
An Evolvability-enhanced Artificial Embryogeny
for Generating Network Structures

ABSTRACT
Existing Artificial Embryogeny (AE) models are insufficient to
generate a network structure because the possible links are limited
to those connecting nodes with their predefined neighbors. We
propose a novel network generating AE model capable of
generating links connected to predefined neighbors as well those
to non-neighbors. This mechanism provides additional flexibility
in phenotypes than existing AE models. Our AE model also
incorporates a heterogeneous mutation mechanism to accelerate
the convergence to a high fitness value or enhance the
evolvability. We conduct experiments to generate a typical 2D
grid pattern as well as a robot with a network structure consisting
of masses, springs and muscles. In both tasks, results show that
our AE model has higher evolvability, sufficient to search a larger
space than that of conventional AE models bounded by local
neighborhood relationships.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search – Plan execution, formation, and generation. F.1.1
[Computation by Abstract Devices]: Models of Computation –
Self Modifying Machine.

General Terms
Algorithms, Design, Experimentation.

Keywords
Evolutionary Algorithm, Artificial Embryogeny, Mutation,
Network Structure

1. INTRODUCTION
Artificial Embryogeny (AE) is a strategy of evolutionary
computation inspired by the embryogeny of natural organisms.
The primary characteristic of AE is the use of the same genes

multiple times in the process of building a phenotype. Such gene
reuse allows compact representations of complex phenotypes [15].
Over the decade, certain AE model variants have been proposed.
Eggenberger modeled embryonic dynamics considering the
transcription factors [2]. Bentley et al. studied various types of
AE implementations for the tessellation problem [1]. Miller et al.
proposed multicellular simulated organisms with high robustness
at a phenotypic level using the Cartesian Genetic Programming
(CGP) method [11, 12].

Although AE is successful in generating structures with certain
specific functions such as tessellating tiles or virtual robots,
several issues have been pointed out. For example, Harding et al.
[4] and Viswanathan et al. [17] reported that poorly encoded AE
can retard evolution. Stanley pointed out the overabundant
factorization and brittle modularity of the AE model [14]. The
issues we would like to highlight relate to the expressive power of
the AE model and its evolvability.
Firstly, most of the AE models focused solely on the generation
of simple 2D grid patterns. However, the number of real world
problems modeled by such AE models is limited, while some AE
models already exist that are capable of generating not 2D grid
patterns but more general network structures, such as trusses [7,
8] or virtual robots [5]. However, these models are so dependent
on predefined local neighbors of nodes. We need a mechanism to
extend the predefined search space bounded by the predefined
local neighborhood relationship, in order to find a network with
higher fitness.
However, this may result in slower convergence. It highlights the
issue of evolvability. In this paper we use the term evolvability as
an ability to converge fast to a high fitness value, while it has a
more general meaning.
Secondly, in the AE research field, few discussions exist
concerning the insufficiency of evolvability [9]. In the direct
coding research field, a mutation mechanism to allow the
mutation rate to be adaptive for each locus is shown to be
efficient in terms of evolvability [16]. This kind of approach is
also considered efficient for the developmental process of the AE
model.

In this paper, we propose a novel AE model, capable of
generating network structures. Our AE model involves two novel
mechanisms. The first is to generate links between nodes in such a
relationship that transcends a predefined neighborhood
relationship. The second is a novel mutation mechanism called

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee, provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

Yasuhiro Hashimoto, Yu Chen and Hirotada Ohashi
Dept. of Systems Innovation, School of Engineering,

University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan

{hy, chen, ohashi}@sys.t.u-tokyo.ac.jp

Hidenori Komatsu
Central Research Institute of Electric Power

Industry
2-11-1, Iwado Kita, Komae City, Tokyo, JAPAN

komatsu@criepi.denken.or.jp

835

“heterogeneous mutation” to enhance evolvability. Examples are
shown in two different tasks. One is the generation of a 2D grid
pattern, and the other is the generation of a robot called “Sodaplay
robot”, whose structures can be described as a network [13].
These experiments have two purposes. The former is to show that
our model is efficient in solving frequently tackled target pattern
generation, while the latter is to show that our model can be
applied to the generation of structures to which existing AE
models are inapplicable.
In both experiments of 2D grid pattern generation and generation
of Sodaplay robot, we also show that our novel mutation
mechanism significantly improves the evolvability of the model.

