
Search Space Reduction Technique for Constrained
Optimization with Tiny Feasible Space

Abu S. S. M. Barkat Ullah
University of New South Wales at the
Australian Defence Force Academy

ACT-2600, Australia.
+61 2 6268 8180

barkat@adfa.edu.au

Ruhul Sarker
University of New South Wales at the
Australian Defence Force Academy

ACT-2600, Australia.
+61 2 6268 8051

r.sarker@adfa.edu.au

David Cornforth
University of New South Wales at the
Australian Defence Force Academy

ACT-2600, Australia.
+61 2 6268 8956

d.cornforth@adfa.edu.au

ABSTRACT
The hurdles in solving Constrained Optimization Problems (COP)
arise from the challenge of searching a huge variable space in
order to locate feasible points with acceptable solution quality. It
becomes even more challenging when the feasible space is very
tiny compare to the search space. Usually, the quality of the initial
solutions influences the performance of the algorithm in solving
such problems. In this paper, we discuss an Evolutionary Agent
System (EAS) for solving COPs. In EAS, we treat each individual
in the population as an agent. To enhance the performance of
EAS for solving COPs with tiny feasible space, we propose a
Search Space Reduction Technique (SSRT) as an initial step of
our algorithm. SSRT directs the selected infeasible agents in the
initial population to move towards the feasible space. The
performance of the proposed algorithm is tested on a number of
test problems and a real world case problem. The experimental
results show that SSRT not only improves the solution quality but
also speed up the processing time of the algorithm.

Categories and Subject Descriptors
G.1.6 Constrained optimization

General Terms
Algorithms.

Keywords
Evolutionary algorithms, evolutionary agent systems, genetic
algorithms, agent-based systems, nonlinear programming,
constrained optimization, search space reduction.

1. INTRODUCTION
Many real world decision processes require solving optimization
problems involving a set of equality, non-equality or both
constraints. The difficulties in solving constrained optimization
problems arise from the challenge of finding good feasible
solutions. The problem is much more challenging when the
feasible space is very tiny compare to the search space. Solving

this type of problem has become a challenging area in computer
science and operations research due to the presence of high
dimensionality, nonlinear parameter interaction, and
multimodality of the objective function as well as due to the
physical, geometric, and other limitations of different constraints
[16].

Evolutionary Algorithms (EAs) have brought a tremendous
advancement in the area of computer science and optimization
with their ability to solve many numerical and combinatorial
optimization, classifier system, and engineering problems [13,
18]. Nevertheless, most EAs developed are unconstrained search
techniques and lack an explicit mechanism to bias the search in
constrained search spaces [15]. Furthermore traditional EAs suffer
from slow convergence to locate a precise enough solution
because of their failure to exploit local information, and face
difficulties solving multi-modal problems which have many local
solutions within in the feasible space . Hence it is well established
that they are not well suited for fine tuning search [3, 27] and so,
to improve the performance, hybridization of algorithms has been
introduced in recent times.

Recently some researche has incorporated evolutionary processes
into agent based systems [1-3, 10, 17, 26, 27]. Agent-based
computation introduces a new paradigm for conceptualizing,
designing and implementing intelligent systems, and has been
widely used in many branches of computer science [12]. The
agents are discrete individuals situated in an environment having
a set of characteristics and rules to govern their behavior and
interactions. They sense the environment and act on it in pursuit
of a set of goals or tasks for which they are designed. Recently, a
number of agent-based hybrid algorithms have appeared in the
literature for solving different problems. For example,
Dobrowolski et al. [9] used evolutionary multi-agent system for
solving unconstrained multi-objective problems. Siwik et al. [26]
developed a semi-elitist evolutionary multi-agent system and they
solved so called MaxEx multi-objective problem, which is a quite
simple problem [7]. Zhong et al. [27] used a multiagent genetic
algorithm (MAGA) for solving unconstrained global numerical
optimization problems. Liu et al. [17] used a multiagent
evolutionary algorithm for constraint satisfaction problems.
Barkat Ullah et al. [2] used an evolutionary agent systems for
solving mathematical programming. Multi-agent genetic
algorithms [1] and agent-based memetic algorithms [3] by Barkat
Ullah et al. have solved constrained optimization problems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

881

In this paper, we present a Search Space Reduction Technique
(SSRT) with Evolutionary Agent System (EAS) for solving
Constrained Optimization Problems (COPs) with tiny feasible
space. The main idea of SSRT is to move some of the randomly
generated initial poor solutions towards the feasible region. It is
worth mentioning that clustering is different from the SSRT.
When the ratio between the feasible region and the search space
of the problem is very small (close to zero), we define those
problems as COPs with tiny feasible space. Usually in solving
these types of problems the algorithms need a good effort in
finding the feasible space. As the initial population of EAs is
randomly generated to ensure diversity, it may cause delay (being
over diversified) in reaching a reasonably good solution for tiny
feasible space. Once a good solution point is obtained, Genetic
Algorithms (GAs) usually converge nicely to an acceptable
solution. To enhance the performance of the algorithm in reaching
the feasible space quickly, in the proposed algorithm, the agents
apply SSRT to the initial population before starting the
evolutionary process. This technique guides the initial agent
population to move towards the feasible region. The agents try to
find a centroid from the feasible agents (if any) with some good
infeasible agents (here we are considering those agents having
less constraint violations). A certain percentage of the worse
infeasible agents are then encouraged to move towards the
centroid. By applying SSRT the randomly generated agents are no
longer random rather they have learnt a direction towards the
feasible space which helps the algorithms to reach the feasible
region faster and improve the solution quality. However some
questions arise:

• When we should apply the SSRT?
• How to calculate the centroid for SSRT?
• How long we shall apply SSRT as it decreases the

diversity?
Our experiments aim to find answers to these questions.

