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ABSTRACT  
The hurdles in solving Constrained Optimization Problems (COP) 
arise from the challenge of searching a huge variable space in 
order to locate feasible points with acceptable solution quality. It 
becomes even more challenging when the feasible space is very 
tiny compare to the search space. Usually, the quality of the initial 
solutions influences the performance of the algorithm in solving 
such problems. In this paper, we discuss an Evolutionary Agent 
System (EAS) for solving COPs. In EAS, we treat each individual 
in the population as an agent. To enhance the performance of 
EAS for solving COPs with tiny feasible space, we propose a 
Search Space Reduction Technique (SSRT) as an initial step of 
our algorithm. SSRT directs the selected infeasible agents in the 
initial population to move towards the feasible space. The 
performance of the proposed algorithm is tested on a number of 
test problems and a real world case problem. The experimental 
results show that SSRT not only improves the solution quality but 
also speed up the processing time of the algorithm.  

Categories and Subject Descriptors 
G.1.6  Constrained optimization  

General Terms 
Algorithms. 

Keywords 
Evolutionary algorithms, evolutionary agent systems, genetic 
algorithms, agent-based systems, nonlinear programming, 
constrained optimization, search space reduction. 

1. INTRODUCTION 
Many real world decision processes require solving optimization 
problems involving a set of equality, non-equality or both 
constraints. The difficulties in solving constrained optimization 
problems arise from the challenge of finding good feasible 
solutions. The problem is much more challenging when the 
feasible space is very tiny compare to the search space. Solving 

this type of problem has become a challenging area in computer 
science and operations research due to the presence of high 
dimensionality, nonlinear parameter interaction, and 
multimodality of the objective function as well as due to the 
physical, geometric,  and other limitations of different constraints 
[16].   

Evolutionary Algorithms (EAs) have brought a tremendous 
advancement in the area of computer science and optimization 
with their ability to solve many numerical and combinatorial 
optimization, classifier system, and engineering problems [13, 
18]. Nevertheless, most EAs developed are unconstrained search 
techniques and lack an explicit mechanism to bias the search in 
constrained search spaces [15]. Furthermore traditional EAs suffer 
from slow convergence to locate a precise enough solution 
because of their failure to exploit local information, and face 
difficulties solving multi-modal problems which have many local 
solutions within in the feasible space . Hence it is well established 
that they are not well suited for fine tuning search [3, 27] and so, 
to improve the performance, hybridization of algorithms has been 
introduced in recent times.  

Recently some researche has incorporated evolutionary processes 
into agent based systems [1-3, 10, 17, 26, 27]. Agent-based 
computation introduces a new paradigm for conceptualizing, 
designing and implementing intelligent systems, and has been 
widely used in many branches of computer science [12]. The 
agents are discrete individuals situated in an environment having 
a set of characteristics and rules to govern their behavior and 
interactions. They sense the environment and act on it in pursuit 
of a set of goals or tasks for which they are designed. Recently, a 
number of agent-based hybrid algorithms have appeared in the 
literature for solving different problems. For example, 
Dobrowolski et al. [9] used evolutionary multi-agent system for 
solving unconstrained multi-objective problems. Siwik et al. [26] 
developed a semi-elitist evolutionary multi-agent system and they 
solved so called MaxEx multi-objective problem, which is a quite 
simple problem [7]. Zhong et al. [27] used a multiagent genetic 
algorithm (MAGA) for solving unconstrained global numerical 
optimization problems. Liu et al. [17] used a multiagent 
evolutionary algorithm for constraint satisfaction problems. 
Barkat Ullah et al. [2] used an evolutionary agent systems for 
solving mathematical programming. Multi-agent genetic 
algorithms [1] and agent-based memetic algorithms [3] by Barkat 
Ullah et al. have solved constrained optimization problems. 
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In this paper, we present a Search Space Reduction Technique 
(SSRT) with Evolutionary Agent System (EAS) for solving 
Constrained Optimization Problems (COPs) with tiny feasible 
space. The main idea of SSRT is to move some of the randomly 
generated initial poor solutions towards the feasible region.  It is 
worth mentioning that clustering is different from the SSRT. 
When the ratio between the feasible region and the search space 
of the problem is very small (close to zero), we define those 
problems as COPs with tiny feasible space. Usually in solving 
these types of problems the algorithms need a good effort in 
finding the feasible space. As the initial population of EAs is 
randomly generated to ensure diversity, it may cause delay (being 
over diversified) in reaching a reasonably good solution for tiny 
feasible space. Once a good solution point is obtained, Genetic 
Algorithms (GAs) usually converge nicely to an acceptable 
solution. To enhance the performance of the algorithm in reaching 
the feasible space quickly, in the proposed algorithm, the agents 
apply SSRT to the initial population before starting the 
evolutionary process.  This technique guides the initial agent 
population to move towards the feasible region. The agents try to 
find a centroid from the feasible agents (if any) with some good 
infeasible agents (here we are considering those agents having 
less constraint violations). A certain percentage of the worse 
infeasible agents are then encouraged to move towards the 
centroid. By applying SSRT the randomly generated agents are no 
longer random rather they have learnt a direction towards the 
feasible space which helps the algorithms to reach the feasible 
region faster and improve the solution quality.  However some 
questions arise: 

