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ABSTRACT

This paper argues that multiagent learning is a potential
“killer application” for generative and developmental sys-
tems (GDS) because key challenges in learning to coordinate
a team of agents are naturally addressed through indirect
encodings and information reuse. For example, a significant
problem for multiagent learning is that policies learned sepa-
rately for different agent roles may nevertheless need to share
a basic skill set, forcing the learning algorithm to reinvent
the wheel for each agent. GDS is a good match for this kind
of problem because it specializes in ways to encode patterns
of related yet varying motifs. In this paper, to establish the
promise of this capability, the Hypercube-based NeuroEvo-
lution of Augmenting Topologies (HyperNEAT) generative
approach to evolving neurocontrollers learns a set of coor-
dinated policies encoded by a single genome representing a
team of predator agents that work together to capture prey.
Experimental results show that it is not only possible, but
beneficial to encode a heterogeneous team of agents with an
indirect encoding. The main contribution is thus to open up
a significant new application domain for GDS.

Categories and Subject Descriptors: 1.2.6 [Artificial
Intelligence]: Learning—connectionism and neural nets,
concept learning; 1.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence— Multiagent Systems

General Terms: Algorithms

Keywords: CPPNs, HyperNEAT, Multiagent systems, NEAT,

Neural Networks

1. INTRODUCTION

Presently, a major goal for generative and developmental
systems (GDS) [1, 7, 12, 15, 19, 24] is to find a “killer ap-
plication” that leverages the capability to efficiently encode
complex patterns, which would help to attract attention out-
side the GDS community. At the same time, an important
goal for broader artificial intelligence is to coordinate a team
of agents that cooperate to complete a task [16, 26]. Ma-
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chine learning is an appealing approach to constructing such
multiagent systems because the best cooperative team pol-
icy may not be known a priori. While several approaches to
learning have been applied to multiagent systems [11, 27],
this paper argues that multiagent learning may be a “killer
application” for GDS.

In fact, GDS is a natural fit for multiagent systems be-
cause it fundamentally exploits patterns within solutions,
and patterns are precisely what characterize the makeup
of multiagent teams. That is, the policies of agents on a
team are often conceptually distributed in a spatial pattern
according to their positions. For example, in a soccer (i.e.
football) team, the positions closest to the goal are defensive
and become incrementally more offensive the farther they
are from the goal. Also importantly, even as policies vary
across space, agents tend to share common skills; in the soc-
cer example, all players know how to pass and kick. In fact,
a significant problem for multiagent systems is that learning
separate policies for separate agents can lead to reinventing
the wheel many times when a core set of skills is needed by
every agent. Variation on a policy theme distributed across
space is thus reminiscent of the regular spatial patterns for
which GDS is known [15, 20, 24|, suggesting that GDS may
be a promising new approach to multiagent learning.

To implement this idea in practice, Hypercube-based Neu-
roEvolution of Augmenting Topologies (HyperNEAT), which
has demonstrated success as a GDS method that evolves
connectivity patterns for large-scale artificial neural networks
(ANNSs) [5, 22], is extended to encode patterns of ANNs dis-
tributed across space from a single genome. The spatial dis-
tribution of ANNs matches with the locations of agents on
the team, thereby allowing HyperNEAT to learn a pattern
of policies, all generated from the same genome. In this way,
these policies can naturally become variations on a theme.

To demonstrate its promise, the Multiagent HyperNEAT
method is tested on several variants of a multiagent predator-
prey problem in which a team of multiple predators is evolved
to round up a team of prey that try to run away. This task is
challenging because the predators must coordinate their be-
havior to avoid pushing the prey away from each other. To
show that Multiagent HyperNEAT indeed gains an advan-
tage by distributing heterogeneous policies across space, it is
compared to evolved homogeneous teams, wherein a single
policy is evolved by HyperNEAT that is assigned to every
agent on the team. The result is that the heterogeneous
teams evolved by Multiagent HyperNEAT significantly out-
perform homogeneous teams and exhibit highly coordinated
multiagent tactics, all derived from a single genome. Fur-



thermore, multiagent teams can be bootstrapped from a sin-
gle seed policy, allowing them to immediately elaborate on
a core set of skills, thereby improving performance even fur-
ther.