In the proposed framework of EAS, an agent represents a
candidate solution of the problem, carries out cooperative and
competitive behaviors, and selects the appropriate local search
adaptively to find optimal solutions for the problem in hand. The
agents cooperate and compete through well known Simulated
Binary Crossover (SBX) proposed by Deb and Agrawal [8] and
our designed different types of life span learning processes to
solve a COP. Note that they do not use any mutation operator as
the life span learning process would cover more than the purpose
of mutation. We have designed the life span learning processes
(LSLPs) based on several local and directed search procedures.
An agent chooses a LSLP as a local search operator adaptively.
As we generally see in GAs, an individual in a generation
produces offspring and the offspring may be mutated to change its
genetic materials. In reality, beside reproduction, an individual
learns and gains experiences in different ways during its life time.
This process is represented by the proposed LSLPs in this
research. As an individual can decide to have a particular learning
process based on its belief, we have incorporated a number of
different LSLPs. The main idea of using multiple LSLPs is to
achieve improved search performance by selecting a suitable
LSLP from the pool and to reduce the chances of utilizing
inappropriate LSLP. In EAS the improved agent (after applying
LSLP) is sent back into the population which follows the
Lamarckian learning. Since we are using multiple LSLPs (i.e.
LSs) in the spirit of Lamarckian learning we can say EAS is

following Meta-Lamarckian learning [21]. The individual’s
ability to use its belief, to interact with the environment, and to
make independent decision for exploration and learning, qualifies
an individual to be called an agent in the population.

In [1], the authors used the neighborhood competition with
orthogonal crossover and Gaussian mutation. As the algorithm
with neighborhood competition and mutation [2, 3] was
computationally expensive to achieve quality solutions, we have
used SBX crossover with LSLPs and SSRTs in this research.

The performance of EAS is very competitive when compared
with [4, 11, 22] (details can be found in [2]). To test the
performance of the algorithm and justify the purpose of SSRT, we
have selected a set of benchmark problems with tiny search space
from [15] and carried out different type of experiments. We have
also solved a real world case problem. The experiments show
SSRT improves the solution qualities as well as speeds up the
performance of the algorithm. We believe the performance of any
algorithms can be enhanced by incorporating SSRT when solving
constrained optimization problems with tiny feasible region.

The rest of this paper is organized as follows. Section 2 describes
the proposed the Evolutionary Agent System with SSRT and its
components. Section 3 describes the performance of the proposed
approach on benchmark problems, and compares the results.
Finally, Section 4 concludes the paper and provides future
research directions.

2. Evolutionary Agent System
In this research, we have incorporated the agent concept with
evolutionary algorithms, where an agent represents a candidate
solution in the population. In solving constrained optimization
problems, the algorithm searches the search space for a feasible
region from the randomly generated initial population, and then
tries to find out the optimal solution. If the algorithm finds the
feasible space quickly, it can save a considerable amount of time
in searching for good quality feasible solutions. However, it is not
easy to find the feasible space and even more difficult when the
feasible space is very tiny. Population based search algorithms
like EAs start with initial randomly generated population. In our
proposed EAS, the initial population of the agents is also
generated randomly. However before starting the evolutionary
process we check the fitness landscape of the population. If there
are a very few (or none) quality solutions generated in the initial
stage, the algorithms may need more time to explore the search
space for the feasible space. This is usually the case for COPs
with a tiny feasible region. In this situation, the algorithm applies
the SSRT. The SSRT provides the initial random agents an
approximate direction to move towards the feasible space. This
helps them to find the feasible space faster. The detail of SSRT is
discussed later in this section. The goal of each agent is to:

• Reach into the feasible region and
• Improve the fitness

Following the natural adaptation process, in the proposed EAS the
agents improve their fitness by selecting self-adaptively a suitable
life span learning technique along with SSRT. The agents are
arranged in a lattice-like environment E of size MM × (where M
is always an integer). The agents communicate with their
surrounding neighbor agents and interchange information with

882

them through comparison and the crossover operator. The
overlapped small neighborhoods of the lattice-like environment
help in exploring the search space because they induce a slow
diffusion of solutions through the population and provide a kind
of exploration (diversification), while exploitation
(intensification) takes place inside each neighborhood by
crossover operations.

