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ABSTRACT  
Existing Artificial Embryogeny (AE) models are insufficient to 
generate a network structure because the possible links are limited 
to those connecting nodes with their predefined neighbors. We 
propose a novel network generating AE model capable of 
generating links connected to predefined neighbors as well those 
to non-neighbors. This mechanism provides additional flexibility 
in phenotypes than existing AE models. Our AE model also 
incorporates a heterogeneous mutation mechanism to accelerate 
the convergence to a high fitness value or enhance the 
evolvability. We conduct experiments to generate a typical 2D 
grid pattern as well as a robot with a network structure consisting 
of masses, springs and muscles. In both tasks, results show that 
our AE model has higher evolvability, sufficient to search a larger 
space than that of conventional AE models bounded by local 
neighborhood relationships. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Plan execution, formation, and generation. F.1.1 
[Computation by Abstract Devices]: Models of Computation – 
Self Modifying Machine. 

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Evolutionary Algorithm, Artificial Embryogeny, Mutation, 
Network Structure  

1. INTRODUCTION 
Artificial Embryogeny (AE) is a strategy of evolutionary 
computation inspired by the embryogeny of natural organisms. 
The primary characteristic of AE is the use of the same genes  

 

multiple times in the process of building a phenotype. Such gene 
reuse allows compact representations of complex phenotypes [15]. 
Over the decade, certain AE model variants have been proposed. 
Eggenberger modeled embryonic dynamics considering the 
transcription factors [2]. Bentley et al. studied various types of 
AE implementations for the tessellation problem [1]. Miller et al. 
proposed multicellular simulated organisms with high robustness 
at a phenotypic level using the Cartesian Genetic Programming 
(CGP) method [11, 12]. 

Although AE is successful in generating structures with certain 
specific functions such as tessellating tiles or virtual robots, 
several issues have been pointed out. For example, Harding et al. 
[4] and Viswanathan et al. [17] reported that poorly encoded AE 
can retard evolution. Stanley pointed out the overabundant 
factorization and brittle modularity of the AE model [14]. The 
issues we would like to highlight relate to the expressive power of 
the AE model and its evolvability. 
Firstly, most of the AE models focused solely on the generation 
of simple 2D grid patterns. However, the number of real world 
problems modeled by such AE models is limited, while some AE 
models already exist that are capable of generating not 2D grid 
patterns but more general network structures, such as trusses [7, 
8] or virtual robots [5]. However, these models are so dependent 
on predefined local neighbors of nodes. We need a mechanism to 
extend the predefined search space bounded by the predefined 
local neighborhood relationship, in order to find a network with 
higher fitness. 
However, this may result in slower convergence. It highlights the 
issue of evolvability. In this paper we use the term evolvability as 
an ability to converge fast to a high fitness value, while it has a 
more general meaning. 
Secondly, in the AE research field, few discussions exist 
concerning the insufficiency of evolvability [9]. In the direct 
coding research field, a mutation mechanism to allow the 
mutation rate to be adaptive for each locus is shown to be 
efficient in terms of evolvability [16]. This kind of approach is 
also considered efficient for the developmental process of the AE 
model. 

In this paper, we propose a novel AE model, capable of 
generating network structures. Our AE model involves two novel 
mechanisms. The first is to generate links between nodes in such a 
relationship that transcends a predefined neighborhood 
relationship. The second is a novel mutation mechanism called 
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“heterogeneous mutation” to enhance evolvability. Examples are 
shown in two different tasks. One is the generation of a 2D grid 
pattern, and the other is the generation of a robot called “Sodaplay 
robot”, whose structures can be described as a network [13]. 
These experiments have two purposes. The former is to show that 
our model is efficient in solving frequently tackled target pattern 
generation, while the latter is to show that our model can be 
applied to the generation of structures to which existing AE 
models are inapplicable. 
In both experiments of 2D grid pattern generation and generation 
of Sodaplay robot, we also show that our novel mutation 
mechanism significantly improves the evolvability of the model. 