Thus the main conclusion is that GDS offers an entirely
new approach to multiagent learning that expands the avail-
able options to practitioners. By opening up a popular area
of artificial intelligence to GDS, this paper expands the po-
tential audience for future research in GDS.

2. BACKGROUND

This section reviews relevant multiagent approaches and
the NEAT and HyperNEAT methods that form the back-
bone of Multiagent HyperNEAT.

2.1 Cooperative Multiagent Learning

Multiagent systems confront a broad range of domains,
from predator-prey scenarios (as in this paper) to military
tactics, creating the opportunity for real-world applications.
In cooperative multiagent learning, which is reviewed in this
section, agents are trained to work together, usually by one
of several alternative methods.

Multiagent reinforcement learning (RL) is a popular ap-
proach that focuses on identifying and rewarding promising
cooperative states and actions among a team of agents [11,
16]. However, multiagent domains are challenging because
agents often do not have complete information about the
rest of the team and their opponents. Even in scenarios
with complete state information, the number of states grows
exponentially with the number of agents, making the state
space expensive to represent.

An alternative approach, cooperative coevolution, is an es-
tablished evolutionary method for training teams of agents
that must work together [16, 17, 18]. In this approach fit-
ness is assigned to agents based on their ability to perform
a task with other evolving agents. Coevolution is attractive
because the agents are explicitly evaluated based on their
teamwork as well as their ability to complete a task. How-
ever, a downside is that, depending on the population model
chosen, the agents may either easily specialize yet not share
skills, or may share skills yet specialize poorly [27].

An entirely different approach to training separate agents,
which assumes global communication, is a single, monolithic
genome whose phenotype controls all the agents simultane-
ously. Such consolidation allows information sharing but
generally increases the dimensionality of the search and ig-
nores separability [28]. A related approach is to directly
encode several disconnected policies in a single monolithic
genome [2, 13], which gains separability at the expense of
information sharing. One solution to reduce dimensional-
ity in either case without combining multiple individuals
is to assign the same homogeneous control system to each
agent [3]. If all the agents are controlled by separate in-
stantiations of a single controller, then it is only necessary
to discover that one policy, and the problem of sharing dis-
coveries disappears. However, Yong and Miikkulainen [28]
show that in predator-prey tasks with three predators and
one prey, heterogeneous teams learn more effective strategies
than homogeneous ones.

Thus the challenge in multiagent learning is to devise an
approach that balances the need to reduce dimensionality
with the desire for heterogeneity and the need for shared
skills. The next section reviews the NEAT method, the
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foundation for the multiagent learning approach introduced
in this paper, which aims to strike such a balance.

2.2 NEAT

NeuroEvolution of Augmenting Topologies (NEAT) evolves
ANNSs that perform well in a variety of control and decision-
making problems [21, 23, 25]. It starts with a popula-
tion of small, simple neural networks and then complezxifies
them over generations by adding new nodes and connections
through mutation. By evolving networks in this way, the
topology of the network does not need to be known a priori;
NEAT searches through increasingly complex networks to
find a suitable level of complexity.

To keep track of which gene is which while new genes
are added, a historical marking is uniquely assigned to each
new structural component. During crossover, genes with the
same historical markings are aligned, producing meaningful
offspring efficiently. Speciation in NEAT protects new struc-
tural innovations by reducing competition between differing
structures and network complexities, thereby giving newer,
more complex structures room to adjust. Networks are as-
signed to species based on the extent to which they share
historical markings. Complexification, which resembles how
genes are added over the course of natural evolution [14],
is thus supported by both historical markings and specia-
tion, allowing NEAT to establish high-level features early in
evolution and then later elaborate on them. Stanley and Mi-
ikkulainen [23, 25] provide a complete overview of the NEAT
method. The next section explains how NEAT is extended
to a developmental system with an indirect encoding.

2.3 CPPNs and HyperNEAT

The standard NEAT algorithm is not a generative or de-
velopmental system because its encoding is direct, that is,
each gene maps to a single piece of structure in the pheno-
type. In contrast, GDS relies on indirect encodings because
they allow genetic information to be reused so that the phe-
notype potentially contains more components than the geno-
type contains genes. Indirect encodings are often motivated
by development in biology, in which the genotype maps to
the phenotype indirectly through a process of growth [1, 7,
12, 15, 19, 20, 24].