For LSLPs, we have proposed a number of search processes, as an
appropriate choice of a LSLP is very important for the
performance of the algorithm. In each generation an agent may
select one of the several LSLPs based on self-adaptively.

The main steps of the proposed algorithm are follows:
Step 1. Create a random population, which consists of

MM × agents.
Step 2. Arrange the agents in a lattice-like environment.
Step 3. Evaluate the agents individually.

− If the stopping criterion has been met, go to step
8; otherwise continue.

Step 4. If the number of feasible individuals is very few (<5%)
apply SSRT; otherwise go to step 5.

Step 5. For each agent examine its neighborhood.
− Select an agent from its neighborhood and
perform crossover.

Step 6. Select a certain percentage of agents.
− Select self-adaptively a life span learning
process.

Step 7. Go to step 3.
Step 8. Stop.

As the search spaces of the optimization problems and the
variables under consideration are real and continuous, we have
used real numbers to represent the solutions.

2.1 Search Space Reduction Technique
In population based stochastic algorithms like EAs the quality of
the randomly generated initial population plays an important role
on the performance of the algorithms. If the initial population
contains some good solutions the algorithms converge quickly.
However it is not expected that the random solutions should
always be of good quality. Some algorithms like GENOCOP [18,
19] assumes a feasible starting point (or feasible initial
population), which implies that the user or the EA must have a
way of generating (in a reasonable time) such starting point [5].
The homomorphous mapping method of Koziel and Michalewicz
[14] also requires an initial feasible solution. In this paper we
have designed a SSRT which allows the far most infeasible agents
to move towards the feasible region, which is basically squeezing
the search space. That means the evolutionary process starts with
a better population in a reduced search space.

If there are none or few (less than 5%) feasible agents in the
initial random population, the EAS applies SSRT. The infeasible
agents are ranked based on their constraint violation. The feasible
agents (if any) and a certain percentage of the top ranked
infeasible agents are then used to find a centroid. If there is no
feasible agent, only the top ranked infeasible agents are modified
to reduce the constraint violation and then calculate the centroid.

After calculating the centroid a certain percentage of non-
allowable infeasible agents (see Figure 1) are allowed to move
towards the centroid. Although this process guides the worse

infeasible agents towards the feasible space, it reduces the
diversity of the population. To ensure diversity we only allow a
small number of the worse infeasible agents to follow the
centroid, and discontinue the process when the diversity of initial
population is decreased to a certain level.

Figure 1 shows how the centroid is calculated from the feasible (if
any) and allowable infeasible solutions. A portion of the non-
allowable infeasible solutions then follow the centroid, which is
shown by the arrows.

 The proposed algorithm for SSRT is given below:

Step 1. Rank the infeasible solutions based on the Constraint
Violation (CV). Define the allowable infeasible
range. Calculate the diversity of the population.

Step 2. If there are feasible individuals, calculate the centroid
from the feasible and allowable infeasible
individuals, and go to step 4, else go to step 3.

Step 3. Find the best infeasible individuals based on the CV.
a. Find the constraint which has maximum CV for

this individual.
b. Select a variable randomly, which is involved in

the constraint which is not yet modified.
c. Change the variable with δ± and mark as

modified.
d. If the individual become feasible, go to step 2, else

go to step 3e
e. If all constraints are checked or all the variables

are modified, then find the centroid of the
allowable infeasible along with this one, otherwise
go to step 3.

Step 4. Force the certain percentage of the non-allowable
infeasible solutions to follow the centroid.

Step 5. Calculate the diversity of the population. If the
diversity decreases up to a certain level then stop,
otherwise go to step 2.

Figure 1. Search Space Reduction Technique.

883

The value of δ used here is very small;, δ = |G (0, 1)|, where G (0,
1) is a Gaussian random number generator with zero mean and
standard deviation 1.

For calculating the centroid, for each variable of the centroid c
ix ,

we have taken the arithmetic mean of the participating agents’

respective variables ix . While calculating the diversity we have
taken the mean Euclidian distance of the all agents from the
centroid.
A portion of the non-allowable agents follow the centroid as
follows:

n = i xxx c
ii

n
i 1,)1(α−+α= (1)

[Where n
ix and c

ix are the ith variable of the non-allowable agent
and the centroid respectively, n is the number of variables in the
solution vector and α is a uniform random number from 0 to1].

2.2 Crossover
In the proposed EAS, we have used Simulated Binary Crossover
(SBX) [8]. SBX operator performs well in solving problems
having multiple optimal solutions with a narrow global basin, and
has been used in different applications successfully [2, 3, 7].

When this crossover operator is applied on an agent Ai,j (located
in location (i,j) in the lattice), the agent searches for its best
neighbor agent e.g. B(Ai,j) to mate. The better offspring of the two,
denoted as Ni,j, is stored in a pool. After completing the crossover
in a given generation, the fitness of each Ni,j (1 ≤ i,j ≤ M) is
compared with its parent Ai,j. If the new agent’s fitness is better
than its parent then it takes the place of Ai,j and Ai,j dies.
Otherwise Ai,j would survive.