•  When we should apply the SSRT? 
•  How to calculate the centroid for SSRT? 
•  How long we shall apply SSRT as it decreases the    

diversity? 
Our experiments aim to find answers to these questions. 

In the proposed framework of EAS, an agent represents a 
candidate solution of the problem, carries out cooperative and 
competitive behaviors, and selects the appropriate local search 
adaptively to find optimal solutions for the problem in hand. The 
agents cooperate and compete through well known Simulated 
Binary Crossover (SBX) proposed by Deb and Agrawal [8] and 
our designed different types of life span learning processes to 
solve a COP. Note that they do not use any mutation operator as 
the life span learning process would cover more than the purpose 
of mutation. We have designed the life span learning processes 
(LSLPs) based on several local and directed search procedures. 
An agent chooses a LSLP as a local search operator adaptively. 
As we generally see in GAs, an individual in a generation 
produces offspring and the offspring may be mutated to change its 
genetic materials. In reality, beside reproduction, an individual 
learns and gains experiences in different ways during its life time. 
This process is represented by the proposed LSLPs in this 
research. As an individual can decide to have a particular learning 
process based on its belief, we have incorporated a number of 
different LSLPs. The main idea of using multiple LSLPs is to 
achieve improved search performance by selecting a suitable 
LSLP from the pool and to reduce the chances of utilizing 
inappropriate LSLP.  In EAS the improved agent (after applying 
LSLP) is sent back into the population which follows the 
Lamarckian learning. Since we are using multiple LSLPs (i.e. 
LSs) in the spirit of Lamarckian learning we can say EAS is 

following Meta-Lamarckian learning [21]. The individual’s 
ability to use its belief, to interact with the environment, and to 
make independent decision for exploration and learning, qualifies 
an individual to be called an agent in the population. 

In [1], the authors used  the neighborhood competition with 
orthogonal crossover and Gaussian mutation. As the algorithm 
with neighborhood competition and mutation [2, 3] was 
computationally expensive to achieve quality solutions, we have 
used SBX crossover with LSLPs and SSRTs in this research.  

The performance of EAS is very competitive when compared 
with [4, 11, 22] (details can be found in [2]). To test the 
performance of the algorithm and justify the purpose of SSRT, we 
have selected a set of  benchmark problems with tiny search space 
from [15] and carried out different type of experiments. We have 
also solved a real world case problem. The experiments show 
SSRT improves the solution qualities as well as speeds up the 
performance of the algorithm. We believe the performance of any 
algorithms can be enhanced by incorporating SSRT when solving 
constrained optimization problems with tiny feasible region. 

The rest of this paper is organized as follows. Section 2 describes 
the proposed the Evolutionary Agent System with SSRT and its 
components. Section 3 describes the performance of the proposed 
approach on benchmark problems, and compares the results. 
Finally, Section 4 concludes the paper and provides future 
research directions.  

2. Evolutionary Agent System 
In this research, we have incorporated the agent concept with 
evolutionary algorithms, where an agent represents a candidate 
solution in the population. In solving constrained optimization 
problems, the algorithm searches the search space for a feasible 
region from the randomly generated initial population, and then 
tries to find out the optimal solution. If the algorithm finds the 
feasible space quickly, it can save a considerable amount of time 
in searching for good quality feasible solutions. However, it is not 
easy to find the feasible space and even more difficult when the 
feasible space is very tiny. Population based search algorithms 
like EAs start with initial randomly generated population. In our 
proposed EAS, the initial population of the agents is also 
generated randomly. However before starting the evolutionary 
process we check the fitness landscape of the population. If there 
are a very few (or none) quality solutions generated in the initial 
stage, the algorithms may need more time to explore the search 
space for the feasible space. This is usually the case for COPs 
with a tiny feasible region. In this situation, the algorithm applies 
the SSRT. The SSRT provides the initial random agents an 
approximate direction to move towards the feasible space. This 
helps them to find the feasible space faster. The detail of SSRT is 
discussed later in this section. The goal of each agent is to: 

