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ABSTRACT
Recently, a number of works have been done on how to
use Genetic Algorithms to solve the Portfolio Optimization
problem, which is an instance of the Resource Allocation
problem class. Almost all these works use a similar genomic
representation of the portfolio: An array, either real, where
each element represents the weight of an asset in the port-
folio, or binary, where each element represents the presence
or absence of an asset in the portfolio.

In this work, we explore a novel representation for this
problem. We use a tree structure to represent a portfolio for
the Genetic Algorithm. Intermediate nodes represent the
weights, and the leaves represent the assets. We argue that
while the Array representation has no internal structure, the
Tree approach allows for the preservation of building blocks,
and accelerates the evolution of a good solution. The initial
experimental results support our opinions regarding this new
genome representation. We believe that this approach can
be used for other instances of Resource Allocation problems.

Categories and Subject Descriptors
I.1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search

General Terms
Algorithms

Keywords
Finance, Representation, Genetic Algorithm, Optimization

1. INTRODUCTION
In this work, we propose a new representation of candidate

solutions for GA in the Portfolio Optimization problem. The
Portfolio Optimization problem consists of the division of a
fixed amount of Capital among a variety of assets in order
to maximize the Estimated Return, and Minimize the Risk.
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Figure 1: A tree genome and its corresponding port-
folio. The values in the intermediate nodes indicate
the weight of the left subtree. The complement of
that value is the weight of the right subtree. The
final weight of each asset (ax) is given by the sum
of the weights of all occurrences of that asset in the
tree.

This problem belongs to the class of Resource Allocation
Problem, where the Resource is the investment capital, the
jobs are the assets, and the two utility functions mentioned
are functions of the assets belonging to the portfolio and
their weights.

In the last few years, many works have been published
about the use of Genetic Algorithms for the Portfolio Opti-
mization problem. These works concentrate either on how
to adapt current Portfolio optimization techniques to real-
world constraints [12, 7], or on how to deal with the multi-
objective nature of the problem [2, 15, 12].

The majority of works that apply Genetic Algorithms to
Portfolio Optimization seems to consider that the only way
to represent a Portfolio is by using an array-based structure.
There are different ways that this array is used: The most
common one is to use a real valued array to hold the weights
of all the assets belonging to the portfolio [8, 6, 3]. Another
possible method is to use an array of binary values that state
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whether a given asset belongs to the portfolio or not. A few
works [2, 12] have used a hybrid approach, with one binary
array and one real valued array.

We propose a radically different approach for genome rep-
resentation. The portfolio is represented by a tree, inspired
by Genetic Programming, where each terminal node holds
one of the available assets, while each non-terminal node
holds the weights of the two subtrees that branch from it
(figure 1).

In this representation, each sub tree (including a subtree
composed of only a terminal node) is also a complete portfo-
lio tree, and can be evaluated by the same fitness function.
This characteristic allows us to use the utility values of the
sub trees to implement a crossover operator that takes into
consideration the quality of a subtree when selecting the
cutting point.

We show that a GA using this tree representation is able to
find simpler candidate solutions than a GA using the tradi-
tional array representation. These simpler solutions possess
similar utility values as their more complex counterparts, so
among other advantages, they incur a smaller transaction
cost in a multi scenario case.

This paper is organized as follows: In section 2, we give
a more detailed description of the Portfolio Optimization
problem. In section 3, we describe the Array based Genome
Representation. In section 4 we present and discuss the Tree
Representation. In section 5 we show experiments compar-
ing the performance between these two representations, and
then we discuss the results of these experiments.

2. PROBLEM DESCRIPTION
The resource allocation problem is a traditional optimiza-

tion problem, which consists of distributing a limited “re-
source” to a number of “jobs”, in order to satisfy one or
more utility functions [4].