2.3 Life Span Learning Process (LSLP)
After crossover a certain percentage of agents (with PL
probability) of the population are selected to apply the LSLP i.e.
to apply local and directed search. These LSLPs are designed to
improve fitness values by changing the variable vector of the
existing solutions in different ways.

Here we have designed four different LSLPs. The first one is
totally random in nature, the second is restricted random, the third
is gradient-based, and the last is directed search. The random
LSLPs ensure diversity, and the directed searches try to move
towards a better solution which is not necessarily in the
individual’s locality.

The first and second types of LSLP of the agent try to exploit the
existing solution vector by attempting to change the variables.
The third type attempts to move the solution vector in the
direction of gradient and the last type of LSLP leads the agents
towards the current best solution. The last two LSLPs try to make
the agents converge; the first two maintain diversity.

During the LSLP the variables are changed with ±Δ. The direction
of Δ (add/ deduct) is selected by observing the modified fitness
value of the agent. The value of Δ should be very small and
gradually be decreasing with the generation numbers, to obtain a
high quality solution (high precision) at the end. We have
considered Δ = |G(0,1/g)| (for the first three types of LSLPs),

where G(0,1/g) is a Gaussian random number generator with zero
mean and standard deviation (1/g), here g is the present
generation number. In the fourth LSLP 2)(rr a -b=Δ ,
where br is the rth solution variable of the previous best agent, ar
is the rth variable of the present agent and ar is updated in each
step, which speed up the directed search. The details of the LSLPs
can be found in [2, 3].

2.4 Fitness Evaluation and Constraint
Handling
In EAS, the goal of the individual agent is to minimize the
objective function value while satisfying the constraints. To
improve the fitness, agents first apply crossover operators with
their best neighbors. The best neighbor is found by using pair-
wise comparison among the neighbors. The pair-wise comparison
indirectly handles the constraints. Like Deb [6], while comparing
the fitness of two individual agents we have considered:

1. A feasible individual is always better than an infeasible
individual.

2. If both of the individuals are feasible, then the individual
with lower objective function value is better (considering
minimization problem).

3. If both of them are infeasible, then the one with less
constraint violation is better. The total Constraint Violation
(CV) of an individual is considered here as the sum of
absolute values by which the constraints are violated.

We have assumed that the fitness of the best infeasible agent is
worse than the worst feasible agents. As such while comparing
two agents, the infeasible agent is penalized and feasible agent is
rewarded, so the constraints are handled indirectly. The
calculation of improvement index in the following subsection also
indirectly handles the constraints.

3. EXPERIMENTAL RESULTS AND
DISCUSSION
In this study we have considered a set test problems as COPs with
tiny feasible space from the literature [15, 22]. From the set of
benchmark problems we have chosen only those problems whose
feasible region is very small compared to their search space. To
get an estimate of how tiny is the feasible space of these
problems, a metric suggested by Michalewicz and Schoenauer

[20] is used,
S
F

ρ = , where S is the number of random

solutions generated (1,000,000 in this case), and F is the number

of feasible solutions found (out of the total randomly generated
solutions). We have considered only those problems whose ρ is
less than 5%. The benchmark problems are completely different
in number of variables, type of objective functions, and type of
constraints. The characteristics of the benchmark problems such
as the number of decision variables (n), type of objective
function, ρ, number of linear inequalities (LI), number of
nonlinear inequalities (NI), number of linear equalities (LE),
number of nonlinear equalities (NE), number of active constraints
(AC), and the optimal values are shown in Table 1.

884

First we have carried out an experiment to justify the necessity of
SSRT. In this experiment, EAS is run with and without SSRT.
The best, mean, standard deviation, worst, and median results of
30 independent runs (with 30 different random seeds) are given in
Table 2. The last column of Table 2 shows the average number of
generations required to find the best results as an indication how
fast the algorithm achieves the quality solutions.

For an agent’s neighborhood, we have considered the combined
approach [1-3] which allows an agent to consider its four
neighbors and eight neighbors interchangeably as neighborhood
agents. During the LSLP the agent is allowed at most m = 10
steps. We have investigated the effect of learning steps: lower
values of m slow down the convergence while larger values
increase computational cost rather than performance. The
maximum number of generations was set in this experiment at
500,000. The population size and PL we have used are 400 and
0.2 respectively. The allowable range (AR) of infeasible agent for
calculating centroid is used maximum 50% of the infeasible
agents and maximum diversity reduction from the initial random
population is considered 10%. The initial solution vectors for the
agents are randomly generated within the bounds of each decision
variable.

From Table 2 we can see AMA with SSRT is achieving better
results in different aspects than without SSRT (bold fonts
indicates better achievements of EAS with SSRT). If we consider
the Mean results, EAS with SSRT has achieved a better mean in
76.47% more times than normal EAS. EAS with SSRT has also
performed better in achieving the Best results in 35.29% of the
problems and same in 41.18% problems. On 76.47% times the
Worst results and on 58.82% times the Median results of EAS

with SSRT were better than only EAS. If we consider the average
number of generations required to find out the best result, in 35%
of problems AMA with SSRT is faster than the other approach,
and in 47% both approaches need the same number of
generations.. So we can say by applying SSRT in most of the
problems EAS has improved either the solution or computational
time or both.