• Reach into the feasible region and 
• Improve the fitness 

Following the natural adaptation process, in the proposed EAS the 
agents improve their fitness by selecting self-adaptively a suitable 
life span learning technique along with SSRT. The agents are 
arranged in a lattice-like environment E of size MM ×  (where M 
is always an integer). The agents communicate with their 
surrounding neighbor agents and interchange information with 
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them through comparison and the crossover operator. The 
overlapped small neighborhoods of the lattice-like environment 
help in exploring the search space because they induce a slow 
diffusion of solutions through the population and provide a kind 
of exploration (diversification), while exploitation 
(intensification) takes place inside each neighborhood by 
crossover operations.  

For LSLPs, we have proposed a number of search processes, as an 
appropriate choice of a LSLP is very important for the 
performance of the algorithm. In each generation an agent may 
select one of the several LSLPs based on self-adaptively. 

The main steps of the proposed algorithm are follows:  
Step 1. Create a random population, which consists of 

MM × agents. 
Step 2. Arrange the agents in a lattice-like environment.  
Step 3. Evaluate the agents individually.  

− If the stopping criterion has been met, go to step 
8; otherwise continue.  

Step 4. If the number of feasible individuals is very few (<5%) 
apply SSRT; otherwise go to step 5. 

Step 5. For each agent examine its neighborhood. 
− Select an agent from its neighborhood and 
perform crossover. 

Step 6. Select a certain percentage of agents. 
− Select self-adaptively a life span learning 
process. 

Step 7. Go to step 3. 
Step 8. Stop. 

As the search spaces of the optimization problems and the 
variables under consideration are real and continuous, we have 
used real numbers to represent the solutions. 

2.1 Search Space Reduction Technique 
In population based stochastic algorithms like EAs the quality of 
the randomly generated initial population plays an important role 
on the performance of the algorithms. If the initial population 
contains some good solutions the algorithms converge quickly. 
However it is not expected that the random solutions should 
always be of good quality. Some algorithms like GENOCOP [18, 
19] assumes a feasible starting point (or feasible initial 
population), which implies that the user or the EA must have a 
way of generating (in a reasonable time) such starting point [5]. 
The homomorphous mapping method of Koziel and Michalewicz 
[14] also requires an initial feasible solution. In this paper we 
have designed a SSRT which allows the far most infeasible agents 
to move towards the feasible region, which is basically squeezing 
the search space. That means the evolutionary process starts with 
a better population in a reduced search space. 

If there are none or few (less than 5%) feasible agents in the 
initial random population, the EAS applies SSRT. The infeasible 
agents are ranked based on their constraint violation. The feasible 
agents (if any) and a certain percentage of the top ranked 
infeasible agents are then used to find a centroid. If there is no 
feasible agent, only the top ranked infeasible agents are modified 
to reduce the constraint violation and then calculate the centroid.  

After calculating the centroid a certain percentage of non-
allowable infeasible agents (see Figure 1) are allowed to move 
towards the centroid. Although this process guides the worse 

infeasible agents towards the feasible space, it reduces the 
diversity of the population. To ensure diversity we only allow a 
small number of the worse infeasible agents to follow the 
centroid, and discontinue the process when the diversity of initial 
population is decreased to a certain level. 

Figure 1 shows how the centroid is calculated from the feasible (if 
any) and allowable infeasible solutions. A portion of the non-
allowable infeasible solutions then follow the centroid, which is 
shown by the arrows. 

 
 The proposed algorithm for SSRT is given below: 

Step 1. Rank the infeasible solutions based on the Constraint 
Violation (CV). Define the allowable infeasible 
range. Calculate the diversity of the population.  

Step 2. If there are feasible individuals, calculate the centroid 
from the feasible and allowable infeasible 
individuals, and go to step 4, else go to step 3. 

Step 3. Find the best infeasible individuals based on the CV. 
a. Find the constraint which has maximum CV for 

this individual. 
b. Select a variable randomly, which is involved in 

the constraint which is not yet modified. 
c. Change the variable with δ±  and mark as 

modified. 
d. If the individual become feasible, go to step 2, else 

go to step 3e  
e. If all constraints are checked or all the variables 

are modified, then find the centroid of the 
allowable infeasible along with this one, otherwise 
go to step 3. 