The Portfolio Optimization problem falls in this category.
The limited resource is the capital available for investment,
and the jobs are the varied assets in which this capital can
be invested (for example, company stock or foreign currency.
The utility functions in this problem are the Portfolio Esti-
mated Return, to be maximized, and the Portfolio Risk, to
be minimized.

The problem was first modeled by Markowitz [9]. This
basic model, can be solved by Quadratic programming [16].
However, when adding real world constraints to the problem
(eg. large number of assets, restrictions to the values of
weights, trading costs, etc), the search space becomes too
large, non-convex, and thus the problem becomes unsolvable
by these methods. This is what motivates the use of GA to
solve Portfolio Optimization problems in practice.

2.1 Markowitz Model
We define a portfolio P as a set of N real valued weights

(w0, w1, ...wN ) which correspond to the N available assets in
the market (bonds, securities, currency, etc). These weights
must obey two basic restrictions:

NX

i=0

wi = 1 (1)

0 ≤ wi ≤ 1 (2)

In other words, the sum of all weights must be 1, and the
weights must be positive. Since the problem with possible

Riskless
Rate

Possible
Portfolios

Return

Risk

Efficient Frontier

Sharpe Ratio

Figure 2: Risk-return projection of candidate port-
folios. The search space is bounded by the Efficient
Frontier. Sharpe ratio is the angle of the line be-
tween a portfolio and the risk-free rate.

negative weights can be reduced to the version with only
positive weights [16], we assume that the weights will be
positive for simplicity.

Each asset has an expected return value, expressed by Ri.
The expected return value for the portfolio is given by the
sum of the expected return values for the assets that are
part of that portfolio, as follows:

RP =

NX

i=0

Riwi (3)

Also, each asset has a risk measure, σi. In the Markowitz
model, the risk of an asset is defined as the variance of that
asset’s returns over time, and the risk of the Portfolio is
defined as the covariance between its assets, as follows:

σP =
NX

i=0

NX

j=0

σijwiwj (4)

Where σij , i �= j is the covariance between i and j, and σii

is the variance of asset i. While the risk is usually stated as
the variance of the return of a given asset, there are other
definitions of risk that have been used to bias the resulting
portfolios towards certain kinds of investment strategies. For
other risk metrics, see the works of Harish[13] and Shu[11].

2.2 Fitness Measures
There are a number of fitness measures that can be used

when applying GA to the Portfolio Optimization problem.
A popular fitness measure is the Sharpe Ratio [15, 13, 6].

It is defined as:

Sr =
RP − Rriskless

σP
(5)

Where Rriskless is the risk-free rate, an asset with 0 risk and
a fixed, low return rate (for example, government bonds of
stable nations). The Sharpe Ratio expresses the trade-off
between risk and return for a Portfolio given a fixed rate of
return. A higher Sr value indicates a better Portfolio.

Another approach is to evaluate the Return and the Risk
separately, and rank the candidate portfolios using some
form of Multi-Objective Genetic Algorithm. Coello surveyed
a number of works which use this approach [14]. Recently,
however, it has been stated that MOGA may not perform as
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well for this problem as using the Sharpe Ratio directly [15].
Whether or not this holds true is still an open problem.

2.3 Real World Constraints
The Markowitz Model, as described above, can be solved

by optimization techniques such as Quadratic Programming
[16]. However, when real world constraints are added, the
problem becomes too complex for simple optimization tech-
niques. Practical portfolios are composed from markets with
hundreds to thousands of available assets, and the calcula-
tion of risk measures grows quickly in relation to the number
of assets.

Also, real world applications have constraints related to
the values of weights, and to trading. Weight constraints
include maximum and minimum weights and lots (indivisible
unit of a held asset). These constraints turn the search space
non-convex, making the problem harder.