3.1 Effect of parameters used in SSRT
EAS apply SSRT when there are very few feasible agents (less
than 5% of the population size) in the initial random population.
In applying SRRT, a centroid is calculated using certain feasible

Table 1. Characteristics and the optimal results of the benchmark problems

Prob n Obj. Fuc. ρ(%) LI NI LE NE AC Optimal

1 13 Quadratic 0.00 9 0 0 0 6 -15.000

2 20 Nonlinear 1.00 0 2 0 0 1 -0.803619

3 10 Polynomial 0.00 0 0 0 1 1 -1.000

4 5 Quadratic 0.52 0 6 0 0 2 -30665.539

5 4 Cubic 0.00 2 0 0 3 3 5126.498

6 2 Cubic 0.00 0 2 0 0 2 -6961.814

7 10 Quadratic 0.00 3 5 0 0 6 24.306

8 2 Nonlinear 0.01 0 2 0 0 0 -0.095825

9 7 Polynomial 0.01 0 4 0 0 2 680.630

10 8 Linear 0.00 3 3 0 0 6 7049.331

11 2 Quadratic 0.00 0 0 0 1 1 0.750

12 3 Quadratic 0.05 0 93 0 0 0 -1.000

13 5 Nonlinear 0.00 0 0 0 3 3 0.053950

14 10 Nonlinear 0.00 0 0 3 0 3 -47.764

15 3 Quadratic 0.00 0 0 1 1 2 961.715

16 5 Nonlinear 0.00 4 34 0 0 4 -1.905

17 6 Nonlinear 0.00 0 0 0 4 4 8853.540

18 9 Quadratic 0.00 0 13 0 0 6 -0.866025

20 24 Linear 0.00 0 6 2 12 16 0.204979

ρ= Ratio between the feasible space and the search space, LI=Linear Inequalities,
NI=Nonlinear Inequalities, LE= Linear Equalities, NE= Nonlinear Equalities,

AC=Active Constraints

Table 2. Performance of EAS with SSRT and without SSRT from 30
independent runs

Pb EAS Best Mean StDev Worst Median AvgGen

NST -15.000 -14.922 2.97E-01 -13.828 -15.000 1080.33
1

ST -15.000 -15.000 1.37E-08 -15.000 -15.000 1044.48

NST -1.000 -1.000 1.26E-05 -1.000 -1.000 1250.00
3

ST -1.000 -1.000 4.10E-06 -1.000 -1.000 1250.00

NST 5249.969 5258.760 3.07E+00 5261.768 5258.919 1250.005

 ST 5129.057 5246.486 3.00E+01 5258.905 5254.750 1250.00

NST -6961.810 -6958.554 8.53E+00 -6932.399 -6961.801 1206.676

 ST -6961.813 -6961.805 3.22E-03 -6961.801 -6961.804 1211.07

NST 24.309 24.389 8.06E-02 24.628 24.360 1179.207

 ST 24.318 24.355 1.77E-02 24.379 24.356 1158.23

NST -0.095825 -0.095825 1.92E-08 -0.095825 -0.095825 500.67 8

 ST -0.095825 -0.095825 4.23E-17 -0.095825 -0.095825 606.77

NST 680.655 680.930 3.46E-01 682.642 680.933 1032.909

 ST 680.645 680.763 7.04E-02 680.870 680.759 1173.23

NST 7052.071 7330.425 2.50E+02 8005.283 7307.057 1101.1010

 ST 7058.760 7097.425 2.95E+01 7162.383 7096.189 1097.50

NST 0.750 0.761885 2.83E-02 0.841718 0.750 1250.0011

 ST 0.750 0.750 9.87E-09 0.750 0.750 1250.00

NST -1.000 -1.000 2.01E-10 -1.000 -1.000 153.77 12

 ST -1.000 -1.000 4.55E-11 -1.000 -1.000 145.70

NST 0.053960 0.203669 1.88E-01 0.606155 0.129390 1250.0013

 ST 0.053962 0.057688 3.15E-03 0.064314 0.056828 1250.00

NST -46.944 -46.379 3.84E-01 -45.598 -46.436 1250.0014

 ST -46.923 -46.436 2.16E-01 -46.129 -46.389 1250.00

NST 961.738 967.518 5.01E+00 974.776 967.511 1250.0015

 ST 961.715 965.301 3.33E+00 970.925 966.297 1250.00

NST -1.905 -1.901 5.44E-03 -1.881 -1.902 1226.6716

 ST -1.905 -1.905 1.86E-07 -1.905 -1.905 1200.90

ST 8927.598 8957.514 6.84E+01 9128.155 8927.638 1250.0017

 NST 8927.598 9069.241 1.10E+02 9185.712 9134.988 1250.00

NST -0.866023 -0.865886 1.55E-04 -0.865358 -0.865926 1184.5318

 ST -0.866007 -0.865958 3.56E-05 -0.865900 -0.865956 1152.68

NST 0.315067 0.331503 9.22E-03 0.351925 0.333757 1250.0020

 ST 0.316781 0.323671 4.78E-03 0.332948 0.323025 1250.00

NST= EAS without SSRT, ST = EAS with SSRT. Avg.Gen.= Average
generation required to find best results.

