
Multivariate Ant Colony Optimization in Continuous Search
Spaces

Fabrício O. de França, Guilherme P. Coelho, Fernando J. Von Zuben
Laboratory of Bioinformatics and Bioinspired Computing (LBiC)

School of Electrical and Computer Engineering (FEEC)
University of Campinas (Unicamp)

Campinas, SP, Brazil
P.O. Box 6101

Zip Code 13083-970
{olivetti, gcoelho, vonzuben}@dca.fee.unicamp.br

Romis R. de Faissol Attux
Department of Computer Engineering and Industrial Automation (DCA)

School of Electrical and Computer Engineering (FEEC)
University of Campinas (Unicamp)

Campinas, SP, Brazil
P.O. Box 6101

Zip Code 13083-970
attux@dca.fee.unicamp.br

ABSTRACT
This work introduces an ant-inspired algorithm for opti-
mization in continuous search spaces that is based on the
generation of random vectors with multivariate Gaussian
pdf. The proposed approach is called MACACO – Multi-
variate Ant Colony Algorithm for Continuous Optimization
– and is able to simultaneously adapt all the dimensions of
the random distribution employed to generate the new in-
dividuals at each iteration. In order to analyze MACACO’s
search efficiency, the approach was compared to a pair of
counterparts: the Continuous Ant Colony System (CACS)
and the approach known as Ant Colony Optimization in ℜn

(ACOR). The comparative analysis, which involves well-
known benchmark problems from the literature, has indi-
cated that MACACO outperforms CACS and ACOR in most
cases as the quality of the final solution is concerned, and it
is just about two times more costly than the least expensive
contender.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – heuristic methods

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07 ...$5.00.

Keywords
Ant Colony Optimization, Continuous Optimization, Multi-
variate Normal Distribution

1. INTRODUCTION
Ant Colony Optimization (ACO) was first proposed by

Dorigo [4] as an attempt to use the ant foraging behavior
as a source of inspiration for the development of new search
and optimization techniques. By using the pheromone trail
as a reinforcement signal for the choice of which path to
follow, ants tend to find minimal routes from the nest to
the food source. The system is based on the fact that each
ant, while foraging, deposits a chemical substance known as
pheromone on the path adopted.

Initially, this framework was proposed to solve combina-
torial problems such as the Traveling Salesman Problem
(TSP) [5] and the Quadratic Assignment Problem (QAP)
[15], which is justifiable in light of the fact that the inspi-
ration took form in the context of graph optimization, al-
though real pheromone trails are deposited on a continuous
space.

In 1995, Bilchev and Parmee first proposed an adapta-
tion of this framework to continuous search spaces [1], which
was named CACO (Continuous Ant Colony Optimization).
Their proposal initializes a nest on a given point of the search
space and generates random vectors corresponding to the
directions that will be followed by each ant in its quest for
better solutions. If an ant is successful in such pursuit, the
direction vector chosen is updated. In [11], another ant-
inspired approach for continuous optimization, called API
(from the ant Pachycondyla apicalis), was proposed. In this
approach, each ant searches independently for a solution,
though they all start from the same point (the nest). This al-
gorithm also uses a recruitment strategy to refine the search.
Later, in 2002, Dréo and Siarry created the CIAC (Continu-

9

ous Interacting Ant Colony) [7] algorithm, which uses some
spots on the search space to which the ants are attracted
and a certain degree of direct communication between ants
to improve the exploration.

Pourtakdoust and Nobahari proposed in 2004 another Ant
System approach for this problem - the algorithm called
CACS (Continuous Ant Colony System) [12]. In their ap-
proach, the discrete pheromone probabilistic function is re-
placed by a Gaussian (normal) probability density function
(pdf) whose mean and variance parameters are dynamically
adapted by the ants at each iteration.

