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ABSTRACT 
Generative representations allow the reuse of code and thus 
facilitate the evolution of repeated phenotypic themes or modules. 
It has been shown that generative representations perform well on 
highly regular problems. To date, however, generative 
representations have not been tested on irregular problems. It is 
unknown how fast their performance degrades as the regularity of 
the problem decreases. In this report, we test a generative 
representation on a problem where we can scale a type of 
regularity in the problem. The generative representation 
outperforms a direct encoding control when the regularity of the 
problem is high but degrades to, and then underperforms, the 
direct control as the regularity of the problem decreases. 
Importantly, this decrease is not linear. The boost provided by the 
generative encoding is only significant for very high levels of 
regularity.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Connectionism and Neural Nets 

General Terms 
Experimentation, Algorithms 
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1.  INTRODUCTION AND MOTIVATION 
Generative encodings, in which one element in a genome can 
produce many elements in a phenotype, have generated interest 
because their reuse of code facilitates the evolution of modular 
phenotypes [1]. In contrast, direct encodings, which involve a one 
to one mapping between a genotype and a phenotype, do not 
facilitate the evolution of repeated phenotypic modules. While 
many researchers have shown that generative encodings can 
outperform direct encodings [1], in every case we are aware of the 
problem was nearly perfectly regular or the regularity of the 
problem was unknown. By ‘regular’ we mean problem domains 
for which solutions consist of repeating the same motif multiple 
times. To date it is unknown how generative encodings do as the 
regularity of the problem decreases. For example, how good are 
generative encodings at producing an exception to the rule? What 

is needed is a test of generative versus direct encodings on a 
problem that allows us to explicitly vary only the regularity of the 
problem. Here we report on such a study.    

2.  THE EXPERIMENTAL SYSTEM 
We conduct our investigation using Hypercube-based NEAT 
(‘HyperNEAT’) [2, 3], a recently introduced generative encoding 
that can evolve neural nets using the principles of the widely used 
NEAT algorithm [4]. HyperNEAT evolves Compositional Pattern 
Producing Networks (CPPNs), each of which is a function that 
takes as inputs a constant bias value and the locations on a 
Cartesian grid of both an input node (e.g. <x=1, y=1>) and an 
output node (e.g <x=2, y=2>). The output value of the function 
determines the weight of the link between the input and output 
node. All pairwise combinations of input and output nodes are 
iteratively passed to the CPPN to generatively create a neural 
network phenotype. Each CPPN is itself a directed graph network 
where each node is a math function (e.g. sine or Gaussian). The 
nature of the functions used can create a wide variety of desirable 
properties, such as symmetry and repetition. Perceptron NEAT 
(‘P-NEAT’) has been previously used as a direct encoding control 
for HyperNEAT [2, 3]. It is similar to HyperNEAT but directly 
evolves the neural net phenotypes instead of using generative 
CPPNs to generate them. A full explanation of HyperNEAT, P-
NEAT and NEAT can be found elsewhere [2, 3. 4].  

Following [3], we use a configuration that separates the 
inputs and outputs onto two separate planes. This configuration 
features a two dimensional, n-by-n Cartesian grid of inputs and a 
corresponding n-by-n grid of outputs. There are no hidden nodes 
and recurrence is disabled. The parameter configurations for 
HyperNEAT are the same as in [3]. We created a problem we call 
‘bit mirroring,’ where for each input we assign a target output. 
Negative or positive ones are randomly   provided as inputs and 
the fitness is incremented if the input is reflected in the target 
output. This step is repeated 10 times for generality. The correct 
wiring is to create a positive valued link between each input node 
and its target output and, importantly, to zero out all links 
between each input node and non-target output nodes. That there 
is a correct wiring motif that needs to be repeated for each input 
cell creates an inherent regularity to the problem. However, this 
inherent regularity is held constant for a given grid size. The 
regularity of the problem can be scaled by changing the number 
of rows of nodes that are ‘regular’, where the target node is 
directly across (i.e. the x and y coordinates of the input and output 
node are the same). For randomized rows the target is randomly 
chosen within the row, meaning the x value of the input and 
output node may be different.  
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3. RESULTS 
Our first experiment tests the generative encoding 

