions will
be identical. Note that since there are two algorithms, each
potential function must be compatible with two traces.

The CHECK and APPLY functions must be constructed
based on specific properties of the search algorithms.

2.4 Benignly Interacting Algorithms

In some cases, we do not require all of the machinery of
BUILD.TRACES and can show that a focused set of just
2 traces exists. In this case, BUILD.TRACES terminates
before executing the while loop. This result is independent
of the algorithms that are used.

Let A; and Az be two deterministic algorithms that are
executed on function fi. We assume a method exists for
indexing the domain. Assume each algorithm samples m
points, with each domain sample indexed by i = 1 to m.

For the current discussion, a key aspect of deterministic
algorithms is that the search paths explored by these algo-
rithms may “intersect” in the sense of sampling the same do-
main values. However, given that m is dramatically smaller
than the size of the search space, it is also possible that two
algorithm do not “intersect” after m steps. What does this
mean for the comparison of the two algorithms?

We construct two arrays: Array D stores the domain val-
ues D; ; sampled by algorithm j at step i. Array V stores
the codomain values V; ; sampled by algorithm j at step i.

We next construct two new arrays, D* and V™. Note that
V and V* contain information about two traces constructed
from the codomain values. Our goal is to combined the
information contained in V* into a single potential function.
We construct V* as follows.

for i = 1 to m, Via=Vip and V) =Via.

To assign values to D*, we define a function to extend the
domain trace (denoted by X DT') such that

D;; = XDT(i,j, D", V™).

The function X DT (3,5, D*,V*) executes algorithm Aj,
using the provided domain values and codomain values from
steps 1 to i-1. It returns the domain value that algorithm
Aj; will visit at step . In effect, XDT(¢,5, D*, V") simu-
lates algorithm Aj; it uses the ¢ — 1 values in D* and V™ to
determine Dy ;.

We then iteratively construct D* as follows:

for i =1tom, D;; = XDT(i,j,D", V")
Note that D and D* stores m elements for each algorithm.

We will treat the elements of D and D™ as sets, and apply
intersection and union operations.

Dar = UDi,l and D}, = UD¢,2

Var =JVin

For example, this denotes that D41 is the union of the m
domain values sampled by A; at each time step i.

and Vi, = U‘/i,Q

DEFINITION 3. Two algorithms Ai and Az benignly in-
teract with respect to a function fi and the construction of
V™ if one of the following conditions hold:

1) (D4 N D}s) = 0.
2)if (de (DiyNDhy) andd =Dy, =
then V1 =V, s.

D2)

Note that condition 2 for benign interaction can occur in
two ways.

816

If f1 is a bijection then
((Dzl n DZQ) # @ and Vx*,l = Vy*,g) = T=Y

Thus, if the function is a bijection and both algorithm sam-
ple the same domain value, they must visit that domain
value at time step = y in order to produce the same
codomain value at the same time in the traces V and V*.
This produces a permutation cycle of one element in the two
trace V and V*.

If f1 is not a bijection and x # y, then as long as V71 =
V2 when (D%; N D},) # 0 then the same codomain values
will still occur at the same time step in V and V™.

We will use D* and V* to construct a new function fs.
The notion of benign interaction is a way of guaranteeing
that either the algorithms A; and Az do not visit the same
domain values, or if they do visit the same domain values,
they also find the same codomain values at those locations.

LEMMA 4. Assume two algorithms Al and A2 are exe-
cuted for a polynomial number of time steps denoted by m
on function fi1. If Al and A2 “benignly interact” there exists
a function fo such A1 and Az have two equal but opposite
traces when executed for m steps on fi and fa; if f1 is com-
pressible, then there exists at least one function fa which is
compressible. In general, when f1 is a bijection and N 1is the
size of the search space, there are (N —m)! ways to construct

fa.

PRrROOF. Array V defines the behavior of algorithms A;
and As on function fi. Using D* and V™ we construct a sec-
ond function f2; when D* does not contain a domain value
we can make an assignment to that domain value randomly
or we use f1 to make the assignment.

By construction Vs = Vi1 and V;'; = Vj .

The construction is feasible and V™ captures the correct
traces of A1 and A2 executed on f2 given that A; and As
benignly interact on function fi. If (D%, N D%,) = (then
then we are free to assign values to f2 at all domain values
using V* without conflict. If (D4, N Diy) # 0 but V'3 =
V, 2 because A; and A; benignly interact, then there is no
conflict in the construction since the codomain values that
appear in both V and V* occur at exactly the same time
steps (and thus act as a permutation cycle of length 1).

In the construction of f> if domain points that are not in
D™ are assigned codomain values randomly using codomain
values that are not in V*, then for a search space of size
N, there are (N-m)! possible constructions when fi is a
bijection.

In the construction of f if fi is used to make the assign-
ment to domain points not in D*, f2 is compressible when
f1 is compressible, since we only need a copy of fi and the
arrays D™ and V™ which are of length m to construct fs.

