
How Generative Encodings Fare on Less Regular
Problems

Jeff Clune
Digital Evolution Lab

Michigan State University
jclune@msu.edu

Charles Ofria
Digital Evolution Lab

Michigan State University
ofria@msu.edu

Robert T. Pennock*
Digital Evolution Lab

Michigan State University
pennock5@msu.edu

ABSTRACT
Generative representations allow the reuse of code and thus
facilitate the evolution of repeated phenotypic themes or modules.
It has been shown that generative representations perform well on
highly regular problems. To date, however, generative
representations have not been tested on irregular problems. It is
unknown how fast their performance degrades as the regularity of
the problem decreases. In this report, we test a generative
representation on a problem where we can scale a type of
regularity in the problem. The generative representation
outperforms a direct encoding control when the regularity of the
problem is high but degrades to, and then underperforms, the
direct control as the regularity of the problem decreases.
Importantly, this decrease is not linear. The boost provided by the
generative encoding is only significant for very high levels of
regularity.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Connectionism and Neural Nets

General Terms
Experimentation, Algorithms

Keywords
Evolution, regularity, modularity, ANN, NEAT, HyperNEAT

1. INTRODUCTION AND MOTIVATION
Generative encodings, in which one element in a genome can
produce many elements in a phenotype, have generated interest
because their reuse of code facilitates the evolution of modular
phenotypes [1]. In contrast, direct encodings, which involve a one
to one mapping between a genotype and a phenotype, do not
facilitate the evolution of repeated phenotypic modules. While
many researchers have shown that generative encodings can
outperform direct encodings [1], in every case we are aware of the
problem was nearly perfectly regular or the regularity of the
problem was unknown. By ‘regular’ we mean problem domains
for which solutions consist of repeating the same motif multiple
times. To date it is unknown how generative encodings do as the
regularity of the problem decreases. For example, how good are
generative encodings at producing an exception to the rule? What

is needed is a test of generative versus direct encodings on a
problem that allows us to explicitly vary only the regularity of the
problem. Here we report on such a study.

2. THE EXPERIMENTAL SYSTEM
We conduct our investigation using Hypercube-based NEAT
(‘HyperNEAT’) [2, 3], a recently introduced generative encoding
that can evolve neural nets using the principles of the widely used
NEAT algorithm [4]. HyperNEAT evolves Compositional Pattern
Producing Networks (CPPNs), each of which is a function that
takes as inputs a constant bias value and the locations on a
Cartesian grid of both an input node (e.g. <x=1, y=1>) and an
output node (e.g <x=2, y=2>). The output value of the function
determines the weight of the link between the input and output
node. All pairwise combinations of input and output nodes are
iteratively passed to the CPPN to generatively create a neural
network phenotype. Each CPPN is itself a directed graph network
where each node is a math function (e.g. sine or Gaussian). The
nature of the functions used can create a wide variety of desirable
properties, such as symmetry and repetition. Perceptron NEAT
(‘P-NEAT’) has been previously used as a direct encoding control
for HyperNEAT [2, 3]. It is similar to HyperNEAT but directly
evolves the neural net phenotypes instead of using generative
CPPNs to generate them. A full explanation of HyperNEAT, P-
NEAT and NEAT can be found elsewhere [2, 3. 4].

Following [3], we use a configuration that separates the
inputs and outputs onto two separate planes. This configuration
features a two dimensional, n-by-n Cartesian grid of inputs and a
corresponding n-by-n grid of outputs. There are no hidden nodes
and recurrence is disabled. The parameter configurations for
HyperNEAT are the same as in [3]. We created a problem we call
‘bit mirroring,’ where for each input we assign a target output.
Negative or positive ones are randomly provided as inputs and
the fitness is incremented if the input is reflected in the target
output. This step is repeated 10 times for generality. The correct
wiring is to create a positive valued link between each input node
and its target output and, importantly, to zero out all links
between each input node and non-target output nodes. That there
is a correct wiring motif that needs to be repeated for each input
cell creates an inherent regularity to the problem. However, this
inherent regularity is held constant for a given grid size. The
regularity of the problem can be scaled by changing the number
of rows of nodes that are ‘regular’, where the target node is
directly across (i.e. the x and y coordinates of the input and output
node are the same). For randomized rows the target is randomly
chosen within the row, meaning the x value of the input and
output node may be different.