Recently, NEAT has been extended to evolve a high-level
developmental abstraction called Compositional Pattern Pro-
ducing Networks (CPPNs) [20]. The idea behind CPPNs
is that patterns in nature can be described at a high level
as compositions of functions, wherein each function in the
composition represents a stage in development. For exam-
ple, a Gaussian function can represent a symmetric chem-
ical gradient forming over time. Each component function
also creates a novel geometric coordinate frame within which
other functions can reside. The appeal of this encoding is
that it allows developmental processes to be represented as
networks of simple functions, which means that NEAT can
evolve CPPNs just like ANNs. CPPNs are similar to ANNs,
but they rely on more than one activation function (each rep-
resenting a chemical gradient common to development) and
are an abstraction of a different biological process. Also, un-
like most generative and developmental encodings, CPPNs
do not require an explicit simulation of growth or local in-
teraction, yet still exhibit their essential capabilities [20].

Specifically, CPPNs produce a phenotype that is a func-
tion of n dimensions, where n is the number of dimensions
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Figure 1: CPPN Encoding. (a) The function f takes ar-
guments x and y, which are coordinates in a two-dimensional
space. When all the coordinates are drawn with an inten-
sity corresponding to the output of f, the result is a spatial
pattern, which can be viewed as a phenotype whose geno-
type is f. (b) The CPPN is a graph that determines which
functions are connected. The connections are weighted such
that the output of a function is multiplied by the weight of
its outgoing connection.

in physical space. For each coordinate in that space, its level
of expression is an output of the function that encodes the
phenotype. Figure 1 shows how a two-dimensional pheno-
type can be generated by a function of two parameters that
is represented by a network of composed functions. Because
CPPNs are a superset of traditional ANNs, which can ap-
proximate any function [4], CPPNs are also universal func-
tion approximators. Thus a CPPN can encode any pattern
within its n-dimensional space.

The main idea in HyperNEAT is to extend CPPNs, which
encode spatial patterns, to also represent connectivity pat-
terns [5, 8, 22]. That way, NEAT can evolve CPPNs that
represent large-scale ANNs with their own symmetries and
regularities. The key insight is that 2n-dimensional spatial
patterns are isomorphic to connectivity patterns in n di-
mensions, i.e. in which the coordinate of each endpoint is
specified by n parameters.

Consider a CPPN that takes four inputs labeled z1, y1, 2,
and y2; this point in four-dimensional space also denotes
the connection between the two-dimensional points (z1,y1)
and (x2,y2), and the output of the CPPN for that input
thereby represents the weight of that connection (figure 2).
By querying every possible connection among a set of points
in this manner, a CPPN can produce a neural network,
wherein each queried point is a neuron position. Because
the connections are produced by a function of their end-
points, the final structure is produced with knowledge of its
geometry. In effect, the CPPN is painting a pattern on the
inside of a four-dimensional hypercube that is interpreted
as an isomorphic connectivity pattern, which explains the
origin of the name Hypercube-based NEAT (HyperNEAT).
Connectivity patterns produced by a CPPN in this way are
called substrates so that they can be verbally distinguished
from the CPPN itself, which has its own internal topology.

Each queried point in the substrate is a node in a neural
network. The experimenter defines both the location and
role (i.e. hidden, input, or output) of each such node. As a
rule of thumb, nodes are placed on the substrate to reflect
the geometry of the task [5, 8, 22]. That way, the connectiv-
ity of the substrate is a function of the the task structure.

For example, the sensors of an autonomous robot can be
placed from left to right on the substrate in the same order
that they exist on the robot (figure 3). Outputs for moving
left or right can also be placed in the same order, allowing
HyperNEAT to understand from the outset the correlation
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Figure 2: Hypercube-based Geometric Connectiv-
ity Pattern Interpretation. A grid of nodes, called the
substrate, is assigned coordinates such that the center node
is at the origin. (1) Every potential connection in the sub-
strate is queried to determine its presence and weight; the
dark directed lines in the substrate in the figure represent a
sample of connections that are queried. (2) For each query,
the CPPN takes as input the positions of the two endpoints
and (3) outputs the weight of the connection between them.
Thus, connective CPPNs can produce regular patterns of
connections in space.

of sensors to effectors. In this way, knowledge about the
problem can be injected into the search and HyperNEAT
can exploit the regularities (e.g. adjacency, or symmetry) of
a problem that are invisible to traditional encodings.