The remainder of this paper is organized as follows. In the
following section, we review related works based on AE
concerning network structure generation. Section 3 describes our
novel AE implementation for the generation of network structures.
Section 4 reports on experiments involving the evolution of a 2D
grid pattern. Then in Section 5, a “Sodaplay robot” is evolved.
Section 6 provides discussion, and Section 7 concludes and
presents further work.

2. RELATED WORKS
Recent research in the AE field has begun to focus not only on its
fundamental characteristics but also on various kinds of
application [3, 5, 6, 7, 8]. In particular, trusses are thoroughly
studied as an example task of designing network structures.

Kicinger et al. generated tall and robust buildings with truss
structures by evolving cellular automata rules and the initial states
as genes [6]. In this approach, trusses are generated as lattice
structures with diagonal links. Therein, each cell is transformed
into a rectangular-shaped truss filled with predefined
combinations of trusses, which is equivalent to solving only a
combination problem when the local structures are given.

Kowaliw et al. presented a novel AE model called a Deva 1.N
model, which can evolve network structures, and applied it to the
generation of truss structures [7, 8]. In the Deva 1.N model,
trusses are generated in the five directions of up, left, right, upper-
left and upper-right via the bit transformation of 32 types of cell
arranged in lattice form. Deva 1.N also involves an operator
generating longer links, which deviate from the local
neighborhood relationship defined by the lattice structure.
However, the Deva 1.N framework is insufficient to search for the
optimal network structures because the maximum number of links
per node is limited by the definition of a local neighborhood.

Other AE applications are for neural networks or virtual robots.
Federici showed that the generation of neural controllers for
agents based on an AE model is effective in finding a strategy to
collect food efficiently [3]. Hornby et al. showed that virtual
robots evolved with an AE approach can attain higher fitness than
robots generated with direct coding [5].

3. NETWORK GENERATING ARTIFICIAL
EMBRYOGENY
In this section, we propose an AE model of high evolvability for
the generation of network structures.
Implicit Embryogeny (IE) is a kind of AE and was originally
proposed for generating simple patterns in the 2D grid [1]. IE is
suitable for an understanding of the AE framework, because it is a
simple and highly abstract developmental model. We extend this
framework of IE in order to build a novel AE model for
generating network structures; hence allowing a greater variety of
problems to be modeled.
In this paper, we explain our AE model for 2D phenotypic space
for reasons of simplicity and demonstrate its ability by generating
a Sodaplay robot simulated within a 2D physical space. However,
our AE model can be easily extended to generate a network
structure in a higher dimensional space.
While many possible variations exist for implementation, the
eccenses of our AE model include the following two elements:
The first is a mechanism to generate links between nodes in such
a relationship that transcends a limited neighborhood relationship.
The second is a novel mutation model, namely “heterogeneous
mutation”, to enhance the evolvability of the model. The
flowchart of our AE model is shown in Figure 1.

Developmental
Process

Selection

Heterogeneous
Mutation

Crossover

Initialization

Termination
Condition

Evaluation

Start

End
YES

NO

Employ two different mutation
rates for activated and inactive
genes

1. Find the combinations of
effective local structures

2. Include effective links
deviating from predefined
neighboring structures

Developmental
Process

Selection

Heterogeneous
Mutation

Crossover

Initialization

Termination
Condition

Evaluation

Start

End
YES

NO

Employ two different mutation
rates for activated and inactive
genes

1. Find the combinations of
effective local structures

2. Include effective links
deviating from predefined
neighboring structures

Figure 1: The flowchart of our AE model.