The remainder of this paper is organized as follows. In the 
following section, we review related works based on AE 
concerning network structure generation. Section 3 describes our 
novel AE implementation for the generation of network structures. 
Section 4 reports on experiments involving the evolution of a 2D 
grid pattern. Then in Section 5, a “Sodaplay robot” is evolved. 
Section 6 provides discussion, and Section 7 concludes and 
presents further work. 

2. RELATED WORKS 
Recent research in the AE field has begun to focus not only on its 
fundamental characteristics but also on various kinds of 
application [3, 5, 6, 7, 8]. In particular, trusses are thoroughly 
studied as an example task of designing network structures. 

Kicinger et al. generated tall and robust buildings with truss 
structures by evolving cellular automata rules and the initial states 
as genes [6]. In this approach, trusses are generated as lattice 
structures with diagonal links. Therein, each cell is transformed 
into a rectangular-shaped truss filled with predefined 
combinations of trusses, which is equivalent to solving only a 
combination problem when the local structures are given. 

Kowaliw et al. presented a novel AE model called a Deva 1.N 
model, which can evolve network structures, and applied it to the 
generation of truss structures [7, 8]. In the Deva 1.N model, 
trusses are generated in the five directions of up, left, right, upper-
left and upper-right via the bit transformation of 32 types of cell 
arranged in lattice form. Deva 1.N also involves an operator 
generating longer links, which deviate from the local 
neighborhood relationship defined by the lattice structure. 
However, the Deva 1.N framework is insufficient to search for the 
optimal network structures because the maximum number of links 
per node is limited by the definition of a local neighborhood.  

Other AE applications are for neural networks or virtual robots. 
Federici showed that the generation of neural controllers for 
agents based on an AE model is effective in finding a strategy to 
collect food efficiently [3]. Hornby et al. showed that virtual 
robots evolved with an AE approach can attain higher fitness than 
robots generated with direct coding [5].  

  

3. NETWORK GENERATING ARTIFICIAL 
EMBRYOGENY 
In this section, we propose an AE model of high evolvability for 
the generation of network structures.  
Implicit Embryogeny (IE) is a kind of AE and was originally 
proposed for generating simple patterns in the 2D grid [1]. IE is 
suitable for an understanding of the AE framework, because it is a 
simple and highly abstract developmental model. We extend this 
framework of IE in order to build a novel AE model for 
generating network structures; hence allowing a greater variety of 
problems to be modeled.  
In this paper, we explain our AE model for 2D phenotypic space 
for reasons of simplicity and demonstrate its ability by generating 
a Sodaplay robot simulated within a 2D physical space. However, 
our AE model can be easily extended to generate a network 
structure in a higher dimensional space. 
While many possible variations exist for implementation, the 
eccenses of our AE model include the following two elements: 
The first is a mechanism to generate links between nodes in such 
a relationship that transcends a limited neighborhood relationship. 
The second is a novel mutation model, namely “heterogeneous 
mutation”, to enhance the evolvability of the model. The 
flowchart of our AE model is shown in Figure 1. 
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Figure 1: The flowchart of our AE model. 

836



 

3.1 Network Generating Framework 
In the network generation by IE-like models, a node is mapped to 
a cell and the neighbors of a cell are the candidates of linked 
nodes. In our AE model, the neighbors of a node are the 
“preferential” candidates of linked nodes and we do not exclude 
the possibility of nodes being linked to others which is not within 
the predefined neighbors. To enable such linkage, we introduce 
an action called “reconnection”, which replaces a pair of 
connected links with a direct link and connects non-neighboring 
nodes. 
In IE, a gene consists of two precondition parts and an action part 
(Figure 2). One of the precondition parts is for checking the state 
of neighboring cells, while the other is for the global positional 
information of the cell (Table 1). An action part is for acting on 
neighboring cells. This can be regarded as a situation whereby a 
cell checks both local and global information, whereupon the 
action is only applied locally. To convert this framework for 
generating network structures, we implemented the model as 
follows: 
 
(1) Firstly, some nodes are generated randomly or arbitrarily 

within the 2D space (Figure 3). 
(2) A node around the center of the 2D phenotypic space, which 

is corresponded to “seed,” is chosen and used as the starting 
point for network development. 