Step 4. Force the certain percentage of the non-allowable 
infeasible solutions to follow the centroid. 

Step 5. Calculate the diversity of the population. If the 
diversity decreases up to a certain level then stop, 
otherwise go to step 2. 

 
Figure 1. Search Space Reduction Technique. 
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The value of δ used here is very small;, δ = |G (0, 1)|, where G (0, 
1) is a Gaussian random number generator with zero mean and 
standard deviation 1.  

For calculating the centroid, for each variable of the centroid c
ix , 

we have taken the arithmetic mean of the participating agents’  

respective variables ix .  While calculating the diversity we have 
taken the mean Euclidian distance of the all agents from the 
centroid.  
A portion of the non-allowable agents follow the centroid as 
follows: 

n .....  = i    xxx c
ii

n
i 1,)1( α−+α=  (1) 

[Where n
ix  and c

ix are the ith variable of the non-allowable agent 
and the centroid respectively, n is the number of variables in the 
solution vector and α is a uniform random number from 0 to1]. 

2.2 Crossover 
In the proposed EAS, we have used Simulated Binary Crossover 
(SBX) [8]. SBX operator performs well in solving problems 
having multiple optimal solutions with a narrow global basin, and 
has been used in different applications successfully [2, 3, 7].  

When this crossover operator is applied on an agent Ai,j (located 
in location (i,j) in the lattice), the agent searches for its best 
neighbor agent e.g. B(Ai,j) to mate. The better offspring of the two, 
denoted as Ni,j, is stored in a pool. After completing the crossover 
in a given generation, the fitness of each Ni,j (1 ≤ i,j ≤ M) is 
compared with its parent Ai,j. If the new agent’s fitness is better 
than its parent then it takes the place of Ai,j and Ai,j dies. 
Otherwise Ai,j would survive. 

2.3 Life Span Learning Process (LSLP) 
After crossover a certain percentage of agents (with PL 
probability) of the population are selected to apply the LSLP i.e. 
to apply local and directed search. These LSLPs are designed to 
improve fitness values by changing the variable vector of the 
existing solutions in different ways.  

Here we have designed four different LSLPs. The first one is 
totally random in nature, the second is restricted random, the third 
is gradient-based, and the last is directed search. The random 
LSLPs ensure diversity, and the directed searches try to move 
towards a better solution which is not necessarily in the 
individual’s locality.  

The first and second types of LSLP of the agent try to exploit the 
existing solution vector by attempting to change the variables. 
The third type attempts to move the solution vector in the 
direction of gradient and the last type of LSLP leads the agents 
towards the current best solution. The last two LSLPs try to make 
the agents converge; the first two maintain diversity.   

During the LSLP the variables are changed with ±Δ. The direction 
of Δ (add/ deduct) is selected by observing the modified fitness 
value of the agent. The value of Δ should be very small and 
gradually be decreasing with the generation numbers, to obtain a 
high quality solution (high precision) at the end. We have 
considered Δ = |G(0,1/g)| (for the first three types of LSLPs),  

where G(0,1/g) is a Gaussian random number generator with zero 
mean and standard deviation (1/g), here g is the present 
generation number. In the fourth LSLP 2)(  rr a -b=Δ , 
where br is the rth solution variable of the previous best agent, ar 
is the rth variable of the present agent and ar is updated in each 
step, which speed up the directed search. The details of the LSLPs 
can be found in [2, 3]. 

2.4 Fitness Evaluation and Constraint 
Handling  
In EAS, the goal of the individual agent is to minimize the 
objective function value while satisfying the constraints. To 
improve the fitness, agents first apply crossover operators with 
their best neighbors. The best neighbor is found by using pair-
wise comparison among the neighbors. The pair-wise comparison 
indirectly handles the constraints. Like Deb [6], while comparing 
the fitness of two individual agents we have considered: 

1. A feasible individual is always better than an infeasible 
individual. 

2. If both of the individuals are feasible, then the individual 
with lower objective function value is better (considering 
minimization problem). 

3. If both of them are infeasible, then the one with less 
constraint violation is better. The total Constraint Violation 
(CV) of an individual is considered here as the sum of 
absolute values by which the constraints are violated.  