In summary, HyperNEAT is a method for evolving ANNs
with regular connectivity patterns that uses CPPNs as an
indirect encoding. For a full description of HyperNEAT see
Stanley et al. [22]. The next section explains how this ap-
proach is extended to multiple agents.

3. APPROACH: Multiagent HyperNEAT

This section begins by exploring how teams of homoge-
neous agents can be evolved with an indirect encoding, and
then introduces the Multiagent HyperNEAT approach to
evolving a heterogeneous team represented by a single genome.

A homogeneous team only requires a single controller that
is copied once for each agent on the team. To generate such a
controller, a four-dimensional CPPN with inputs =1, y1, x2,
and yo (figure 4a) queries the substrate shown in figure 4c,
which has five inputs, five hidden nodes, and three output
nodes, to determine its connection weights. This substrate
is designed to geometrically correlate sensors to correspond-
ing outputs (e.g. seeing something on the left and turning
left). Thus the CPPN can exploit the geometry of the agent.
However, the agents themselves have exactly the same policy
no matter where they are positioned.

Heterogeneous teams are a greater challenge; how can a
single CPPN encode a set of networks in a pattern, all with
related yet varying roles? The main idea is to place the
whole set of networks on the substrate and compute their
connection weights as both a function of their location within
each network and within the larger pattern of multiple net-
works. The CPPN then queries all the connection weights
in this multiagent substrate (figure 4d), which contains five
copies of the homogeneous substrate, one for each agent.

The challenge for such a substrate is to tell the CPPN
where one agent stops and another begins; the CPPN could
learn this pattern, but it is more effective to tell it where
each agent is from the start. For this purpose, two special
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Figure 3: Substrate Configuration. An autonomous
robot (a) is equipped with five sensors, spanning a 180° arc
in front of it and labeled 1 through 5 from left to right. The
substrate that controls the robot (b) is arranged such that
the placement of inputs in the neural network corresponds
to the physical locations of the sensors on the robot (e.g. the
leftmost sensor corresponds to the leftmost output). Simi-
larly, the outputs of the network are related to their effects
on the agent and correspond to the sensors (e.g. the left
turn output is on the left side of the network and above the
leftmost sensor input). Such placement allows the CPPN to
easily generate connectivity patterns that respect the geom-
etry of the problem, such as left-right symmetry.

function nodes are added to the initial CPPN so that each
receive input from either x; or z2 and output a coordinate
frame, r(x), that repeats the same set of coordinates once
per agent (figure 4f), thereby telling the CPPN where each
node is within each individual agent. The CPPN thus sees
both the coordinate frame r(x) within each agent and the
coordinate frame z of the entire team (from inputs z; and
z2). In this way, it can simultaneously encode shared pat-
terns within agents (i.e. by basing them on the repeating
coordinate frame) and patterns that vary across teams (e.g.
agents on the left can mirror the behaviors of agents on the
the right through a symmetric function of position). This
capability is powerful because generating each agent with
the same CPPN means they can share tactics and policies
while still exhibiting variation.

In other words, policies are spread across the substrate in
a pattern just as role assignment in a human team forms a
pattern across a field. However, even as roles vary, many
skills are shared, an idea elegantly captured by indirect en-
codings. This method of encoding a heterogeneous team ini-
tially creates a homogeneous team because nothing initially
connects x1 and z2 to the rest of the CPPN except through
r(x). During evolution, however, mutations can connect the
absolute x coordinates to the rest of the network, yielding
heterogeneous behavior.

Finally, the structure of the CPPN (figure 4b) also allows a
team to be seeded with the behavior of a single agent, which
is a powerful capability if strong single-agent controllers are
already available or easily generated. To seed, the 1 and z2
inputs in the single agent CPPN (figure 5, left) are diverted
to new r(z) nodes, creating a repeating connectivity pattern.
All connections originally leaving x1 and x2 are then moved
so they project from their respective r(x) nodes (figure 5,
right). This technique works because the coordinate system
defined by r(z) for each agent is exactly the same as the a
single agent’s coordinate system (figure 4e), except that now
it repeats several times across x (figure 4f).