836

3.1 Network Generating Framework
In the network generation by IE-like models, a node is mapped to
a cell and the neighbors of a cell are the candidates of linked
nodes. In our AE model, the neighbors of a node are the
“preferential” candidates of linked nodes and we do not exclude
the possibility of nodes being linked to others which is not within
the predefined neighbors. To enable such linkage, we introduce
an action called “reconnection”, which replaces a pair of
connected links with a direct link and connects non-neighboring
nodes.
In IE, a gene consists of two precondition parts and an action part
(Figure 2). One of the precondition parts is for checking the state
of neighboring cells, while the other is for the global positional
information of the cell (Table 1). An action part is for acting on
neighboring cells. This can be regarded as a situation whereby a
cell checks both local and global information, whereupon the
action is only applied locally. To convert this framework for
generating network structures, we implemented the model as
follows:

(1) Firstly, some nodes are generated randomly or arbitrarily

within the 2D space (Figure 3).
(2) A node around the center of the 2D phenotypic space, which

is corresponded to “seed,” is chosen and used as the starting
point for network development.

(3) Checks are made to identify in which area of the 2D
phenotypic space the node exists. An area is given by
dividing the 2D space equally for both x and y axes.
Subsequently, the index number for each area is given by
integers for x and y like (0,0) or (1,3).

(4) When the preconditions are met, an action part, which is for
connecting or disconnecting a link, or reconnecting two
links, is activated (Figure 4). Note that all the precondition
parts need not necessarily be matched for a rule to be fired if
the number of matched preconditions exceeds a given
threshold.

(5) Each individual in the population has a genome as a
sequence of the genes (rules) defined above. Its
corresponding network structure as a phenotype is generated
by using the genome for a given number of iterations.
Subsequently, the evolutionary operators are applied to
evolve the population.

In the case of pattern generation by conventional IE, a filled cell
in a 2D grid represents a living cell and a blank cell represents a
dead one. Corresponding to this, nodes with at least one link are
regarded as “living” and those without links as “dead”. Moreover,
living nodes check the state of neighboring nodes by
distinguishing whether they are living or dead. The states of the
nodes correspond to the value of ni in Figure 2 and Table 1
(where 0 is dead, 1 is living, and # is don’t care). Note that all
these rule activation processes only occur in “living” nodes.
For details concerning connecting or disconnecting a link, see
Table 2. If reconnection is applied to a node, the two shortest
links are disconnected and then a link is newly generated between
the two nodes. Reconnection is activated only when a node has at
least two links.

n1 n2 n3 ... nk x y a

1 # 1 ... 0 3 # 4

precondition part action

Figure 2: A gene for generating network structures.

1

2
3 4

1

2 3

connect

reconnect

disconnect

Figure 4: The conceptual diagram of implemented actions.

Figure 3: 2D phenotypic space.

Table 1: Elements of a precondition part.

 Description Value range
n1 State of the 1st closest node 0, 1, #
n2 State of the 2nd closest node 0, 1, #
n3 State of the 3rd closest node 0, 1, #

… … …
nk State of the kth closest node 0, 1, #
x Index of area for x 0, 1, 2, …, #
y Index of area for y 0, 1, 2, …, #

k: The number of closest nodes regarded as neighbors to a node.

x

y

837

The reconnecting action is introduced so that links deviating from
predefined local neighborhood relationships can be generated. In
other words, the target node never has a link to nodes outside the
gray circle without a reconnecting action (Figure 4). Note that
connection is based on the order of how close the node is while
disconnection is based on that of how long the connected link is.

3.2 Heterogeneous Mutation
The evolutionary operators in our AE model are the same as a
typical Genetic Algorithm (GA) except for our novel mutation
mechanism called “heterogeneous mutation.” When the mutation
rate is fixed for every part of a genome, as in the conventional IE,
even an individual with maximum fitness includes a considerable
number of genes that do not contribute to its developmental
process at all.
To reduce the number of such unused genes, we introduce a
mechanism whereby mutation at a higher rate is applied to genes
which are not activated during the developmental process. To
implement this heterogeneous mutation, every gene is checked as
to whether it was activated or not during the developmental
process. Subsequently, mutation is applied to activated genes at a
lower rate (usually 0.01) and inactive genes at a higher rate (the
appropriate value may differ from task to task, but is 1.0 here).
Finally single-point crossover is applied to the population to
generate offspring. Note that an inactive gene does not always
mutate into an active gene, even if they are mutated at a higher
rate. Similarly, an active gene can be mutated into an inactive
gene at a lower rate. Our heterogeneous mutation mechanism is
not intended to prohibit inactive genes.