We have assumed that the fitness of the best infeasible agent is 
worse than the worst feasible agents. As such while comparing 
two agents, the infeasible agent is penalized and feasible agent is 
rewarded, so the constraints are handled indirectly. The 
calculation of improvement index in the following subsection also 
indirectly handles the constraints.  

3. EXPERIMENTAL RESULTS AND 
DISCUSSION 
In this study we have considered a set test problems as COPs with 
tiny feasible space from the literature [15, 22]. From the set of 
benchmark problems we have chosen only those problems whose 
feasible region is very small compared to their search space. To 
get an estimate of how tiny is the feasible space of these 
problems, a metric suggested by  Michalewicz and Schoenauer 

[20] is used, 
S
F

ρ = , where S is the number of random 

solutions generated (1,000,000 in this case), and F is the number 

of feasible solutions found (out of the total randomly generated 
solutions). We have considered only those problems whose ρ is 
less than 5%. The benchmark problems are completely different 
in number of variables, type of objective functions, and type of 
constraints. The characteristics of the benchmark problems such 
as the number of decision variables (n), type of objective 
function, ρ, number of linear inequalities (LI), number of 
nonlinear inequalities (NI), number of linear equalities (LE), 
number of nonlinear equalities (NE), number of active constraints 
(AC), and the optimal values are shown in Table 1. 
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First we have carried out an experiment to justify the necessity of 
SSRT. In this experiment, EAS is run with and without SSRT. 
The best, mean, standard deviation, worst, and median results of 
30 independent runs (with 30 different random seeds) are given in 
Table 2. The last column of Table 2 shows the average number of 
generations required to find the best results as an indication how 
fast the algorithm achieves the quality solutions. 

For an agent’s neighborhood, we have considered the combined 
approach [1-3] which allows an agent to consider its four 
neighbors and eight neighbors interchangeably as neighborhood 
agents. During the LSLP the agent is allowed at most m = 10 
steps. We have investigated the effect of learning steps: lower 
values of m slow down the convergence while larger values 
increase computational cost rather than performance. The 
maximum number of generations was set in this experiment at 
500,000. The population size and PL we have used are 400 and 
0.2 respectively. The allowable range (AR) of infeasible agent for 
calculating centroid is used maximum 50% of the infeasible 
agents and maximum diversity reduction from the initial random 
population is considered 10%. The initial solution vectors for the 
agents are randomly generated within the bounds of each decision 
variable.  

From Table 2 we can see AMA with SSRT is achieving better 
results in different aspects than without SSRT (bold fonts 
indicates better achievements of EAS with SSRT). If we consider 
the Mean results, EAS with SSRT has achieved a better mean in 
76.47% more times than normal EAS. EAS with SSRT has also 
performed better in achieving the Best results in 35.29% of the 
problems and same in 41.18% problems. On 76.47% times the 
Worst results and on 58.82% times the Median results of EAS 

with SSRT were better than only EAS. If we consider the average 
number of generations required to find out the best result, in 35% 
of problems AMA with SSRT is faster than the other approach, 
and in 47% both approaches need the same number of 
generations.. So we can say by applying SSRT in most of the 
problems EAS has improved either the solution or computational 
time or both. 

 

3.1 Effect of parameters used in SSRT 
EAS apply SSRT when there are very few feasible agents (less 
than 5% of the population size) in the initial random population. 
In applying SRRT, a centroid is calculated using certain feasible 