885

and top ranked infeasible solutions. In the process, we need to
decide the number (or percentage) of infeasible solutions in
calculating centroid and a stopping criteria for SSRT. As the
diversity of the population decreases with application of SSRT,
we use diversity measure as a stopping criterion. We have
discussed these two parameters in the following subsections.

3.1.1 Effect of Allowable Range (AR) in calculating
SSRT
While calculating the centroid, if we allow all of the infeasible
agents with the feasible agents (if any), it may move the centroid
towards an infeasible region. In the process, we rank the
infeasible agents based on their constraint violation and consider a
certain percentage of the top ranked infeasible agents. As these
participating agents are better than the others, it is expected that
the centroid may have better fitness than the low ranked agents.
To see the effect of the percentage of top ranked infeasible agents
used in SSRT on the overall solution, we have carried out
experiments by varying the percentage of the top ranked
infeasible agents (10% to 50% with an increment of 10%) while
leaving the other parameters constant e.g. population size, PL,
Diversity Reduction (DR). We then compared with the solution of
EAS without SSRT.
We have compared the best, mean, standard deviations, worst,
median, and average number of generations required to find out
the best result for 30 independent runs. As the centroid guides the
worse infeasible solutions, the quality of the centroid plays a vital
role to the performance of the algorithms. If we consider a very
small number of top ranked infeasible agents with feasible agents
(if any, since the feasible space is very tiny), they may not
provide a good quality and global solution. If we increase the AR,
the centroid contains diversity and the performance of the
algorithm is improved. However, the range of AR should not be
too large, since the use of higher percentage could mislead the
search process where multiple disjointed feasible spaces exist for
a problem. In most of these test problems AR ranges 30% to 50%
provides better results.

 In Table 3 we have shown the results of problem 1 as an
example. For the best results of the 30 runs in all the cases EAS
has achieved the optimal. When we have considered the top 10%
infeasible agents to calculate the centroid the performance of the
algorithm has improved by improving the mean result.
Considering up to 40% infeasible agents, only the worst result
improves. However when we have considered 50% top infeasible
to find the centroid the performance of the algorithm is the best
among the 6 sets of results. We are maintaining enough diversity
in the population by using large allowable range, which helps

finding a better centroid. Nevertheless we should not consider too
many infeasible agents, which may not help the agents but rather
direct them to other areas of the search space, resulting in longer
processing time. Though the test problems are diverse in nature,
in solving most of the problems EAS shows similar behavior. The
AvgGen shows that increasing AR speeds up the processing time.
However if we consider a very large AR it may slow down the
process as it will have the affect of poor quality solutions.

3.1.2 Effect of Diversity Reduction(DR)
When the low ranked infeasible agents move towards the
centriod, the diversity of the population decreases. For population
based search ensuring diversity is an important issue. If the
diversity of the population decreases too much then the
performance of the algorithm also decreases. So for SSRT it is a
critical issue to maintain diversity while attracting the low ranked
infeasible agents towards the centroid. A small reduction of the
diversity of the population by applying SSRT improves the
performance of EAS. Since the initial population is randomly
generated this may be over diversified. By applying SSRT, we
can still provide sufficient diversity by controlling the diversity
reduction.
To show the effect of reducing diversity during SSRT, we have
carried out experiments with different percentage of diversity
reduction (10% to 50% with an increment of 10%) while keeping
the other parameters constant (Population size, PL, AR). We
stopped SSRT when the diversity reduced to a certain percent
(e.g. 10% for the first experiment) from the initial stage. In
general, a low range of diversity reduction (10-20%) improves the
performance of EAS. However a higher value of diversity
deteriorates the quality of performance due to the lack of diversity
in the population. The Results of the experiment for 30
independent runs for problem 01 is given in Table 4.

The experimental results show the small reduction of diversity
like 10%-20% gives the algorithm better performance. However a
large amount of diversity reduction is not helping the EAS
significantly. If we consider the mean, standard deviation and
worst results, the performance of EAS is best with 10% relative
diversity reduction. That indicates SSRT improves the
performance of the algorithm, however we need ensure diversity
as well by allowing SSRT with small percentage of relative
diversity reduction.

Table 3. Effect of allowable range for calculating centroid on problem 1

AR
(%) Best Mean St. Dev. Worst Median

Avg
Gen

0 -15.000 -14.921875 2.97E-01 -13.828125 -15.000 1080.33

10 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 1027.93

20 -15.000 -14.960937 2.14E-01 -13.828124 -15.000 1058.20

30 -15.000 -14.960937 2.14E-01 -13.828125 -15.000 1075.63

40 -15.000 -14.960937 2.14E-01 -13.828125 -15.000 1069.20

50 -15.000 -15.000000 1.46E-07 -15.000000 -15.000 1036.97

AR= Allowable range of infeasible agents for centroid, Avg Gen = Average
number of generation required to find the best result.