HyperNEAT on the 3-by-3 bit-mirroring problem with varying 
degrees of regularity.  Each of 10 trials was run for 250 
generations for every experimental treatment (running the 
experiments longer did not qualitatively change the results). 
Figure 1 (left side) shows that HyperNEAT does better as the 
regularity of the problem increases. However, the only treatment 
that is significantly different in performance from the zero-rows 
regular treatment is the three-rows regular treatment (p < .01; this 
and all future p values report a two-sample t-test). Figure 2 (right 
side) shows that the regularity of the problem does not impact the 
performance of the direct encoding P-NEAT (there is no 
statistical significance between the zero-rows regular treatment 
and the others, p > .05 in all cases). Comparing HyperNEAT to P-
NEAT illustrates the costs and benefits of using a generative 
encoding. HyperNEAT beats P-Neat when the regularity of the 
problem is high (3-rows regular, p < .01), ties it on problems of 
intermediate regularity (p > .05 on 1- and 2-rows regular 
treatments), and performs worse than P-NEAT on the problem 
with low regularity (p < .05 on the 0-rows regular treatment).   

 
Figure 2. Generative vs. direct encodings on the 3x3 bit-
mirroring problem with varying amounts of regularity.  
 

While, the first experiment suggests that the 
HyperNEAT generative encoding only provides a boost in 
performance when there is complete regularity in the problem, the 
coarse granularity of the 3-by-3 problem makes it difficult to 
determine if perfect regularity is required. To get a better 
understanding of how HyperNeat takes advantage of increasing 
regularities in the problem, an experiment was conducted with the 
bit-mirroring problem on a 9x9 grid (Fig. 4). HyperNEAT’s 
performance does improve as a function of the regularity of the 
problem, but the difference is not significantly better than the 
zero-rows regular treatment until the number of regular rows is 
six or greater (p >.05 for less than 6 regular rows, otherwise p < 
.001). These results suggest that, while HyperNEAT can take 
advantage of regularity in problems as that regularity increases, 
this pickup is slight until the regularity is high. While it is nice 
that generative encodings can provide a performance boost at all, 
the boost from this generative encoding on this problem is rather 
small in the majority of cases tested (treatments with five or fewer 
regular rows). HyperNEAT beat the direct encoding control on 
the 9-by-9, zero-rows regular bit-mirroring problem (p < .01) 
because the 9x9 grid has enough inherent regularity to provide 

HyperNEAT an advantage even when the type of regularity we 
were explicitly scaling was eliminated. That HyperNEAT does 
even better as a different type of regularity is added (Fig. 4) is a 
testament to HyperNEAT’s ability to exploit multiple regularities 
simultaneously. 

 
Figure 4. A more fine-grained look at the correlation between 
increasing regularity and performance for the HyperNEAT 
generative encoding, here on the 9x9 bit-mirroring problem.  

4.  CONCLUSION 
Prior to this study, it was largely unknown how generative 
encodings perform as the regularity of a problem decreases. We 
found that if there is sufficient regularity in the problem, a 
generative encoding can provide a performance boost over a 
direct encoding. However, that benefit can fall off fast as the 
regularity of a problem decreases. Furthermore, a generative 
encoding can perform worse when the regularity of the problem is 
low. Finally, the generative encoding tested here showed the 
ability to simultaneously exploit at least two types of regularity.  
Given that most interesting problem domains probably contain 
many different types of regularity, we suspect that on most 
challenging problems generative encodings will outcompete direct 
encodings because they can exploit such regularities. More work 
is needed to see if the results found here with a particular 
generative encoding and its direct control on one problem domain 
apply more generally to generative encodings on most problems.    
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