Table 1. Characteristics and the optimal results of the benchmark problems 

Prob n Obj. Fuc. ρ(%) LI NI LE NE AC Optimal 

1 13 Quadratic 0.00 9 0 0 0 6 -15.000 

2 20 Nonlinear 1.00 0 2 0 0 1 -0.803619 

3 10 Polynomial 0.00 0 0 0 1 1 -1.000 

4 5 Quadratic 0.52 0 6 0 0 2 -30665.539 

5 4 Cubic 0.00 2 0 0 3 3 5126.498 

6 2 Cubic 0.00 0 2 0 0 2 -6961.814 

7 10 Quadratic 0.00 3 5 0 0 6 24.306 

8 2 Nonlinear 0.01 0 2 0 0 0 -0.095825 

9 7 Polynomial 0.01 0 4 0 0 2 680.630 

10 8 Linear 0.00 3 3 0 0 6 7049.331 

11 2 Quadratic 0.00 0 0 0 1 1 0.750 

12 3 Quadratic 0.05 0 93 0 0 0 -1.000 

13 5 Nonlinear 0.00 0 0 0 3 3 0.053950 

14 10 Nonlinear 0.00 0 0 3 0 3 -47.764 

15 3 Quadratic 0.00 0 0 1 1 2 961.715 

16 5 Nonlinear 0.00 4 34 0 0 4 -1.905 

17 6 Nonlinear 0.00 0 0 0 4 4 8853.540 

18 9 Quadratic 0.00 0 13 0 0 6 -0.866025 

20 24 Linear 0.00 0 6 2 12 16 0.204979 

ρ= Ratio between the feasible space and the search space, LI=Linear Inequalities, 
NI=Nonlinear Inequalities, LE= Linear Equalities, NE= Nonlinear Equalities, 

AC=Active Constraints 

Table 2. Performance of EAS with SSRT and without SSRT from 30 
independent runs 

Pb EAS Best Mean StDev Worst Median AvgGen

NST -15.000 -14.922 2.97E-01 -13.828 -15.000 1080.33
1 

ST -15.000 -15.000 1.37E-08 -15.000 -15.000 1044.48

NST -1.000 -1.000 1.26E-05 -1.000 -1.000 1250.00
3 

ST -1.000 -1.000 4.10E-06 -1.000 -1.000 1250.00

NST 5249.969 5258.760 3.07E+00 5261.768 5258.919 1250.005 

 ST 5129.057 5246.486 3.00E+01 5258.905 5254.750 1250.00

NST -6961.810 -6958.554 8.53E+00 -6932.399 -6961.801 1206.676 

 ST -6961.813 -6961.805 3.22E-03 -6961.801 -6961.804 1211.07

NST 24.309 24.389 8.06E-02 24.628 24.360 1179.207 

 ST 24.318 24.355 1.77E-02 24.379 24.356 1158.23

NST -0.095825 -0.095825 1.92E-08 -0.095825 -0.095825 500.67 8 

 ST -0.095825 -0.095825 4.23E-17 -0.095825 -0.095825 606.77 

NST 680.655 680.930 3.46E-01 682.642 680.933 1032.909 

 ST 680.645 680.763 7.04E-02 680.870 680.759 1173.23

NST 7052.071 7330.425 2.50E+02 8005.283 7307.057 1101.1010

 ST 7058.760 7097.425 2.95E+01 7162.383 7096.189 1097.50

NST 0.750 0.761885 2.83E-02 0.841718 0.750 1250.0011

 ST 0.750 0.750 9.87E-09 0.750 0.750 1250.00

NST -1.000 -1.000 2.01E-10 -1.000 -1.000 153.77 12

 ST -1.000 -1.000 4.55E-11 -1.000 -1.000 145.70 

NST 0.053960 0.203669 1.88E-01 0.606155 0.129390 1250.0013

 ST 0.053962 0.057688 3.15E-03 0.064314 0.056828 1250.00

NST -46.944 -46.379 3.84E-01 -45.598 -46.436 1250.0014

 ST -46.923 -46.436 2.16E-01 -46.129 -46.389 1250.00

NST 961.738 967.518 5.01E+00 974.776 967.511 1250.0015

 ST 961.715 965.301 3.33E+00 970.925 966.297 1250.00

NST -1.905 -1.901 5.44E-03 -1.881 -1.902 1226.6716

 ST -1.905 -1.905 1.86E-07 -1.905 -1.905 1200.90

ST 8927.598 8957.514 6.84E+01 9128.155 8927.638 1250.0017

 NST 8927.598 9069.241 1.10E+02 9185.712 9134.988 1250.00

NST -0.866023 -0.865886 1.55E-04 -0.865358 -0.865926 1184.5318

 ST -0.866007 -0.865958 3.56E-05 -0.865900 -0.865956 1152.68

NST 0.315067 0.331503 9.22E-03 0.351925 0.333757 1250.0020

 ST 0.316781 0.323671 4.78E-03 0.332948 0.323025 1250.00

NST= EAS without SSRT, ST = EAS with SSRT. Avg.Gen.= Average 
generation required to find best results.   
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and top ranked infeasible solutions. In the process, we need to 
decide the number (or percentage) of infeasible solutions in 
calculating centroid and a stopping criteria for SSRT. As the 
diversity of the population decreases with application of SSRT, 
we use diversity measure as a stopping criterion. We have 
discussed these two parameters in the following subsections. 