4. EVOLUTION OF A 2D GRID PATTERN
In this section, we investigate the effectiveness of our AE model
by applying it to a 2D grid pattern generating problem. This
problem is frequently tackled by existing AE models.

4.1 Experimental setting
We evolved the population using a network generating AE with
heterogeneous mutation, while also using the following three
types of AE model for comparison.

(1) Network generating AE without heterogeneous mutation

(2) 2D grid AE with heterogeneous mutation

(3) 2D grid AE (i.e., conventional IE)

The predefined target pattern was set as shown in Figure 5. In the
previous section some nodes are generated randomly in 2D
phenotypic space, but in this experiment, nodes were positioned at
the center of each cell and the seed position was set to the center
of the phenotypic space. The parameters were set as shown in
Table 3. The fitness for each individual was given by the number
of cells in correct states. Thus, the maximum fitness value was 64.

4.2 Results
Figure 6 shows the convergence property of the four types of
model by averaging the results of 20 runs. The 2D grid AE with
heterogeneous mutation is the best in terms of evolvability,
followed by the network generating AE with heterogeneous
mutation, with only a slight difference. Figure 7 shows an
example of a developmental process with our AE model, which is
also capable of successfully generating a 2D grid pattern.
Figure 6 also shows that the evolvability of network generating
AEs decreases compared to 2D grid AEs. Considering the cause
of this decrease, in a 2D grid AE, the single operation of firing an
action part directly corresponds to the development or deletion of
a single cell, which, in turn, corresponds to one point of fitness.
On the other hand a single operation in a network generating AE
has an effect on two nodes, because a link is connected to two
nodes.

Table 3: Parameters for the generation of a 2D grid pattern.

Population size 50
Number of elites 2
Number of genes 20
Number of iterations for growth 8
k (defining neighborhood) 4
Necessary number of preconditions to be
matched for a rule to be fired

6

Selection method Roulette
Crossover method Single point
Probability of crossover 1.0
Probability of mutation for activated genes 0.01
Probability of mutation for inactive genes 1.0
Division number for the phenotypic space 8*8

Figure 5: Predefined target pattern “E.”

Table 2: Values describing the action.

Value Action
0 Connect a link to the 1st closest node
... …
k-1 Connect a link to the kth closest node
k Disconnect the 1st shortest link
... …

2*k-1 Disconnect the kth shortest link
2*k Reconnect the 1st and 2nd shortest links

838

Furthermore, an additional action is involved in a network
generating AE, namely “reconnection”. These differences in
operator implementation can be considered to make the task of
generating predefined target patterns more difficult. Nonetheless,
the result shows the evolvability of our AE model to be almost
equivalent to the 2D grid AE with heterogeneous mutation.
Heterogeneous mutation is shown to be efficient in significantly
improving evolvability for the evolution of both 2D grid AEs and
network generating AEs. Activated genes are preserved at a rate
of 0.99, while those inactive are randomized at the rate of 1.0. In
other words, each gene can be regarded as under pressure to be
activated. With this in mind, heterogeneous mutation reduces the
number of inactive genes that make no contribution whatsoever to
the objective function. Note that activated genes do not always
contribute to the objective function. Subsequently, the reduction
of such unnecessary genes improves the ability to explore a
search space, i.e. the enhancement of evolvability.

Figure 8 shows the transition of the gene usage rate of the four
types of model. Let na be the number of activated genes and ne be
the number of existing genes in a whole population. The usage
rate of genes ur is defined as follows:

ear nnu /=

The result shows that heterogeneous mutation improves the gene
usage rate of the populations as well as evolvability.

5. EVOLUTION OF A ROBOT WITH A
NETWORK STRUCTURE
We show that our AE model can be applied to the evolution of a
robot with a network structure. We chose a software package
called “Sodaplay” as a robot simulator.