The next section describes a multiagent experiment to test
this approach.
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Figure 4: Multiagent HyperNEAT. This figure depicts
the CPPNs and substrates that encode multiple agents with
HyperNEAT. The CPPN in (a) generates a single controller
for a single agent or a homogeneous team of agents. The
single controller substrate that is queried by this CPPN is
shown in (c¢). In contrast, the CPPN in (b) encodes het-
erogeneous teams by sampling the substrate in (d), which
is the single substrate (c) copied five times, but compressed
horizontally. The r(xz) nodes above z1 and z2 in the ini-
tial heterogeneous CPPN (b) repeat the = coordinate frame
(e), duplicating it for each agent while also maintaining a
global coordinate system through z; and x2 (f). In this
way, the CPPN can create patterns across both the agents’
bodies and the team as a whole. If the same point is sampled
within any two agents in (d), r(x) will return the same value
(though z will not), giving agents on the team their own co-
ordinate frame. Note that CPPNs depicted in (a) and (b)
complexify over evolution through the NEAT algorithm.

=

4. PREDATOR-PREY EXPERIMENT

The aim of the experiment is to demonstrate how GDS
can facilitate multiagent learning. Cooperative multiagent
predator-prey is a good platform to test this idea because the
task is challenging yet easy to understand. While traditional
learning techniques offer potential solutions to multiagent
problems [16, 28], the authors do not know of any attempt
to apply GDS to creating such a team of agents. With GDS,
the hope is that tightly coordinated agent policies can be
encoded as a pattern with an indirect encoding.

In the version of predator-prey in this paper, agents can-
not see their teammates, and because prey run away from
nearby predators, it is easy for one predator to undermine
another’s pursuit by knocking its prey off its path. There-
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Figure 5: Heterogeneous seeding. Given a CPPN that
generates a successful single agent (left), it is possible to cre-
ate a team of agents based upon it. A heterogeneous team
needs to differentiate between team members so the CPPN
at left is modified so that the 1 and x2 inputs feed into two
new nodes (shown at right). All connections that originally
project from the inputs are changed to project from these
new nodes (darkened) instead. This change maintains the
coordinate frame of a single agent, while the z1 and z2 in-
puts now contain the coordinate frame of the team, allowing
the CPPN to generate patterns relevant to both.

fore, predators must learn consistent roles that complement
those of their allies. At the same time, agents need basic
skills in interpreting and reacting to their sensors. Because
HyperNEAT creates all the agent ANNs with a GDS ap-
proach from the same CPPN;, it has the potential to balance
these delicate ingredients.

4.1 Predators and Prey

Each predator agent on the team is controlled by the ANN
in figure 3b. Predators are equipped with five rangefinder
sensors spanning a 180° arc that detect prey within 300
units. Their goal is to capture (i.e. intercept) the prey agents
by positioning themselves so that a prey is visible to their
front sensor and less than 25 units away (this area is shown
as a shaded cone in 3a). Predators cannot sense each other.

At each discrete moment of time, a predator can turn up
to 36° and move up to five units forward. The number of
units moved is 5F', where F' is the forward effector output.
The predator also turns by (L — R) * 36°, where L is the
left effector output and R is the right effector output. A
negative value is interpreted as a right turn.

Prey agents are programmed to maintain their current
location until they are threatened; if there is a predator
within 50 units the prey moves in the opposite direction
of the closest predator. Prey move at the maximum speed
of predator agents. That way, it is impossible for a single
predator to catch a prey.

The predator team starts each trial in a line, 100 units
apart, facing the prey (figure 6). The environment the agents
inhabit is physically unbounded, and each trial lasts 1,000
time steps. At the end of each trial the team receives a
score of 10,000P + (1,000 — t), where P is the number of
prey captured and t is the time it takes to catch all the prey.
If all prey are not captured, t is set to 1,000. Team fitness
is the sum of the scores from two trials on which the team
is evaluated. This fitness function encourages the predators
to capture all the prey as quickly as possible.