Finally, in 2006, Socha and Dorigo [14] proposed another
approach, inspired by PB-ACO (Population-Based ACO)
[8], in which the solutions are built according to an archive
of the n best solutions found so far. This algorithm also em-
ploys the same idea of CACS [12], working with a Gaussian
pdf as the pheromone, and was named ACOR (Ant Col-
ony Optimization in ℜn). In [14], Socha and Dorigo com-
pared the performance of ACOR with those of CACO, API
and CIAC, together with some evolutionary approaches, and
ACOR led to the best results in most cases.

It can be inferred from the comparative experimental re-
sults shown in [14] that there is room for improvement of
the performance achieved by ACO algorithms for continu-
ous optimization. A hitherto unexplored possibility is to
consider the existence of dependence between variables: all
ant-colony-based algorithms proposed so far treat them as
being mutually independent, which can reduce the capabil-
ity of the employed sampling mechanism.

In order to take a step in this direction, we propose a new
ant-based technique that uses the information contained in
the covariance matrix of the ant population in order to cre-
ate a multivariate Gaussian random pdf to be employed in
the displacement of the ants along the continuous search
space. By doing so, we intend to map and explore the
search space more effectively. This proposal was applied to
several well-known benchmark problems and the obtained
results were compared to those of the CACS and ACOR al-
gorithms. As will be shown, the introduced multivariate dis-
tribution mechanism improves the solution quality and the
exploration of the search space, and, consequently, leads to
a significant performance improvement in comparison with
the CACS and ACOR algorithms.

The paper is organized as follows. Section 2 outlines the
basic aspects of the Ant Colony Optimization algorithm to-
gether with the CACS and ACOR extensions to deal with
continuous search space problems, and also briefly explains
some related approaches. In Section 3, we introduce a new
algorithm based on covariance information extracted from
the solutions already proposed by the ants. The algorithms
are evaluated and compared in Section 4 with the aid of a
diversified set of representative benchmark problems. Con-
cluding remarks are presented in Section 5 together with a
discussion on the formal and methodological contributions
of this work. A proposal of several paths for further inves-
tigation is also part of Section 5.

2. ANT SYSTEM AND ANT COLONY OP-
TIMIZATION

The Ant Colony Optimization (ACO) [4] was the first ant-
based algorithm applied to solve combinatorial optimization
problems. More than one decade after this initiative, several

different versions, improvements and applications have been
presented (c.f. Dorigo and Stützle [6], de França et al. [3]).
In this section, the original proposal of Dorigo [4] will be
briefly reviewed, together with some adaptations presented
in the literature to solve optimization problems in continu-
ous search spaces.

2.1 Ant Colony Optimization
The standard ACO [4] is conceptually simple, as described

in Algorithm 1.

Algorithm 1 Basic ACO Algorithm.

while iteration < maximumNumberOfIterations do
for each ant do

build solution();
update pheromone();

end for
end while

In the classical ACO presented in Algorithm 1, the com-
binatorial problem to be solved is understood in terms of a
graph, and the ants are placed on its nodes. A solution to
this problem thus corresponds to a sequence of edges that
are selected on a one-by-one basis by a given ant. When
a complete solution is built, it is evaluated, and the edges
belonging thereto have their pheromone concentration in-
creased proportionally to a relative quality index. The pher-
omone concentration at each edge influences the probability
of its selection by the ants in the next generation of the algo-
rithm. Therefore, edges belonging to high-quality solutions
will tend to have a higher probability of being selected dur-
ing the construction of a new solution to the problem. De-
pending on the formulation of the problem, the way the can-
didate solutions are represented may force the pheromone to
be associated with nodes, and not with edges of the graph.

In Algorithm 1, the procedure build_solution() builds a
solution to the problem being solved based on a pheromone
trail and on optional information heuristics which will not
be included in the standard formulation described in this
subsection. Each ant k traverses one edge per iteration t

and, at each edge, the local information about its pheromone
level, τij , is used by the ant so that it can probabilistically
decide the next node to move to, according to the following
rule:

p
k
ij(t) =

{

τij
∑

j∈Jk τij
if j ∈ Jk

0 otherwise,
(1)

where τij(t) is the pheromone level of edge (i, j), i.e. edge
connecting nodes i and j, Jk is the list of nodes yet to be
visited by ant k, and node i is the current node of ant k.