Table 4. Effect of diversity reduction on problem 1

DR

(%)
Best Mean St. Dev. Worst Median

Avg

Gen

0 -15.000 -14.921875 2.97E-01 -13.828125 -15.000 1080.33

10 -15.000 -15.000000 2.83E-08 -15.000000 -15.000 1052.30

20 -15.000 -15.000000 2.91E-08 -15.000000 -15.000 1067.13

30 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 1049.07

40 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 1018.47

50 -15.000 -14.960937 2.14E-01 -13.828123 -15.000 1027.93

DR= Relative Diversity Reduction from the initial randomly generated
population after SSRT, Avg Gen = Average number of generations
required to find the best result.

886

3.2 Solving a Real World Problem
Most of the test problems considered in the previous section are
smaller in size. Although the contribution of SSRT is positive in
those problems, the real improvements look tiny. To test the
performance of SSRT in solving a reasonable size problem, we have
used a real world crop planning problem [23-25] in this section. Crop
planning is related to many factors such as the type of lands, yield
rate, weather conditions, availability of the agricultural inputs, crop
demand, capital availability, and the cost of production. The country,
under consideration, grows a wide variety of crops in different
seasons, and it has different types of lands. For a single-cropped
land, there are a number of alternative crops from which the crop
to be cultivated in a year may be chosen. Similarly there are many
different combinations of crops for double-cropped (two crops in
a year) and triple-cropped (three crops in a year) lands. Different
combinations give different outputs. The problem is to provide an
annual crop production plan that determines the area to be used
for different crops while fulfilling the demand, land, capital,
import, and region limitations. As our objective is to test the
performance of SSRT, we ignore the details of the problem here.
However, interested readers can find the details in [23-25]. Here we
have solved the constrained non-linear single objective model of
the crop planning problem [23-25]. The original model consists of
68 variables and 45 constraints. By applying variable / constraint
reduction technique, the model can be reduced to 39 variables and 15
constraints.
We have solved this problem using EAS with and without SSRT.
The average results of 30 independent runs are given in Table 5.
From the table we can see EAS with SSRT achieves remarkably
4.55% better fitness value than the EAS without SSRT. The EAS
with SSRT consistently provides better mean, standard deviation,
worst, and median values. However, EAS with SSRT took higher
number of generations, as EAS without SSRT prematurely
converged to sub-optimal solutions. SSRT improves the result of
EAS for these small benchmark problems, though the results for
many problems are not statistical significantly improved.
However for the real crop planning problem SSRT improves the
performance significantly.

Table 5. Performance of EAS with SSRT and with out SSRT in
solving Crop problems

EAS Best Mean St. Dev. Worst Median AvgGen

NST -2.20E+07 -2.09E+07 1.03E+06 -1.87E+07 -2.13E+07 512.37

ST -2.30E+07 -2.25E+07 2.76E+05 -2.20E+07 -2.25E+07 592.00

NST= EAS with out SSRT, ST = EAS with SSRT. Avg.Gen.= Average
generation required to find best results.

4. CONCLUSIONS
This paper has discussed an evolutionary agent system (EAS) for
solving constrained optimization problems (COPs) by tailoring
agent concepts into evolutionary algorithms. A search space
reduction technique (SSRT) is proposed to incorporate with EAS
before applying the evolutionary process to solve the COPs with
tiny feasible space. The proposed SSRT allows certain infeasible
agents in the initial population to move slowly towards the
feasible space. This approach usually improves the performance
of EAS in terms of either solution quality or computational time
or both. We have investigated the performance of SSRT by
solving a set of test problems and a real world case problem.
Although the idea of SSRT is very simple, the results justify the

use of SSRT with EAS. We believe the performance of any
algorithm can be enhanced by incorporating SSRT when solving
constrained optimization problems with a tiny feasible region. We
have also analyzed the effect of diversity reduction in the initial
population, allowable range of infeasible agents to find the
centroid for SSRT. In future research, we would like to test the
performance of SSRT when incorporated with some other existing
algorithms appeared in the literature.

5. REFERENCES
[1] Barkat Ullah, A. S. S. M., Sarker, R., and Cornforth, D. A

Combined MA-GA Approach for Solving Constrained
Optimization Problems, in Computer and Information
Science, 2007. ICIS 2007. 6th IEEE/ACIS International
Conference on (2007),2007. 382-387.

[2] Barkat Ullah, A. S. S. M., Sarker, R., and Cornforth, D. An
Evolutionary Agent System for Mathematical Programming.
in Advances in Computation and Intelligence: Springer,
2007, 187-196.

[3] Barkat Ullah, A. S. S. M., Sarker, R., Cornforth, D., and
Lokan, C. An Agent-based Memetic Algorithm (AMA) for
Solving Constrained Optimization Problems, in Evolutionary
Computation, 2007. CEC 2007. IEEE Congress on
(2007),2007. 999-1006.