3.1.1 Effect of Allowable Range (AR) in calculating 
SSRT 
While calculating the centroid, if we allow all of the infeasible 
agents with the feasible agents (if any), it may move the centroid 
towards an infeasible region. In the process, we rank the 
infeasible agents based on their constraint violation and consider a 
certain percentage of the top ranked infeasible agents. As these 
participating agents are better than the others, it is expected that 
the centroid may have better fitness than the low ranked agents. 
To see the effect of the percentage of top ranked infeasible agents 
used in SSRT on the overall solution, we have carried out 
experiments by varying the percentage of the top ranked 
infeasible agents (10% to 50% with an increment of 10%) while 
leaving the other parameters constant e.g. population size, PL, 
Diversity Reduction (DR). We then compared with the solution of 
EAS without SSRT. 
We have compared the best, mean, standard deviations, worst, 
median, and average number of generations required to find out 
the best result for 30 independent runs. As the centroid guides the 
worse infeasible solutions, the quality of the centroid plays a vital 
role to the performance of the algorithms. If we consider a very 
small number of top ranked infeasible agents with feasible agents 
(if any, since the feasible space is very tiny), they may not 
provide a good quality and global solution. If we increase the AR, 
the centroid contains diversity and the performance of the 
algorithm is improved. However, the range of AR should not be 
too large, since the use of higher percentage could mislead the 
search process where multiple disjointed feasible spaces exist for 
a problem. In most of these test problems AR ranges 30% to 50% 
provides better results. 

 
 In Table 3 we have shown the results of problem 1 as an 
example. For the best results of the 30 runs in all the cases EAS 
has achieved the optimal. When we have considered the top 10% 
infeasible agents to calculate the centroid the performance of the 
algorithm has improved by improving the mean result. 
Considering up to 40% infeasible agents, only the worst result 
improves. However when we have considered 50% top infeasible 
to find the centroid the performance of the algorithm is the best 
among the 6 sets of results. We are maintaining enough diversity 
in the population by using large allowable range, which helps 

finding a better centroid. Nevertheless we should not consider too 
many infeasible agents, which may not help the agents but rather 
direct them to other areas of the search space, resulting in longer 
processing time. Though the test problems are diverse in nature, 
in solving most of the problems EAS shows similar behavior. The 
AvgGen shows that increasing AR speeds up the processing time. 
However if we consider a very large AR it may slow down the 
process as it will have the affect of poor quality solutions. 

3.1.2 Effect of Diversity Reduction(DR) 
When the low ranked infeasible agents move towards the 
centriod, the diversity of the population decreases. For population 
based search ensuring diversity is an important issue. If the 
diversity of the population decreases too much then the 
performance of the algorithm also decreases. So for SSRT it is a 
critical issue to maintain diversity while attracting the low ranked 
infeasible agents towards the centroid. A small reduction of the 
diversity of the population by applying SSRT improves the 
performance of EAS. Since the initial population is randomly 
generated this may be over diversified. By applying SSRT, we 
can still provide sufficient diversity by controlling the diversity 
reduction.  
To show the effect of reducing diversity during SSRT, we have 
carried out experiments with different percentage of diversity 
reduction (10% to 50% with an increment of 10%) while keeping 
the other parameters constant (Population size, PL, AR). We 
stopped SSRT when the diversity reduced to a certain percent 
(e.g. 10% for the first experiment) from the initial stage. In 
general, a low range of diversity reduction (10-20%) improves the 
performance of EAS. However a higher value of diversity 
deteriorates the quality of performance due to the lack of diversity 
in the population. The Results of the experiment for 30 
independent runs for problem 01 is given in Table 4. 

The experimental results show the small reduction of diversity 
like 10%-20% gives the algorithm better performance. However a 
large amount of diversity reduction is not helping the EAS 
significantly. If we consider the mean, standard deviation and 
worst results, the performance of EAS is best with 10% relative 
diversity reduction. That indicates SSRT improves the 
performance of the algorithm, however we need ensure diversity 
as well by allowing SSRT with small percentage of relative 
diversity reduction.  

Table 3. Effect of allowable range for calculating centroid on problem 1 

AR 
(%) Best Mean St. Dev. Worst Median

Avg 
Gen 

0 -15.000 -14.921875 2.97E-01 -13.828125 -15.000 1080.33 

10 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 1027.93 

20 -15.000 -14.960937 2.14E-01 -13.828124 -15.000 1058.20 

30 -15.000 -14.960937 2.14E-01 -13.828125 -15.000 1075.63 

40 -15.000 -14.960937 2.14E-01 -13.828125 -15.000 1069.20 

50 -15.000 -15.000000 1.46E-07 -15.000000 -15.000 1036.97 

AR= Allowable range of infeasible agents for centroid, Avg Gen = Average 
number of generation required to find the best result.  