*This research was supported by a grant from the Cambridge Templeton
Consortium, “Emerging Intelligence: Contingency, Convergence and Constraints
in the Evolution of Intelligent Behavior.”

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

867

3. RESULTS
Our first experiment tests the generative encoding

HyperNEAT on the 3-by-3 bit-mirroring problem with varying
degrees of regularity. Each of 10 trials was run for 250
generations for every experimental treatment (running the
experiments longer did not qualitatively change the results).
Figure 1 (left side) shows that HyperNEAT does better as the
regularity of the problem increases. However, the only treatment
that is significantly different in performance from the zero-rows
regular treatment is the three-rows regular treatment (p < .01; this
and all future p values report a two-sample t-test). Figure 2 (right
side) shows that the regularity of the problem does not impact the
performance of the direct encoding P-NEAT (there is no
statistical significance between the zero-rows regular treatment
and the others, p > .05 in all cases). Comparing HyperNEAT to P-
NEAT illustrates the costs and benefits of using a generative
encoding. HyperNEAT beats P-Neat when the regularity of the
problem is high (3-rows regular, p < .01), ties it on problems of
intermediate regularity (p > .05 on 1- and 2-rows regular
treatments), and performs worse than P-NEAT on the problem
with low regularity (p < .05 on the 0-rows regular treatment).

Figure 2. Generative vs. direct encodings on the 3x3 bit-
mirroring problem with varying amounts of regularity.

While, the first experiment suggests that the
HyperNEAT generative encoding only provides a boost in
performance when there is complete regularity in the problem, the
coarse granularity of the 3-by-3 problem makes it difficult to
determine if perfect regularity is required. To get a better
understanding of how HyperNeat takes advantage of increasing
regularities in the problem, an experiment was conducted with the
bit-mirroring problem on a 9x9 grid (Fig. 4). HyperNEAT’s
performance does improve as a function of the regularity of the
problem, but the difference is not significantly better than the
zero-rows regular treatment until the number of regular rows is
six or greater (p >.05 for less than 6 regular rows, otherwise p <
.001). These results suggest that, while HyperNEAT can take
advantage of regularity in problems as that regularity increases,
this pickup is slight until the regularity is high. While it is nice
that generative encodings can provide a performance boost at all,
the boost from this generative encoding on this problem is rather
small in the majority of cases tested (treatments with five or fewer
regular rows). HyperNEAT beat the direct encoding control on
the 9-by-9, zero-rows regular bit-mirroring problem (p < .01)
because the 9x9 grid has enough inherent regularity to provide

HyperNEAT an advantage even when the type of regularity we
were explicitly scaling was eliminated. That HyperNEAT does
even better as a different type of regularity is added (Fig. 4) is a
testament to HyperNEAT’s ability to exploit multiple regularities
simultaneously.

Figure 4. A more fine-grained look at the correlation between
increasing regularity and performance for the HyperNEAT
generative encoding, here on the 9x9 bit-mirroring problem.

4. CONCLUSION
Prior to this study, it was largely unknown how generative
encodings perform as the regularity of a problem decreases. We
found that if there is sufficient regularity in the problem, a
generative encoding can provide a performance boost over a
direct encoding. However, that benefit can fall off fast as the
regularity of a problem decreases. Furthermore, a generative
encoding can perform worse when the regularity of the problem is
low. Finally, the generative encoding tested here showed the
ability to simultaneously exploit at least two types of regularity.
Given that most interesting problem domains probably contain
many different types of regularity, we suspect that on most
challenging problems generative encodings will outcompete direct
encodings because they can exploit such regularities. More work
is needed to see if the results found here with a particular
generative encoding and its direct control on one problem domain
apply more generally to generative encodings on most problems.

5. REFERENCES
[1] Stanley, K. O. Miikkulainen. A taxonomy for artificial

embryogeny. Artificial Life, 9(2): 93-130, 2003.
[2] D’Ambrosio, D. B. and Stanley, K. O. A novel generative

encoding for exploiting neural network sensor and output
geometry. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO ‘07) (London, U.K., July
7-11, 2007). ACM Press, New York, NY, 2007, 974-981.

[3] Gauci, J. J. and Stanley, K. O. Generating large-scale neural
networks through discovering geometric regularities. In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO ‘07) (London, U.K., July 7-11, 2007).
ACM Press, New York, NY, 2007, 997-1004.

[4] Stanley, K. O. and Miikkulainen, R. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10(2): 99-127, 2002

868