(3) Checks are made to identify in which area of the 2D 
phenotypic space the node exists. An area is given by 
dividing the 2D space equally for both x and y axes. 
Subsequently, the index number for each area is given by 
integers for x and y like (0,0) or (1,3). 

(4) When the preconditions are met, an action part, which is for 
connecting or disconnecting a link, or reconnecting two 
links, is activated (Figure 4). Note that all the precondition 
parts need not necessarily be matched for a rule to be fired if 
the number of matched preconditions exceeds a given 
threshold. 

(5) Each individual in the population has a genome as a 
sequence of the genes (rules) defined above. Its 
corresponding network structure as a phenotype is generated 
by using the genome for a given number of iterations. 
Subsequently, the evolutionary operators are applied to 
evolve the population.  

In the case of pattern generation by conventional IE, a filled cell 
in a 2D grid represents a living cell and a blank cell represents a 
dead one. Corresponding to this, nodes with at least one link are 
regarded as “living” and those without links as “dead”. Moreover, 
living nodes check the state of neighboring nodes by 
distinguishing whether they are living or dead. The states of the 
nodes correspond to the value of ni in Figure 2 and Table 1 
(where 0 is dead, 1 is living, and # is don’t care). Note that all 
these rule activation processes only occur in “living” nodes. 
For details concerning connecting or disconnecting a link, see 
Table 2. If reconnection is applied to a node, the two shortest 
links are disconnected and then a link is newly generated between 
the two nodes. Reconnection is activated only when a node has at 
least two links.  

n1 n2 n3 ... nk x y a 

1 # 1 ... 0 3 # 4 

 
precondition part action

 
Figure 2: A gene for generating network structures. 
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Figure 4: The conceptual diagram of implemented actions. 
 

 
 

 
Figure 3: 2D phenotypic space. 

Table 1: Elements of a precondition part.  

 Description Value range 
n1 State of the 1st closest node 0, 1, # 
n2 State of the 2nd closest node 0, 1, # 
n3 State of the 3rd closest node 0, 1, # 

… … …
nk State of the kth closest node 0, 1, # 
x Index of area for x 0, 1, 2, …, # 
y Index of area for y 0, 1, 2, …, # 

k: The number of closest nodes regarded as neighbors to a node.  

x 

y 
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The reconnecting action is introduced so that links deviating from 
predefined local neighborhood relationships can be generated. In 
other words, the target node never has a link to nodes outside the 
gray circle without a reconnecting action (Figure 4). Note that 
connection is based on the order of how close the node is while 
disconnection is based on that of how long the connected link is.  

3.2 Heterogeneous Mutation 
The evolutionary operators in our AE model are the same as a 
typical Genetic Algorithm (GA) except for our novel mutation 
mechanism called “heterogeneous mutation.” When the mutation 
rate is fixed for every part of a genome, as in the conventional IE, 
even an individual with maximum fitness includes a considerable 
number of genes that do not contribute to its developmental 
process at all. 
To reduce the number of such unused genes, we introduce a 
mechanism whereby mutation at a higher rate is applied to genes 
which are not activated during the developmental process. To 
implement this heterogeneous mutation, every gene is checked as 
to whether it was activated or not during the developmental 
process. Subsequently, mutation is applied to activated genes at a 
lower rate (usually 0.01) and inactive genes at a higher rate (the 
appropriate value may differ from task to task, but is 1.0 here). 
Finally single-point crossover is applied to the population to 
generate offspring. Note that an inactive gene does not always 
mutate into an active gene, even if they are mutated at a higher 
rate. Similarly, an active gene can be mutated into an inactive 
gene at a lower rate. Our heterogeneous mutation mechanism is 
not intended to prohibit inactive genes. 

4. EVOLUTION OF A 2D GRID PATTERN  
In this section, we investigate the effectiveness of our AE model 
by applying it to a 2D grid pattern generating problem. This 
problem is frequently tackled by existing AE models.  

4.1 Experimental setting 
We evolved the population using a network generating AE with 
heterogeneous mutation, while also using the following three 
types of AE model for comparison. 