Table  4. Effect of diversity reduction on problem 1 

DR

(%)
Best Mean St. Dev. Worst Median

Avg 

Gen 

0 -15.000 -14.921875 2.97E-01 -13.828125 -15.000 1080.33 

10 -15.000 -15.000000 2.83E-08 -15.000000 -15.000 1052.30 

20 -15.000 -15.000000 2.91E-08 -15.000000 -15.000 1067.13 

30 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 1049.07 

40 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 1018.47 

50 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 1027.93 

DR= Relative Diversity Reduction from the initial randomly generated
population after SSRT, Avg Gen = Average number of generations 
required to find the best result.  
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3.2 Solving a Real World Problem 
Most of the test problems considered in the previous section are 
smaller in size. Although the contribution of SSRT is positive in 
those problems, the real improvements look tiny. To test the 
performance of SSRT in solving a reasonable size problem, we have 
used a real world crop planning problem [23-25] in this section. Crop 
planning is related to many factors such as the type of lands, yield 
rate, weather conditions, availability of the agricultural inputs, crop 
demand, capital availability, and the cost of production. The country, 
under consideration, grows a wide variety of crops in different 
seasons, and it has different types of lands. For a single-cropped 
land, there are a number of alternative crops from which the crop 
to be cultivated in a year may be chosen. Similarly there are many 
different combinations of crops for double-cropped (two crops in 
a year) and triple-cropped (three crops in a year) lands. Different 
combinations give different outputs. The problem is to provide an 
annual crop production plan that determines the area to be used 
for different crops while fulfilling the demand, land, capital, 
import, and region limitations. As our objective is to test the 
performance of SSRT, we ignore the details of the problem here. 
However, interested readers can find the details in [23-25]. Here we 
have solved the constrained non-linear single objective model of 
the crop planning problem [23-25]. The original model consists of 
68 variables and 45 constraints. By applying variable / constraint 
reduction technique, the model can be reduced to 39 variables and 15 
constraints. 
We have solved this problem using EAS with and without SSRT. 
The average results of 30 independent runs are given in Table 5.  
From the table we can see EAS with SSRT achieves remarkably 
4.55% better fitness value than the EAS without SSRT. The EAS 
with SSRT consistently provides better mean, standard deviation, 
worst, and median values. However, EAS with SSRT took higher 
number of generations, as EAS without SSRT prematurely 
converged to sub-optimal solutions. SSRT improves the result of 
EAS for these small benchmark problems, though the results for 
many problems are not statistical significantly improved. 
However for the real crop planning problem SSRT improves the 
performance significantly.  

Table 5. Performance of EAS with SSRT and with out SSRT  in 
solving Crop problems 

EAS Best Mean St. Dev. Worst Median AvgGen 

NST -2.20E+07 -2.09E+07 1.03E+06 -1.87E+07 -2.13E+07 512.37 

ST -2.30E+07 -2.25E+07 2.76E+05 -2.20E+07 -2.25E+07 592.00 

NST= EAS with out SSRT, ST = EAS with SSRT. Avg.Gen.= Average 
generation required to find best results.   

4. CONCLUSIONS 
This paper has discussed an evolutionary agent system (EAS) for 
solving constrained optimization problems (COPs) by tailoring 
agent concepts into evolutionary algorithms. A search space 
reduction technique (SSRT) is proposed to incorporate with EAS 
before applying the evolutionary process to solve the COPs with 
tiny feasible space. The proposed SSRT allows certain infeasible 
agents in the initial population to move slowly towards the 
feasible space. This approach usually improves the performance 
of EAS in terms of either solution quality or computational time 
or both. We have investigated the performance of SSRT by 
solving a set of test problems and a real world case problem. 
Although the idea of SSRT is very simple, the results justify the 

use of SSRT with EAS. We believe the performance of any 
algorithm can be enhanced by incorporating SSRT when solving 
constrained optimization problems with a tiny feasible region. We 
have also analyzed the effect of diversity reduction in the initial 
population, allowable range of infeasible agents to find the 
centroid for SSRT. In future research, we would like to test the 
performance of SSRT when incorporated with some other existing 
algorithms appeared in the literature.  
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