The major challenge for the predators is to coordinate
despite their inability to see one another. This restriction
encourages establishing a priori policies for cooperation be-
cause agents thus have little information to infer each others’
current states. Such situations are not uncommon. Military
units often form plans, split up, and execute complicated
maneuvers with little to no contact with each other [6].
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4.2 Homogeneous vs. Heterogeneous Policies

To investigate whether role-differentiation helps, teams of
cooperative agents can be homogeneous or heterogeneous.
Homogeneous teams must rely on their current perceived
state to differentiate themselves, which is effective in some
tasks [3]. In contrast, heterogeneous teams have more tac-
tical options available because the search does not need to
find one global policy that works for all agents in all cases,
that is, it can separate the problem among agents. Such
separation can be distributed logically across the team (e.g.
agents on the left attack prey on the left). Additionally,
while the policies may be heterogeneous, they likely should
overlap by a significant amount (e.g. all predators know how
to turn to face prey).

In three-predator/one-prey predator-prey, Yong and Mi-
ikkulainen [28] showed that coevolved heterogeneous teams
are more effective than homogeneous. This paper takes this
result one step further by testing whether larger heteroge-
neous teams generated by indirect encodings can encode ap-
propriate patterns of behavior. Thus both homogeneous and
heterogeneous teams, as described in Section 3, are com-
pared in each experiment.

4.3 Seeding

In addition to starting evolution from scratch as normal,
this paper also investigates injecting knowledge into the ini-
tial search by seeding evolution so that the initial population
contains variations on a seed genome. While this genome can
be from previous evolution or hand-crafted to exploit a par-
ticular aspect of the problem, the interesting idea afforded
by multiagent HyperNEAT is to seed multiagent learning
with the genome of a single agent (Section 3). Seeding a
team with a single strong agent is effective because a single
policy with a set of basic skills is faster and easier to evolve
than a whole team.

To verify that seeding in this manner is useful in this
domain, both heterogeneous and homogeneous teams are
tested with and without evolutionary seeds. The seed is cre-
ated by evolving a single predator agent that is evaluated
only on its ability to chase prey, which is a good starting
point for multiagent predators. Strong single agents were
typically discovered in less than 50 generations and the best
performing agent among them is the seed for the experi-
ments in this paper.

4.4 Prey Formations

Agent teams face two conflicting goals: robust general-
ization and specialization for efficiency. To balance these
goals, while each team is trained on only one of three prey
formations (triangle, diamond, and square; figure 6), they
are trained on two variations of that formation. Training
on only one formation encourages discovering specific tac-
tics to deal with the specific formation, enabling the teams
to capture prey more quickly. However, training on mul-
tiple variations of the same formation encourages teams to
develop robustness to minor changes in that formation. To
generate these variations, while the number of prey is con-
stant, their locations are changed by varying the angle or
length of the formations.

Each formation creates a significantly different challenge
because they not only vary in number of prey, but also in
how many prey can be initially seen by each predator. Thus
each approach is tested on a variety of multiagent scenarios.
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Figure 6: Prey Formations. The prey (upper agents)
can be arranged in three formations. The predators (lower
agents) are always placed in the same evenly-spaced line
below the prey. Each formation presents a unique challenge.

4.5 Experimental Parameters

Because HyperNEAT differs from original NEAT only in
its set of activation functions, it uses the same parameters
[23]. Experiments were run with a modified version of the
public domain SharpNEAT package [9]. The size of each
population was 150 with 20% elitism. Sexual offspring (50%)
did not undergo mutation. Asexual offspring (50%) had 0.96
probability of link weight mutation, 0.03 chance of link ad-
dition, and 0.01 chance of node addition. The coefficents
for determining species similarity were 1.0 for nodes and
connections and 0.1 for weights. The available activation
functions were sigmoid, Gaussian, absolute value, and sine,
all with equal probability of being added to the CPPN. Pa-
rameter settings are based on standard SharpNEAT defaults
and prior reported settings for NEAT [21, 23, 25]. They were
found to be robust to moderate variation through prelimi-
nary experimentation.

S. RESULTS

Performance in this section is measured as the time re-
maining after capturing all the prey, averaged across each
formation variant. Each trial is run for 5,000 time steps.
The maximum (though impossible) score is thus 5,000 and
the minimum score is 0 if all prey were not captured. This
measure, which highlights completion of the task, does not
necessarily increase with generations like fitness because if
a potential solution solves one training example but not the
other, it may have to sacrifice performance on the solved
example to solve the other. Nevertheless, performance fol-
lows a general upward trend over generations and reveals
the ultimate quality of solutions.