 

 
 

(1) Network generating AE without heterogeneous mutation 

(2) 2D grid AE with heterogeneous mutation 

(3) 2D grid AE (i.e., conventional IE) 

 

The predefined target pattern was set as shown in Figure 5. In the 
previous section some nodes are generated randomly in 2D 
phenotypic space, but in this experiment, nodes were positioned at 
the center of each cell and the seed position was set to the center 
of the phenotypic space. The parameters were set as shown in 
Table 3. The fitness for each individual was given by the number 
of cells in correct states. Thus, the maximum fitness value was 64.  

 
4.2 Results 
Figure 6 shows the convergence property of the four types of 
model by averaging the results of 20 runs. The 2D grid AE with 
heterogeneous mutation is the best in terms of evolvability, 
followed by the network generating AE with heterogeneous 
mutation, with only a slight difference. Figure 7 shows an 
example of a developmental process with our AE model, which is 
also capable of successfully generating a 2D grid pattern. 
Figure 6 also shows that the evolvability of network generating 
AEs decreases compared to 2D grid AEs. Considering the cause 
of this decrease, in a 2D grid AE, the single operation of firing an 
action part directly corresponds to the development or deletion of 
a single cell, which, in turn, corresponds to one point of fitness. 
On the other hand a single operation in a network generating AE 
has an effect on two nodes, because a link is connected to two 
nodes. 

Table 3: Parameters for the generation of a 2D grid pattern. 

Population size 50 
Number of elites 2 
Number of genes 20 
Number of iterations for growth 8 
k (defining neighborhood) 4 
Necessary number of preconditions to be 
matched for a rule to be fired 

6 

Selection method Roulette  
Crossover method Single point 
Probability of crossover 1.0 
Probability of mutation for activated genes 0.01 
Probability of mutation for inactive genes 1.0 
Division number for the phenotypic space 8*8 
 

  

 
Figure 5: Predefined target pattern “E.” 

 

Table 2: Values describing the action. 

Value Action 
0 Connect a link to the 1st closest node 
... … 
k-1 Connect a link to the kth closest node 
k Disconnect the 1st shortest link 
... … 

2*k-1 Disconnect the kth shortest link 
2*k Reconnect the 1st and 2nd shortest links 

 

838



 
Furthermore, an additional action is involved in a network 
generating AE, namely “reconnection”. These differences in 
operator implementation can be considered to make the task of 
generating predefined target patterns more difficult. Nonetheless, 
the result shows the evolvability of our AE model to be almost 
equivalent to the 2D grid AE with heterogeneous mutation. 
Heterogeneous mutation is shown to be efficient in significantly 
improving evolvability for the evolution of both 2D grid AEs and 
network generating AEs. Activated genes are preserved at a rate 
of 0.99, while those inactive are randomized at the rate of 1.0. In 
other words, each gene can be regarded as under pressure to be 
activated. With this in mind, heterogeneous mutation reduces the 
number of inactive genes that make no contribution whatsoever to 
the objective function. Note that activated genes do not always 
contribute to the objective function. Subsequently, the reduction 
of such unnecessary genes improves the ability to explore a 
search space, i.e. the enhancement of evolvability. 

Figure 8 shows the transition of the gene usage rate of the four 
types of model. Let na be the number of activated genes and ne be 
the number of existing genes in a whole population. The usage 
rate of genes ur is defined as follows: 

ear nnu /=  

The result shows that heterogeneous mutation improves the gene 
usage rate of the populations as well as evolvability.  
 

5. EVOLUTION OF A ROBOT WITH A 
NETWORK STRUCTURE 
We show that our AE model can be applied to the evolution of a 
robot with a network structure. We chose a software package 
called “Sodaplay” as a robot simulator.  