O

2.5 Constructing Other Sets

Assume two algorithms do not benignly interact and that
it is not possible to construct a focused set of size 2. We
can still then use BUILD.TRACES to find sets of potential
functions where algorithms A; and As produce exactly the
same set of traces; thus, these potential functions define a

focused set given a specific function as a seed. In this section,
we also need a heuristic version of APPLY to guide local
neighborhood search.

We must worry about common (interacting) elements in
the traces of algorithms A; and As that represent the same
codomain values at different positions in the trace.

Elements that do not interact provide flexibility in the
construction of potential functions with the desired behav-
ior. Heuristically, we want APPLY to construct a set of
functions such that the traces produced by algorithms A
and A2 move away from the interacting elements toward
traces composed of undetermined codomain values.

In the following example we start with function fi; which
is a 6 bit Gray coded 1-D version of Schwefel’s function. The
function is a bijection, and the actual function values have
been replaced by permutation values 1 to 64. Algorithm
B is best-first local search and algorithm W is worst-first
local search. The neighborhood size is 6 (2° = 64); both
algorithms sample the same neighborhood in the same order.
Algorithm B was started at location 000101 and algorithm
W was started at location 001101. Starting at adjacent bit
locations results in traces such that the two traces “interact”
in non-benign ways. There are permutation cycles in the
first few steps of the search.

We use BUILD.TRACES to construct a focused set of
potential functions. However, as traces are built, the algo-
rithms visit points in the domain that have not previously
been visited when the algorithms were executed on fi. The
codomain values at these points are undetermined. We will
represent these undetermined codomain values as free vari-
ables: there is nothing in the two original functions that
forces these particular undetermined variables to take on
any particular codomain value from among those that are
not already assigned to some specific domain value. In this
example, there are initially 39 free variables representing
undetermined codomain elements (labeled a to z, and aa to
nn). The traces produced are as follows.

Traces and Free Variables

B W T2 T4 T6 T7 T5 T3 T1

3 3 8 a i zZ 2 1
2 1 1 3 8 a i z 2+
3 8 8 a i zZ 2 1 3
4 13 13 b J aa q y- 4
5 14 14 c k bb r X 5
6 15 15+ 17- 1- cc- hh- w+ 6
7 16 16- d+ e+ mt+ ii+ 8 -
8 7 7 15 17 1 JJ v 8
9 17 17 e m dd 8 6 9
10 18 18 f n ee kk u 10
11 19 19 g o ff 11 t 11
12 20 20 h P gg nn s 12
B traces £2 £3 f4 f5 <-f6 <-f7 <-f1
W traces f1-> f2-> £f3-> f4 £5 6 £7

+ indicates best in neighborhood
- indicates worst in neighborhood

817

This table shows the original traces for best-first (B = T1)
and worst-first search (W =T2) as columns. It also shows 5
additional traces (T3 to T7) generated by BUILD.TRACES.
The last two rows assigns potential functions to traces. The
last two rows also show the order in which BUILD.TRACES
constructs the traces and potential functions (as indicated
by the -=> symbols). The potential functions are labeled f2 to
f7. Each potential function must have a best-first trace (B)
and a worst-first trace (W). Each trace must be preserved by
two potential functions; thus each potential function shares
traces with two other potential functions. Thus, potential
function f1 has constraints that must also be preserved by
potential functions 2 and 7. Note that f4 and {5 share trace
T7, which is composed entirely of undetermined variables.

BUILD.TRACES converges on trace T7. In this case,
BUILD.TRACES generates two fully undetermined traces,
which CHECK merges together to form trace T7; thus the
codomain values of T7 are undetermined. CHECK must still
make sure the algorithms can execute correctly on the (un-
derspecified) potential functions which are being constructed
from the traces.

If traces contain undetermined codomain values, the traces
may also need to 1) assign a candidate set of values to the
traces to allow the algorithms to execute, or 2) indicate
constraints over the undetermined codomain values to allow
the algorithms to execute. The traces shown here indicate
the best (+) and worst (-) neighbors. “Best” and “worst”
were heuristically chosen in this example so as to (usually)
produce the most undetermined neighbors possible in the
output traces: this meant that generally the last two neigh-
bors in the first neighborhood were chosen because these had
neighbors farther away from the known codomain values.

For example, on potential function {5, best-first search and
worst-first search impose the following constraints:

m < a, z, aa, bb < cc
ii <1i, 2 qr < hh.

In addition, note that element 2 appears as the best neigh-
bor in f1, but not in f5. However, if element 2 is a global
optimum, then there does not exist a codomain value bet-
ter than element 2 and function f5 is not feasible; if 2 were
a global optimum, we would need to define a deterministic
restart (or backtrack) and continue generating traces.

From the Schwefel function, and considering only the do-
main and codomain values seen by the two algorithms B and
W, we have the following correspondence to actual codomain
values.