Trading constraints include minimum and maximum trad-
ing volume (how much of an asset you can buy at once) and
trading cost (proportional to the amount of asset traded).
These constraints take effect when multiple scenarios (time
periods) are considered, and affect greatly the outcome of
the optimization process. In our previous work [2], we have
addressed the problem of how to reduce the difference be-
tween portfolios of consecutive scenarios to reduce trading
cost. Our current proposal also addresses this concern, by
removing from the candidate solutions assets that do not
contribute to the final result, but increase the trading cost
of the portfolio.

3. ARRAY REPRESENTATION
Most works on Portfolio Optimization using Evolutionary

computing represent the Portfolio in the evolutionary system
through the use of arrays [15, 5, 12].

We find three basic ways to represent a portfolio as an
array for a genetic algorithm in the literature. In the first,
each element i of the array is a real valued variable that
represents the weight of the asset ai in the portfolio. In the
second, each element i is a Boolean variable that represents
whether the asset ai belongs to the portfolio or not. The
third method is a combination of both previous methods,
where we have two arrays, a real valued array, and a Boolean
array.

In all three representations described above, the order of
the assets in the array is arbitrary, usually alphanumeric by
the name of the asset (see figure 3).

3.1 Operators
The crossover operator used is the Linear crossover, where

for each element in the array there is an equal chance of
copying the information from the first parent, the second
parent, or mixing information from both parents.

Because the assets are aligned in the array in an arbitrary
order, there is no difference between linear crossover and
other methods that depend on partitioning the genome in
certain ways, like N-point crossover. This is because the
order of the assets can be re-arranged without any change
in meaning to fit a particular partitioning.

The mutation operator consists of perturbing each ele-
ment in the Array. Real valued elements will be perturbed
within a normal distribution, and Boolean elements will
be flipped. Each element in the array has an independent
chance of being changed by the mutation.

����
����

a1 a2 a4 a5a3

1 110 0

0.32 0.44 0.120.17 0.02

1 110 0

0.32 0.44 0.120.17 0.02

0.69 0.270.04

Genome

Portfolio

1 11 0

0.32 0.440.17 0.02

1

0.15

Parent 1

Parent 2

Original

Mutated

Mutation

Crossover

Figure 3: An array representation of a portfolio, the
mutation and linear crossover operators
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4. TREE REPRESENTATION
We propose the use of a Tree-based representation as an

alternative to the Array based representation. Tree-based
genome representations are often seen in Genetic Program-
ming. However, they also have been used for GA based
optimization problems. For example, Iba et al. has used
tree structures to evolve optimal weights for a polynomial
function [10].

Tree-based representations are useful when the the possi-
ble solutions to the problem being solved can be broken into
sub-solutions which are also valid solutions to the problem.
If this condition is satisfied, the sub-trees that compose an
individual are also possible solutions, and can be evaluated.

For Financial Portfolios, a subset of assets of a portfolio is
also a valid portfolio, after normalizing their weights. So it is
possible to develop a tree representation which is composed
of nested sub-portfolios.

The advantage of such representation is that the fitness
function is applicable not only for the root node (whole indi-
vidual), but for each sub tree as well. It becomes possible to
use this information to effect better crossover and mutation
operators.

4.1 Implementation
We currently implement the tree genome as a binary tree.

Intuitively speaking, the root node of the tree points towards
the total amount of capital. At each node, a real value
between 0 and 1 determines how much of the capital that
reached that node goes to the left sub tree and right sub tree.
At the terminal nodes, all the capital that reached that node
goes to the asset designed by the value of the terminal node.

Tree Structure
The non-terminal nodes represent the weights between its
two sub trees. Each non-terminal node in the tree contains
a real value w between 0 and 1, which indicate the weight
of its left sub tree (the choice of left over right is arbitrary).
The right sub tree of that node has weight 1 − w. Figure 1
shows this representation.

To extract the portfolio from the genome, we calculate
the weight of each terminal node by multiplying the weights
of all nodes that need to be visited to reach that terminal
from the root of the tree (w if the sub tree branches to the
left, 1 − w if to the right). Then the weights of terminal
nodes that point to the same asset are added together. The
assets which are not mentioned in the tree have a weight of
0 assigned to them.