 

5.1 Target Problem 
Sodaplay is a 2D physical simulator developed by Soda Creative 
Ltd. in England [13]. Sodaplay software simulates physical 
environmental characteristics within the 2D space, such as gravity, 
surface friction, air friction and surface reflection. Users can 
construct their own Sodaplay robot that moves in complex motion 
by connecting mass points, springs and muscles. A muscle is 
equivalent to an oscillating spring. 
The task is to generate a Sodaplay robot which traverses the 
pitfall-like terrain and reaches the goal as fast as possible (Figure 
9). The value ev that the AE program directly receives from 
Sodaplay software in order to evaluate each individual is defined 
as follows: 
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Figure 8: Comparison of the transition of the gene usage rate. 

 

Figure 7: An example of the developmental process of “E” 
with our AE model. 
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Figure 6: Comparison of convergence property. 
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where te is the elapsed time for a robot to go (te < tmax : tmax is the 
timeout value). dsg is the distance between the start and goal and 
da is the distance achieved toward the goal by the robot, while C 
is a large value arbitrary set. This definition provides a means of 
evaluation, whereby the value ev diminishes the faster the robot 
reaches the goal. Subsequently, the fitness value of each 
individual is derived from the inverse value of ev. 
We add three elements in an action part because a Sodaplay robot 
includes two types of links, namely a spring and a muscle (Table 
4). The element “t” defines the type of generated link while the 
element “l” defines the static length of the spring or muscle and 
the element “p” defines the muscle oscillation phase. 
Reconnection is applied only when the type of two links is 
identical. The type of spring or muscle newly generated by 
reconnection is the same as the type of the two links, while the 
other attributes of the new link are given by the loci of the gene. 
Note that these additional parts are not necessary if we simply 
generate network structures.  

 

  

5.2 Experimental setting 
We evolved a Sodaplay robot with the network generating AE 
with heterogeneous mutation, setting its parameters as shown in 
Table 5. For comparison of its evolvability, we also used the 
direct coding method. In the direct coding method, we evolved an 
adjacent matrix and corresponding matrices describing the 
attributes of the links. As for incest prevention, two parents were 
reselected by roulette selector if more than 80% of the loci of the 
two parents were the same. This mechanism was expected to be 
effective in avoiding premature convergence.  
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Figure 10: The convergence properties of the network 
generating AEs and the direct coding method. 

Table 5: Parameters for the evolution of Sodaplay robots. 

Population size 32 
Number of elites 2 
Number of genes 20 
Number of iterations for growth 16 
k (defining a neighborhood) 6 
Necessary number of preconditions to be 
matched for a rule to be fired 

6 

Selection method Roulette  
Crossover method Single point 
Probability of crossover 1.0 
Probability of mutation for activated rules 0.01 
Probability of mutation for inactivated rules 1.0 
Division number for phenotypic space 10*10 
Number of masses (nodes) 16 
Incest prevention threshold 80% 
 

Table 4: Elements of an action part for Sodaplay robots. 

 Description Value range 
a Connect, disconnect, or reconnect 0, 1, …, 2*k 
t Type of a link 0, 1 
l Static length of a spring or muscle 1, 2, …, 10 
p Phase of muscle oscillation 1, 2, …, 10 

 

Figure 9: A Sodaplay robot with a network structure 
consisting of masses, springs and muscles. 

“goal” 

Start Goal
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Figure 12: An individual with maximum fitness in each 
generation. 
 
 

5.3 Results 
Figure 10 shows the convergence property of network generating 
AE with heterogeneous mutation compared to the case without 
heterogeneous mutation and the direct coding method. We 
emphasize that conventional IE cannot be applied to the 
generation of this Sodaplay robot. We averaged the results of 20 
runs of 500 generations. The horizontal line “goal” in Figure 10 
shows the minimum fitness value required for reaching the goal. 
The result shows that heterogeneous mutation significantly 
improves evolvability. Also note that the robot generated by the 
direct coding method cannot even reach the goal. 

Figure 11 shows the transition of the gene usage rate comparing 
the case both with and without heterogeneous mutation for the 
network generating AE. The gene usage rate of the case with 
heterogeneous mutation converges far more swiftly to about 97% 
than that without heterogeneous mutation, which converges to 
about 56%. Heterogeneous mutation is found to improve the 
evolvability as well as the gene usage rate in evolving a Sodaplay 
robot. 