5.1 Target Problem
Sodaplay is a 2D physical simulator developed by Soda Creative
Ltd. in England [13]. Sodaplay software simulates physical
environmental characteristics within the 2D space, such as gravity,
surface friction, air friction and surface reflection. Users can
construct their own Sodaplay robot that moves in complex motion
by connecting mass points, springs and muscles. A muscle is
equivalent to an oscillating spring.
The task is to generate a Sodaplay robot which traverses the
pitfall-like terrain and reaches the goal as fast as possible (Figure
9). The value ev that the AE program directly receives from
Sodaplay software in order to evaluate each individual is defined
as follows:

⎩
⎨
⎧ ×

=
C

ddt
e asg

v
e

)0(
)0(

≤
>

a

a

d
d

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1.0

Generation

U
sa

g
e
 R

a
te

 o
f
G

e
n
e
s

Network + Heterogeneous Mutation
2D Grid + Heterogeneous Mutation
Network
2D Grid

Figure 8: Comparison of the transition of the gene usage rate.

Figure 7: An example of the developmental process of “E”
with our AE model.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

Generation

F
itn

e
ss

Network + Heterogeneous Mutation
2D Grid + Heterogeneous Mutation
Network
2D Grid

Figure 6: Comparison of convergence property.

839

where te is the elapsed time for a robot to go (te < tmax : tmax is the
timeout value). dsg is the distance between the start and goal and
da is the distance achieved toward the goal by the robot, while C
is a large value arbitrary set. This definition provides a means of
evaluation, whereby the value ev diminishes the faster the robot
reaches the goal. Subsequently, the fitness value of each
individual is derived from the inverse value of ev.
We add three elements in an action part because a Sodaplay robot
includes two types of links, namely a spring and a muscle (Table
4). The element “t” defines the type of generated link while the
element “l” defines the static length of the spring or muscle and
the element “p” defines the muscle oscillation phase.
Reconnection is applied only when the type of two links is
identical. The type of spring or muscle newly generated by
reconnection is the same as the type of the two links, while the
other attributes of the new link are given by the loci of the gene.
Note that these additional parts are not necessary if we simply
generate network structures.

5.2 Experimental setting
We evolved a Sodaplay robot with the network generating AE
with heterogeneous mutation, setting its parameters as shown in
Table 5. For comparison of its evolvability, we also used the
direct coding method. In the direct coding method, we evolved an
adjacent matrix and corresponding matrices describing the
attributes of the links. As for incest prevention, two parents were
reselected by roulette selector if more than 80% of the loci of the
two parents were the same. This mechanism was expected to be
effective in avoiding premature convergence.

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1.0

Generation

U
s
a
g
e
 R

a
te

 o
f
G

e
n
e
s

Network+ Heterogeneous Mutation
Network

Figure 11: The transition of the gene usage rate of the
network generating AEs.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

Generation

F
it
n

e
s
s

Direct Coding
Network
Network + Heterogeneous Mutaion
Goal Line

Figure 10: The convergence properties of the network
generating AEs and the direct coding method.

Table 5: Parameters for the evolution of Sodaplay robots.

Population size 32
Number of elites 2
Number of genes 20
Number of iterations for growth 16
k (defining a neighborhood) 6
Necessary number of preconditions to be
matched for a rule to be fired

6

Selection method Roulette
Crossover method Single point
Probability of crossover 1.0
Probability of mutation for activated rules 0.01
Probability of mutation for inactivated rules 1.0
Division number for phenotypic space 10*10
Number of masses (nodes) 16
Incest prevention threshold 80%

Table 4: Elements of an action part for Sodaplay robots.

 Description Value range
a Connect, disconnect, or reconnect 0, 1, …, 2*k
t Type of a link 0, 1
l Static length of a spring or muscle 1, 2, …, 10
p Phase of muscle oscillation 1, 2, …, 10

Figure 9: A Sodaplay robot with a network structure
consisting of masses, springs and muscles.

“goal”

Start Goal

840

Figure 12: An individual with maximum fitness in each
generation.