Because of this structure (the sum of the weights of the
two sub trees of any non terminal node is 1), extracting a
portfolio by the method above will result in all weights being
correctly normalized.

Also, this structure means that a portfolio containing all
N available assets requires a tree with depth log2 N . For
instance, for the NASDAQ100 market, which contains 100
assets, it will be needed a tree of depth 7.

Fitness Calculation
To calculate the return for each sub tree, we modify the
calculation of the return of a tree N to become a recursive
function where:

R(N) = wR(cl) + (1 − w)R(cr) (6)
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Figure 4: Crossover (BWS) and Mutation operators
for the tree representation.

If N is a node Where cl and cr are its left and right children,
respectively. And if N is a leaf (asset):

R(N) = MA(aN) =

PT−1
t=0 r(aN )t−T

T
(7)

Where MA is the moving average, which is the average of
the return value of the last T periods (T is parametric). This
recursive function has the same complexity than iteratively
calculating the estimated return for a full portfolio, so we
can have the return value for the sub trees at no extra cost.

The calculation of the risk for each sub tree, on the other
hand, becomes more expensive. The variance of the sum of
two sub trees is given as:

σ(cl +cr) = w∗σ(cl)+(1−w)σ(cr)+2w∗(1−w)Cov(cl, cr)
(8)

Where the risk of the children sub trees, σ(cl) and σ(cr)
is given at the terminal node level by the data set, and is
the result of the above calculation at each level. So the
covariance between each sub tree needs to be re-calculated,
and this increases the overhead of the system. To avoid
unnecessary calculations, the covariance is only re-calculated
in the sub trees that were modified, during mutation and
crossover.

Genetic Operators
The Mutation operator works by cutting off a tree at a ran-
dom point, and replacing it a new, random sub tree from
that point. In this work we choose the cutoff point for the
Mutation operator randomly. Alternatively, the cutoff point
may be chosen probabilistically, with a chance proportional
to the inverse of the fitness of a non-terminal node in the
tree.

The Crossover operator works by exchanging sub trees
between two individuals. One point at the same depth is
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chosen for each tree, and the sub trees that start from that
point on are swapped between the two trees.

We call it Simple Crossover if the choice of the crossover
points is random, or based on data not related to the fit-
ness (like depth). We define Guided Crossover as crossover
policies that use fitness information from the sub trees of an
individual to choose the crossover points in each parent.

For example, a simple Guided Crossover is the Best-Worst
Sub tree Crossover (BWS). Here, a random depth is chosen,
and the sub trees at that depth with the best and worst
fitness values are identified. The sub tree with the worst
fitness of the first parent is switched with the sub tree with
the best fitness of the second parent.

Both operators are illustrated in figure 4.

4.2 Motivation
There are some benefits that we expect from the use of a

three based genome, according to the above implementation.

Population Convergence
By choosing the crossover point by the performance of the
sub trees with the BWS operator we expect the convergence
rate of the system will improve. This is because the crossover
between two good individuals will more consistently produce
good individuals.

We demonstrate that the BWS crossover operator often
generates better individuals by exchanging a bad sub tree
for a good sub tree. Assume that the new sub tree has a
higher fitness value than the old sub tree. This may not hold
true if the fitness difference between the two individuals is
too big (the best sub tree of one individual is worse than the
worst sub tree of the other individual).

In this case, the New sub tree is A, the Old sub tree is
B, the ’sister’ sub tree is P , and the weight between P and
A/B is w. If f(S) is the fitness function of a sub tree S,
we have f(P ) > f(B), because B is the worst sub tree, and
f(A) > f(B), by our initial assumption.

We want to know under what conditions f(wP + (1 −
w)A) > f(wP + (1 − w)B). If the fitness is the Sharpe
Ratio, we can use the two fund theorem [16], which states
that a linear combination of two portfolios results in a third
portfolio which is in a line between the first two. So we know
that the possible portfolios with the old sub tree B and the
new sub tree A are in the segments PB and PA.