[4] Chootinan, P. and Chen, A. Constraint handling in genetic
algorithms using a gradient-based repair method. Computers
& Operations Research, 33, 8, (2006). 2263-2281.

[5] Coello Coello, C. A. Theoretical and numerical constraint-
handling techniques used with evolutionary algorithms: a
survey of the state of the art. Computer Methods in Applied
Mechanics and Engineering, 191, 11-12, (2002). 1245-1287.

[6] Deb, K. An efficient constraint handling method for genetic
algorithms. Computer Methods in Applied Mechanics and
Engineering, 186, 2-4, (2000). 311.

[7] Deb, K. Multi-Objective Optimization Using Evolutionary
Algorithms, John Wiley & Sons, Inc., 2001.

[8] Deb, K. and Agrawal, R. B. Simulated Binary Crossover for
Continuous Search Space. Complex Systems, 9,1995). 115-
148.

[9] Dobrowolski, G., Kisiel-Dorohinicki, M., and Nawarecki, E.
Evolutionary multiagent system in multiobjective
optimisation, in Proc. of the IASTED Int. Symp.: Applied
Informatics (2001), IASTED/ACTA Press., 2001.

[10] Dreżewski, R. and Marek, K.-D. Maintaining Diversity in
Agent-Based Evolutionary Computation. in Lecture Notes in
Computer Science : Computational Science ICCS, 2006,
908-911.

[11] Farmani, R. and Wright, J. A. Self-adaptive fitness
formulation for constrained optimization. Evolutionary
Computation, IEEE Transactions on, 7, 5, (2003). 445.

[12] Ferber, J. Multiagent systems as introduction to distributed
artificial intelligence, Addision-Wesley, 1999.

[13] Goldberg, D. Genetic Algorithms in Search, Optimization
and Machine Learning, Addison-Wesley, 1989.

[14] Koziel, S. and Michalewicz, Z. Evolutionary algorithms,
homomorphous mappings, and constrained parameter
optimization. Evolutionary Computation, 7, 1, (1999),

887

[15] Liang, J. J., Runarsson, T. P., Mezura-Montes, E., Clerc, M.,
Suganthan, P. N., Coello, C. A. C., and Deb, K. Problem
Definitions and Evaluation Criteria for the CEC 2006
Special Session on Constrained Real-Parameter
Optimization, Nanyang Technological University,
http://www.ntu.edu.sg/home/epnsugan/, Singapore 2006.

[16] Liang, J. J. and Suganthan, P. N. Dynamic Multi-Swarm
Particle Swarm Optimizer with a Novel Constraint-Handling
Mechanism, in Evolutionary Computation, 2006. CEC 2006.
IEEE Congress on (2006),2006. 9-16.

[17] Liu, J., Zhong, W., and Jiao, L. A multiagent evolutionary
algorithm for constraint satisfaction problems. Systems, Man
and Cybernetics, Part B, IEEE Transactions on, 36, 1,
(2006). 54-73.

[18] Michalewicz, Z. Genetic Algorithms + Data Structures =
Evolution Programs, Springer-Verlag, 1994.

[19] Michalewicz, Z. and Janikow, C. Z. GENOCOP: a genetic
algorithm for numerical optimization problems with linear
constraints. Communications of the ACM, 39,1996),

[20] Michalewicz, Z. and Schoenauer, M. Evolutionary
algorithms for constrained parameter optimization problems.
Evolutionary Computation, 4, 1, (1996). 1-32.

[21] Ong, Y. S. and Keane, A. J. Meta-Lamarckian learning in
memetic algorithms. Evolutionary Computation, IEEE
Transactions on, 8, 2, (2004). 99-110.

[22] Runarsson, T. P. and Yao, X. Stochastic ranking for
constrained evolutionary optimization. Evolutionary
Computation, IEEE Transactions on, 4, 3, (2000). 284.

[23] Sarker, R. and Quaddus, M. Modelling a Nationwide Crop
Planning Problem Using a Multiple Criteria Decision
Making Tool. Computers and Industrial Engineering, 42(2-
4), pp541-553.,2002),

[24] Sarker, R. and Ray, T. Multiobjective Evolutionary
Algorithms for solving Constrained Optimization Problems,
in International Conference on Computational Intelligence
for Modelling, Control and Automation (CIMCA2005)
(Vienna, Austria.,28 - 30 November 2005,,2005), IEEE
Press-USA, 2005. Pages.

[25] Sarker, R. A., Talukder, S., and Haque, A. Determination of
Optimum Crop-Mix for Crop Cultivation in Bangladesh.
Applied Mathematical Modelling 21,1997). 621-632.

[26] Siwik, L. and Kisiel-Dorohinicki, M. Semi-elitist
Evolutionary Multi-agent System for Multiobjective
Optimization. in Lecture Notes in Computer Science :
Computational Science ICCS, 2006, 831-838.

[27] Zhong, W., Liu, J., Xue, M., and Jiao, L. A multiagent
genetic algorithm for global numerical optimization.
Systems, Man and Cybernetics, Part B, IEEE Transactions
on, 34, 2, (2004). 1128-1141.

888