5.3 Results
Figure 10 shows the convergence property of network generating
AE with heterogeneous mutation compared to the case without
heterogeneous mutation and the direct coding method. We
emphasize that conventional IE cannot be applied to the
generation of this Sodaplay robot. We averaged the results of 20
runs of 500 generations. The horizontal line “goal” in Figure 10
shows the minimum fitness value required for reaching the goal.
The result shows that heterogeneous mutation significantly
improves evolvability. Also note that the robot generated by the
direct coding method cannot even reach the goal.

Figure 11 shows the transition of the gene usage rate comparing
the case both with and without heterogeneous mutation for the
network generating AE. The gene usage rate of the case with
heterogeneous mutation converges far more swiftly to about 97%
than that without heterogeneous mutation, which converges to
about 56%. Heterogeneous mutation is found to improve the
evolvability as well as the gene usage rate in evolving a Sodaplay
robot.

Figure 12 shows examples of robots having appeared over the
course of evolution, all of which are individuals with maximum
fitness in each generation. The robots shown in Figure 12 (e) (f)
use a bend-and-stretch motion to leap forward and overcome the
pitfall. It is also notable that a hind-leg-like structure used to hop
forward was initially observed in the 76th generation. This
immature robot is only capable of climbing up the slope and
cannot overcome the pitfall. However, this hind-leg-like structure
is inherited through generations, and finally becomes the key in
leaping over the pitfall.

Figure 13 shows the developmental process of the robot shown in
Figure 12 (f). The dashed line represents the spring and the solid
line represents the muscle, with these figures only showing the
initial states for the Sodaplay simulator’s run. It is interesting that
the characteristic of autonomous size keeping has emerged
through the evolutionary process. No constraint condition was
given for the developmental process except the fixed number of
16 iterations. Nonetheless, the developmental process of the
evolved robot is completed in no more than 5 iterations, and so 13
of the given 16 nodes are used to construct the robot.

Figure 13: The developmental process of the individual with
maximum fitness in the 457th generation.

It is also notable that the node “A” in Figure 13 has 8 links. This
node plays a role as the center of the body within the physical
space of Sodaplay software and successfully supports the bend-
and-stretch motion, enabling jumping forward. This deviation of
the neighborhood relationship is attained by the reconnecting
action. Without reconnection each node can have only a
maximum of 6 links, for the number k=6 limits the maximum
number of locally available links.

6. DISCUSSION
Using conventional AE models for generating network structures
out of local interactions, the generated structures are also inclined
to be biased by the local neighborhood relationship. This means
that solutions are searched in a highly reduced space, which
represents only a portion of all possible combinations. In contrast,
the structures generated by our novel AE model are less inclined
to be biased by the homogeneous local neighborhood structures of
the lattice. This is because the phenotypes are directly generated
as network structures through the developmental process. Our
model can search a larger space and generate long links,
unrestricted by a neighborhood relationship.

Lucas et al. evolved Sodaplay robots using planar graph encoding
[10]. In their work, the minimum element for development is a
triangular structure consisting of three masses and three springs or
muscles. With this approach, only a limited space can be searched.

Although few works exist resembling our own, probably the
closest is “genobots” by Hornby et al. [5]. Genobots are robots
with network structures. They are evolved using an L-system to
describe the developmental process and complex motions can be
achieved by employing neural controllers. However, the
experiments of Genobots are conducted for the evolution of faster
movement only on the plane terrain.

(a) 76th (b) 87th (c) 110th

 (e) 440th (f) 457th (d) 150th

A

A

(d) 4th (e) 5th

(a) 1st (b) 2nd (c) 3rd

841

7. CONCLUSIONS AND FURTHER WORK
In this paper, we presented a novel network generating AE model
involving reconnection and a heterogeneous mutation model. We
showed that reconnection is efficient for generating a link to
deviate from predefined local neighborhood relationship. The
heterogeneous mutation model was shown to be significantly
effective in improving its evolvability and enabled a larger
solution space to be searched. We showed that our AE model can
efficiently evolve network structures.