Figure 12 shows examples of robots having appeared over the 
course of evolution, all of which are individuals with maximum 
fitness in each generation. The robots shown in Figure 12 (e) (f) 
use a bend-and-stretch motion to leap forward and overcome the 
pitfall. It is also notable that a hind-leg-like structure used to hop 
forward was initially observed in the 76th generation. This 
immature robot is only capable of climbing up the slope and 
cannot overcome the pitfall. However, this hind-leg-like structure 
is inherited through generations, and finally becomes the key in 
leaping over the pitfall.  

Figure 13 shows the developmental process of the robot shown in 
Figure 12 (f). The dashed line represents the spring and the solid 
line represents the muscle, with these figures only showing the 
initial states for the Sodaplay simulator’s run. It is interesting that 
the characteristic of autonomous size keeping has emerged 
through the evolutionary process. No constraint condition was 
given for the developmental process except the fixed number of 
16 iterations. Nonetheless, the developmental process of the 
evolved robot is completed in no more than 5 iterations, and so 13 
of the given 16 nodes are used to construct the robot. 

 

 

 

 

 
 
 
 
 
 
 

 
 
 
 
Figure 13: The developmental process of the individual with 
maximum fitness in the 457th generation. 
 

It is also notable that the node “A” in Figure 13 has 8 links. This 
node plays a role as the center of the body within the physical 
space of Sodaplay software and successfully supports the bend-
and-stretch motion, enabling jumping forward. This deviation of 
the neighborhood relationship is attained by the reconnecting 
action. Without reconnection each node can have only a 
maximum of 6 links, for the number k=6 limits the maximum 
number of locally available links. 

 

6. DISCUSSION 
Using conventional AE models for generating network structures 
out of local interactions, the generated structures are also inclined 
to be biased by the local neighborhood relationship. This means 
that solutions are searched in a highly reduced space, which 
represents only a portion of all possible combinations. In contrast, 
the structures generated by our novel AE model are less inclined 
to be biased by the homogeneous local neighborhood structures of 
the lattice. This is because the phenotypes are directly generated 
as network structures through the developmental process. Our 
model can search a larger space and generate long links, 
unrestricted by a neighborhood relationship. 

Lucas et al. evolved Sodaplay robots using planar graph encoding 
[10]. In their work, the minimum element for development is a 
triangular structure consisting of three masses and three springs or 
muscles. With this approach, only a limited space can be searched.  

Although few works exist resembling our own, probably the 
closest is “genobots” by Hornby et al. [5]. Genobots are robots 
with network structures. They are evolved using an L-system to 
describe the developmental process and complex motions can be 
achieved by employing neural controllers. However, the 
experiments of Genobots are conducted for the evolution of faster 
movement only on the plane terrain.  

  

  

        

  

(a) 76th (b) 87th (c) 110th 

 (e) 440th (f) 457th (d) 150th 

 

   

 

A 

A 

(d) 4th (e) 5th 

(a) 1st  (b) 2nd (c) 3rd 

841



7. CONCLUSIONS AND FURTHER WORK 
In this paper, we presented a novel network generating AE model 
involving reconnection and a heterogeneous mutation model. We 
showed that reconnection is efficient for generating a link to 
deviate from predefined local neighborhood relationship. The 
heterogeneous mutation model was shown to be significantly 
effective in improving its evolvability and enabled a larger 
solution space to be searched. We showed that our AE model can 
efficiently evolve network structures. 

As an example task to be solved, we evolved a Sodaplay robot, 
which can be defined as a network structure. The developmental 
process of an evolved robot showed a size keeping property. The 
springs or muscles generated between nodes were in a 
relationship that transcended the predefined neighborhood. The 
evolved robot hopped forward and overpassed the pitfall-like 
terrain.  

Our model can also evolve other network structures with simple 
modification. One direction of future work would be to apply the 
model for the evolution of truss structures or ANNs. 

The heterogeneous mutation mechanism involved in our AE 
model can be applied to all kinds of rule-based evolutionary 
algorithm. Another direction of future work would be to 
experiment with the effectiveness in other rule-based evolutionary 
algorithms such as Learning Classifiers Systems. 
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