5.1 Training Performance

Figure 7 shows training performance over generations for
teams with homogeneous and heterogeneous policies, with
and without seeding, on the formations in figure 6. In all
three scenarios, the most successful approach was the seeded
heterogeneous team, which outperformed all teams across
all configurations. Although the difference between seeded
heterogeneous and heterogeneous is only significant in the
square formation (p < 0.001 after generation 714) and dia-
mond formation (p < 0.05 after generation 521), it is signifi-
cant versus both homogeneous approaches on all formations
(eventually at least p < 0.01). Also in every formation, un-
seeded heterogeneous performed second best (eventually at
least p < 0.05 on all formations), followed by seeded ho-
mogeneous (p < 0.001 after gen 10 versus homogeneous on
triangle, 124 on diamond, and not significant on square)
and unseeded homogeneous. Both homogeneous team types
could not consistently solve training examples.
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A potential question is whether the heterogeneous sub-
strate gains an advantage simply by having more nodes. To
check this possibility, all homogeneous experiments were re-
peated with a substrate with the same number of hidden
nodes as the heterogeneous substrate (i.e. a single member
of the homogeneous team has 25 nodes, as many as the en-
tire team of heterogeneous agents). The performance of the
resulting homogeneous teams was not significantly different,
which confirms that the distribution of policies on the sub-
strate is what favors heterogeneous teams.

While the different formations do not change the overall
ranking of the policy distributions, the teams did perform
differently on them. It turns out that the formations increase
in difficulty by number of prey because as the number of
prey increases, the viability of picking off one prey at a time
decreases; thus the teams require more holistic solutions to
capture more prey, widening the gap between heterogeneous
and homogeneous teams.

5.2 Generalization

Solutions were tested for their ability to generalize to
seven variants of each training formation. Diamond forma-
tions vary in length from 100 to 300 units, squares vary in
side length from 75 to 225 units, and triangles vary from 0°
to 180°. The most general solutions perform well on both
training and testing, for a total of nine variants of each for-
mation. To make the comparison fair, only the most general
solutions produced by each of the twenty runs of evolution
are compared. That way reported results indicate the best
each approach can do. This method of testing generalization
follows Gruau et al. [10] and is designed to compare the best
overall individuals.

Figure 8 shows that generalization performance is highly
correlated with training performance (i.e. the ranking of ap-
proaches is the same as in training), which means that het-
erogeneous roles provide a significant advantage. Only the
seeded heterogeneous strategy produces teams that could
solve all nine scenarios. The most general teams usually
employ the same policy for each variant, although some het-
erogeneous teams change their policy depending on the spe-
cific variant.

5.3 Typical Behaviors

Heterogeneous and homogeneous teams learned signifi-
cantly different methods of capturing the prey.

The best homogeneous teams rely almost exclusively on
every predator finding a prey and chasing it in a circular
pattern; if two of these circles overlap one of the predators
eventually sees the prey being chased by the other and starts
to move toward it. If the predators are well-aligned when
one sees the other’s prey, they continue to move toward each
other and capture both prey; if they are not aligned, one
predator abandons its prey to capture the one being chased
by the other predator. This policy can be somewhat general,
but if there are no other predators nearby, one predator may
chase one prey forever. Also, it is inefficient because much
time is wasted by running in circles rather than capturing
prey.

In contrast, heterogeneous agents employ a variety of ef-
fective techniques, many exhibiting interesting policy varia-
tions based on the team’s initial geometric layout, confirm-
ing the ability of the multiagent CPPN to encode patterns
across the substrate. In one policy, predators hunt for prey
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Figure 7: Comparing Performance of Different
Training Methods. The performance of each training
method on the three formations is shown, each averaged
over twenty runs. In all cases heterogeneous teams signif-
icantly outperform homogeneous teams and seeded teams
outperform unseeded.