As an example task to be solved, we evolved a Sodaplay robot,
which can be defined as a network structure. The developmental
process of an evolved robot showed a size keeping property. The
springs or muscles generated between nodes were in a
relationship that transcended the predefined neighborhood. The
evolved robot hopped forward and overpassed the pitfall-like
terrain.

Our model can also evolve other network structures with simple
modification. One direction of future work would be to apply the
model for the evolution of truss structures or ANNs.

The heterogeneous mutation mechanism involved in our AE
model can be applied to all kinds of rule-based evolutionary
algorithm. Another direction of future work would be to
experiment with the effectiveness in other rule-based evolutionary
algorithms such as Learning Classifiers Systems.

8. REFERENCES
[1] P. J. Bentley and S. Kumar. Three ways to grow designs: A

comparison of embryogenies for an evolutionary design
problem. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO-1999, pages 35–43.
Morgan Kaufmann Publishers, July 1999.

[2] P. Eggenberger. Evolving morphogenesis of simulated 3d
organisms based on differential gene expression. In
Proceedings of the Fourth European Conference on
Artificial Life, pages 205–213. MIT Press, July 1997.

[3] D. Federici. Evolving a neurocontroller through a process of
embryogeny. In Proceedings of the 8th International
Conference on the Simulation of Adaptive Behavior: From
Animals To Animats, 8; pages 373–382. MIT Press, July
2004.

[4] S. Harding and J. Miller. The dead state: A comparison
between direct and developmental encodings. In Genetic and
Evolutionary Computation Conference (GECCO-2006)
Workshop Program: Complexity through Development and
Self-Organizing Representations (CODESOAR), ACM, July
2006.

[5] G. S. Horby and J. B. Pollack. Creating high-level
components with a generative representation for body-brain
evolution. Artificial Life, 8(3), 223–246. 2002.

[6] R. Kicinger. Generative design in civil engineering using
cellular automata. In New Kind of Science 2006 Wolfram
Science Conference. June 2006.

[7] T. Kowaliw, P. Grogono, and N. Kharma. The evolution of
structural design through artificial embryogeny. In
Proceedings of IEEE First International Symposium on
Artificial Life, pages 425–432. IEEE, April 2007.

[8] T. Kowaliw, P. Grogono, and N. Kharma. Environment as a
spatial constraint on the growth of structural form. In
Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO-2007, pages 1037–1044. ACM, July
2007.

[9] S. Kumar and P. J. Bentley. The ABCs of evolutionary
design: Investigating the evolvability of embryogenies for
morphogenesis. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO-1999, pages
164–170. Morgan Kaufmann Publishers, July 1999.

[10] S. Lucas. Evolving spring-mass models: test-bed for graph
encoding schemes. In Proceedings of IEEE Congress on
Evolutionary Computation, CEC 2002. pages 1952–1957.
IEEE, May 2002.

[11] J. F. Miller. Evolving a self-repairing, self-regulating, French
flag organism. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO-2004, pages
129–139. Springer Verlag, June 2004.

[12] J. F. Miller and Peter Thompson. Beyond the complexity
ceiling: Evolution, Emergence and Regeneration. In Genetic
and Evolutionary Computation Conference Workshop on
Regeneration and Learning in Developmental Systems,
GECCO-2004, Springer Verlag, June 2004.

[13] Soda Creative Ltd. Sodaplay homepage. http://sodaplay.com/
[14] K. O. Stanley. Comparing Phenotypes with Natural

Biological Patterns. In Genetic and Evolutionary
Computation Conference (GECCO-2006) Workshop
Program: Complexity through Development and Self-
Organizing Representations (CODESOAR), ACM, July 2006.

[15] K. O. Stanley and R. Miikkulainen. A taxonomy for artificial
embryogeny. Artificial Life, 9(2): 93–130. April 2003.

[16] S. Uyar, S. Sariel and G. Eryigit. A gene based adaptive
strategy for genetic algorithms. In Proceedings of the
Genetic and Evolutionary Computation Conference,
GECCO-2004, pages 271–281. Springer Verlag, June 2004.

[17] S. Viswanathan and J. Pollack. How artificial ontogenies can
retard evolution. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO-2005, pages
273–280. ACM, June 2005.

842