Because the weight w does not change with the crossover
operator, all the possible portfolio combinations B′ = wP +
(1 − w)B and A′ = wP + (1 − w)A are parallel to the sub
trees A and B. If f(A) > f(B), then f(B′) > f(A′) only
when the intersection points AB ∩ OP and A′B′ ∩ OP are
located in different quadrants (see figure 5). So, replacing a
sub tree with low fitness for a sub tree with high fitness will
in most cases result in an individual with higher fitness.

Genome Structure
Another advantage of this implementation is that the evo-
lution of the population will result in the development of an
internal structure of the genome.

The crossover operator, over the course of generations,
moves good sub trees of different sizes to the best individu-
als. If the sub trees are attached to other good sub trees, the
block as a whole has a higher chance of being transmitted to
an individual of higher fitness. So the evolutionary pressure
acts not only on the individual level, but in the sub tree

P

A

BO

Return

Risk

A’

B’

Return

Risk

O

A’’

B’’

P

Figure 5: Conditions where it is and it is not possi-
ble to lower an individual’s fitness by replacing a low
fitness sub tree with a high fitness one. In the upper
image, the tree PA may have a higher or lower fit-
ness than PB depending on the weight, so we can see
the parallel AB crossing PO at different quadrants.
In the lower image, it is not possible to choose a
weight w so that the portfolio will LOSE fitness by
replacing a worse sub tree.
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Table 1: Experiment Parameters
Name Value
Generation 200
Population 400
Tournament K 10
Elite 5
Mutation Rate 0.02
Crossover Rate 0.8
Riskless Rate 0.02
Significant Asset Threshold 0.03

level as well. Some sub trees will eventually be seen more
often in the successful individuals - we call these emergent
sub trees the building blocks of the population.

It is not possible to observe such building blocks under the
array representation, due to its arbitrary ordering. Also, it
may be possible to extract information about the market
and its assets by studying these building blocks (although
this is not addressed in this work).

Vestigial Assets
One of the main differences that was observed during the
experiments between portfolios evolved by array represen-
tation, and those evolved by tree representation, is that the
later had a much lower average number of assets, for the
same final result. When counting only the assets with weight
above a certain threshold, the difference was much smaller.

What this tells us is that evolution using the above de-
scribed tree representation tends to eliminate assets that
do not contribute to the end result much more aggressively
than the array based method. This is because while the
BWS operator actively eliminates low fitness sub trees and
their assets from individuals. In the array representation,
on the other hand, if an asset with a minimal weight do not
contribute either negatively or positively to the fitness, it is
very hard to remove it from the individual. This requires
either a random mutation, or a crossover with another indi-
vidual that don’t have that particular asset.

There are two main benefits of eliminating these minimal
weight assets that do not contribute to the portfolio: 1) the
resulting portfolio becomes clearer and more understand-
able, and 2) the Vestigial Assets do incur transaction costs
in multi-scenario optimizations, and since they don’t con-
tribute to the result, these transaction costs are unneeded.

5. EXPERIMENTAL RESULTS
We performed a series of experiments to compare the per-

formance of the tree based representation with the array
based representation. The parameters used in the experi-
ment follow in table 1. Of those parameters, the only one
which is not familiar to users of EC is the last one, Signifi-
cant Asset Threshold. That parameter is used to determine
if a particular asset in a portfolio is significant or not. In the
current experiment, we consider as relevant to the portfolio
any asset that composes more than 3 percent of the total
value of the portfolio.

A single scenario was used for each run, and no partic-
ular constraints were taken into consideration. The fitness
function used was the Sharpe Ratio.

These reasoning behind these choices is that, in this ex-
periment, we are more interested in observing the difference

between the evolutive behavior of the GA with different rep-
resentations, than trying to improve their performance in
relation to the index (which is the goal of many other works
about this problem).