in packs of two or three, commonly teaming with adjacent
agents. Upon seeing a prey, they approach from opposite
sides and either capture the prey with a pincer attack or
trap the prey between them, moving in parallel with the prey
until they eventually turn to face and capture it. A second
heterogeneous policy is corralling, in which predators com-
press the prey into a tightly-packed cluster and then capture
them. Some of the predators move around the perimeter of
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Figure 8: Generalization Performance. Average per-
formance is shown for each approach on the nine variants of
each prey formation, averaged over twenty runs. Heteroge-
neous methods generalize significantly better than homoge-
neous (at least p < 0.01 in all cases except unseeded hetero-
geneous versus seeded homogeneous on triangle) and seeding
produces significantly better performance than starting from
scratch (at least p < 0.05 in all cases). The main conclusions
is that both heterogeneity and seeding afford significant ad-
vantage in generalizing in this domain.

the prey, forcing them to run toward the center of the forma-
tion, while others form a fence and slowly advance toward
the cluster. Corralling is usually symmetric and a result of
policy mirroring, which means that predators from the east
and west starting positions rotate around the prey in oppo-
site directions to maximize efficiency. A third policy deploys
posts, which are usually the predators on the left and right
starting positions, who serve as stationary traps. Mobile
predators then chase prey into the posts. Almost all het-
erogeneous solutions rely on one or a combination of these
policies, although a few exhibit behaviors similar to homo-
geneous solutions. Videos of agent behaviors are available
at http://eplex.cs.ucf.edu/multiagentHyperNEAT/.
While seeded and unseeded solutions employ generally the
same tactics, the major difference is that unseeded teams of-
ten include agents that serve no useful purpose. Such agents
spin in circles, move away from the prey, or just sit still. This
inefficiency explains the overall lower performance of un-
seeded strategies, confirming that starting with basic skills
provides a solid foundation for eventual differentiation.

6. DISCUSSION AND FUTURE WORK

The result that heterogeneous teams significantly outper-
form homogeneous in training and generalization demon-
strates that the HyperNEAT GDS approach successfully en-
codes heterogeneous roles that contribute to superior perfor-
mance. The ability to encode patterns of behavior across a
team is critical to success in multiagent learning and thereby
addresses a major challenge in the field. The HyperNEAT
method allows team behavior to be represented as variation
on a theme encoded in a single genome, meaning that key
skills need not be rediscovered for separate agents. Fur-
thermore, because multiagent policies are represented by a
CPPN, they are assigned to separate agents as a function of
their relative geometry, while simultaneously exploiting the
agents’ internal geometries.

Seeding evolution was also beneficial. This capability cap-
tures the idea that real-life teams (e.g. in soccer) often share
a critical basic skill set that can be learned faster by an indi-
vidual agent than an entire team. While HyperNEAT natu-



rally encodes variations on a theme, finding the right under-
lying theme can initially be challenging. Seeding bootstraps
the process, providing a mechanism to inject domain knowl-
edge. In the future, the sophistication of team behavior can
be increased by evolving seeds on many subgoals, such as
running, passing, shooting, and defending in soccer, which
can be duplicated across the entire team and then allowed
to vary by role.

A desirable property of multiagent systems is scalability
[16], and an exciting future extension to Multiagent Hyper-
NEAT is the ability to change the team size without further
evolution. Because HyperNEAT CPPNs encode policies as
a function of their positions, individuals added to the sub-
strate at new positions (e.g. by compressing each ANN to
fit in more ANNSs) should naturally receive gracefully inter-
polated policies. Also, in the same way, the team can dy-
namically reassign policies when an agent is lost or damaged
simply by shifting their positions on the substrate.

The main result is that combining seeding and heterogene-
ity produces the most effective teams, confirming the power
of GDS to encode multiagent behavior through information
reuse and pattern generation. In the future it will be im-
portant to compare the relative strengths and weaknesses of
such an approach to other multiagent learning approaches.
The contribution of this paper is to establish GDS as a cred-
ible new option in the field of multiagent learning.

7. CONCLUSIONS

This paper introduced a new approach to encoding teams
of agents by using the HyperNEAT method. Results in a
predator-prey task show that a team of heterogeneous agents
that has been seeded with a strong single agent can learn
genuinely cooperative behavior with differentiated roles. By
applying GDS to multiagent learning, teams are generated
that quickly and easily learn a set of common skills as well
as a pattern of cooperative behavior relative to the geome-
try of the team. Such teams can also generalize to unseen
formations. Thus the results in this paper establish that
multiagent learning benefits from the indirect encoding of
GDS. With further research, it is possible that multiagent
learning is a “killer app” for which GDS has been searching.
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