1 =28 6 =11 11 = 15 156 = 94
2=0.9 7 59 12 = 8 17 = 121
3 = 47 8 37 13 = 50 18 = 104
4 =21 9 =3.4 14 = 42 19 = 83
5 = 36 10 = 0.8 15 = 4 20 = 57

We can assign these codomain values to undetermined
variables as long as none of the new assignments appear
in the same potential function twice. Thus, the following
assignment can be used to fill in most of the undetermined
values in the traces. The 4 remaining undetermined val-
ues are denoted by a, b, ¢ and d. This is illustrated in the
following table.

Traces and Free Variables

T2 T4 T6 T7 T5 T3 T1
47 37 21 36 83 0.9 28
28 47 37 21 36 83 0.9+
37 21 36 83 0.9 28 a7
50 11 3.4 15 3.4 104- 21
42 15 50 47 50 94 36

4+ 121- 94- 104- 121- 4+ 11
94- 0.9+ 0.8+ 11+ 0.8+ 37 59-
59 4 121 28 59 37 37
121 d 42 4 8 11 3.4
104 c 59 c 42 c 0.8
83 b 8 b d b 15
57 a 57 a 57 a 8
f2 £3 f4 f5 <- f6 <- f7 <- f1
f1 -> f2 -> £3 -> f4 f5 f6 £7

Note that the table constructed using T is similar to ar-
ray V used in the last section, except there are more than
2 potential functions. V can be generalized to be multi-
dimensional. Note that the domain values that are visited
by the algorithms are also known and can be used to con-
struct a similar multi-dimensional structure D. Using the
previously defined methods, and the new arrays V and D,
we can easily construct a focused set of 7 compressible func-
tions (compared to the 64! functions in the permutation
closure) by using f1 to fill in missing values.

3. DISCUSSION AND CONCLUSIONS

This paper provides both theoretical proofs and empirical
examples that demonstrate a Focused No Free Lunch result
can hold when comparing a subset of algorithms. Depending
on the nature of the algorithm and the number of calls to
the objective function used by the algorithm, a small set of
algorithms will produce identical traces on a set of functions
which may be much smaller than the permutation closure
over those functions.

In the smallest case, two algorithms can have equal but
opposite performance over just two functions; if one function
is compressible, both functions can be compressible. Or,
one can select the second function from a set of potentially
exponentially many function which suffice.

One objection to only looking at m steps is the following.
If we construct a focused set based on m time steps, and
then run algorithms A; and As for 2m time steps on these
functions, their performance will almost certainly not still
be the same after 2m time steps. This is true. But either
we don’t have that access to that information, or we can
construct another new focused set using the 2m time steps.

This might seem like a flaw. But in practice, we can never
have complete traces for any algorithm on any non-trivial
(exponentially large) problem. Also consider the following.
There are many examples of reasonable search algorithms
where the performance of A; is better than A, after 100,000
evaluations, but Az is better than A; after 200,000 evalua-
tions. It is not just a matter of one algorithm being better
than another, but rather being better than another given
some amount of effort such as number of function evalua-
tions. Thus, arguments about the traces an algorithm would

818

have produced if it had exhaustively explored the search
space are not practical given that all comparisons of algo-
rithms are based on a limited view of the function based on
m samples.

4. ACKNOWLEDGMENTS

This research was sponsored by the Air Force Office of
Scientific Research, Air Force Materiel Command, USAF,
under grant number FA9550-07-1-0403. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright no-
tation thereon. We would also like to thank Dagstuhl for
giving us the chance to meet and exchange ideas.

S. REFERENCES

[1] S. Droste, T. Jansen, and I. Wegener. Optimization
with randomized search heuristics; the (A)NFL
theorem, realistic scenarios and difficult functions.
Theoretical Computer Science, 2002.

T. English. Practical Implications of New Results in
Conservation of Optimizer Performance. In Schoenauer,
Deb, Rudolph, Lutton, Merelo, and Schwefel, editors,
Parallel Problem Solving from Nature, 6, pages 69-78.
Springer, 2000.

C. Igel and M. Toussaint. On classes of functions for
which No Free Lunch results hold. Information
Processing Letters, 2003.

N. Radcliffe and P. Surry. Fitness variance of formae
and performance predictions. In D. Whitley and

M. Vose, editors, FOGA - 3, pages 51-72. Morgan
Kaufmann, 1995.

C. Schumacher, M. Vose, and D. Whitley. The No Free
Lunch and Problem Description Length. In
GECCO-01, pages 565—-570. Morgan Kaufmann, 2001.
M. Streeter. Two broad classes of functions for which a
No Free Lunch result does not hold. In J. D. Schaffer,
editor, GECCO 2003. Springer LNCS, 2003.

D. Whitley. A Free Lunch Proof for Gray versus Binary
Encodings. In GECCO-99, pages 726-733. Morgan
Kaufmann, 1999.

D. Whitley. Functions as Permutations: Regarding No
Free Lunch, Walsh Analysis and Summary Statistics. In
Schoenauer, Deb, Rudolph, Lutton, Merelo, and
Schwefel, editors, Parallel Problem Solving from
Nature, 6, pages 169—-178. Springer, 2000.

D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 4:67-82, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