For each scenario (1 month), the population was trained
on the 12 month period previous to it, without further knowl-
edge of their target environment. Each scenario was re-
peated 30 times with different random seeds - the results
showed here are averages of these 30 runs. We ran a total of
72 scenarios, 36 from the NASDAQ100 data set (100 assets
total), and 36 from the NIKKEI data set (225 assets total).

The results for this experiment were remarkably similar,
independently of the scenario played. The Tree-based pop-
ulation started with a large number of assets (near 100%
of the total available assets), but between 30 to 70 genera-
tions the number of assets falls down to almost the number
of significant assets. The array-based population, on the
other hand, starts at around 50% of the total available as-
sets; quickly rises to 80-90% of the assets, and then slowly
drops and stabilizes at 30-40% of the assets.

This pattern is illustrated on figure 6, taken from the
NASDAQ Jan-2006 scenario. The exact same pattern can
be seen in the other scenarios, with minor variations on the
steepness of the curves, but not on the general plateaus.

The differences between the two methods are highlighted
in table 2, which lists some representative results. The util-
ity field is the return of the best portfolio in the population
for that scenario. Those values are compared with the “In-
dex” value, which represents an ideal portfolio according to
Markowitz Model. The difference in utility between the tree
representation and the array representation is small enough
to say that they are equivalent in this regard.

The final number of significant assets is roughly the same
for both methods in the NASDAQ market, and close in the
Nikkei Market. On the other hand, the final number of total
assets is much higher for the Array-based representation,
which denotes its inability to remove from the portfolio genes
that are no longer contributing to the solution.

6. CONCLUSION
We have proposed a new representation for the GA im-

plementation of the Portfolio Optimization problem. In this
approach, a tree based genome is used instead of the array
based genome.

The tree based representation has advantages to the tradi-
tional array based representation, in that it allows the emer-
gence of a structure by means of the BWS crossover opera-
tor. This operator uses fitness values of the sub trees of an
individual to make an informed choice about the crossover
point. Our experiments show that portfolios evolved using
the tree representation have a lower number of significant
assets, and a much lower total number of assets when com-
pared to array based genomes, with the same utility value.

This result entails a number of practical benefits, such as
reduced trading costs, ease to adapt results to trade con-
straints, and ability to understand the resulting portfolios.

Still, this is an early work on a novel approach to the Port-
folio Optimization problem. In this work we analyzed some
of the difference in results between the approaches (total
number of assets, number of significant assets, final fitness
value, convergence speed). We do not claim, however, to
have exhausted the study of the differences and similarities
between the two approaches.
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Table 2: Representative Results
Scenario Name Utility Average Assets Significant Assets

and Date Index GA-Array GA-Tree GA-Array GA-Tree GA-Array GA-Tree
NASDAQ 2004/Jan 0.023 0.018 0.017 57.74 19.09 9.66 9.65
NASDAQ 2005/Jan 0.077 0.035 0.057 40.3 12.08 9.93 7.91
NASDAQ 2006/Jan 0.021 0.049 0.074 40.15 10.03 11.81 7.79
NIKKEI 2004/Jan 0.004 0.002 0.003 115.34 25.12 17.5 15.83
NIKKEI 2005/Jan -0.003 -0.012 -0.001 143.01 32.10 19.42 16.11
NIKKEI 2006/Jan 0.014 0.19 0.13 85.31 23.78 35.6 14.08

Figure 6: Average number of assets and significant assets when using array-based genomes (above) and tree-
based genomes (below). The array genome is not able to eliminate superfluous assets. (The data in the chart
refers to the 2004 scenario (left) and 2006 scenario (right)
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There are more open questions about the comparative
performance of both representations. Population diversity,
performance in multi-scenario frameworks (addition of cost)
and the addition of constraints are a few examples of such
open questions, which we intend to address in the future.
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