In the procedure update_ pheromone(), the pheromone
level of edge (i, j) is updated according to Equation 2:

τij ← ρ.τij + ∆τij , (2)

where ρ ∈ (0, 1] is the pheromone decay rate and ∆τij is the
increment in the pheromone level. In minimization prob-
lems, the pheromone increment may be given by:

∆τij =

{ 1
f(S)

if (i, j) ∈ S

0 otherwise,
(3)

10

where S is the solution used to update the trail and f(S) is
a function that reflects the cost of a solution, i.e., the lower
f(S) the better the quality of proposal S.

2.2 Adapting the ACO Algorithm to deal with
Continuous Search Spaces

In order to adapt the ACO algorithm to deal with continu-
ous search spaces, it is necessary to modify the probabilistic
model used in the process of sampling new candidate solu-
tions (given in Equation 1) so that solutions be generated as
real-valued parameter vectors. To do that, the pheromone
must define a probability density function that determines
the chance of choosing certain regions of the search space
when random solution vectors are created. The chance tends
to be proportional to the relative quality of such regions as
observed in the past iterations of the algorithm.

In general, a Gaussian pdf (Figure 1) is adopted, since it
is easily sampled by methods such as Box-Muller [2] and the
Ziggurat algorithm [10]. However, it has the disadvantage of
being able to enclose just one promising region of the search
space, since it possesses a single maximum.

x4
x1x2x3

Figure 1: Four Gaussian probability density func-
tions (centered at x1, x2, x3 and x4) enclosing four
different regions of the problem.

The aperture (variance) of the Gaussians, as illustrated
in Figure 1, determines the degree of dispersion of the new
random solutions around the corresponding centers.

Therefore, in ACO algorithms for optimization in contin-
uous search spaces, each new solution vector is created by
sampling Gaussian random variables, one at a time, for each
dimension of the problem. The differences between the var-
ious approaches reported in the literature lie in how they
update the center and the variance of the Gaussian pdfs. In
the next section, we will show how CACS [12] and ACOR

[14] deal with such parameters.

2.3 CACS Algorithm
The CACS algorithm was first presented in [12], in which

a continuous pheromone model consisting of a Gaussian pdf
centered on the best solution found so far was proposed.
The variance of such pdf starts with a value three times
greater than the range of each variable of the problem (i.e.,
three times (xmax−xmin)), and, during the evolution of the
algorithm, it is modified according to a weighted average of

the distance between each individual in the population and
the best solution found so far, as shown in Equation 4, where
K is the number of ants defined in the algorithm.

σ
2 =

∑K

j=1
1

|fj−fmin| (xj − xmin)2

∑k

j=1
1

|fj−fmin|
. (4)

The main advantages of this algorithm are that it requires
the setting of just one parameter (the number of ants in the
population) and presents a very simple mechanism to gen-
erate the ants of the next generation. On the other hand,
a clear drawback is that it only investigates one promising
region of the problem at a time, which means that the al-
gorithm tends to concentrate the Gaussian pdf around local
optima very quickly, thus leading to a premature conver-
gence.

2.4 ACOR Algorithm
The ACOR [14] algorithm was conceived to deal with the

aforementioned premature convergence drawback of propos-
als that use a single Gaussian function. This algorithm con-
sists of an archive that holds the k best solutions found so
far, being, in conceptual terms, each solution correspondent
to the center of a different Gaussian pdf. Moreover, this
archive is used to calculate the variance of each distribu-
tion, so that the whole process can be described as follows.

Initially, the whole archive is randomly created (using a
uniform distribution), and the generated individuals are sor-
ted in descending order of fitness (best-to-worst). Then, the
main iteration starts by first attributing a solution of the
archive to each ant of the problem, with probability propor-
tional to the weight of the l-th archive solution ωl (Equation
5):

ωl =
1

qK
√

2π
e
− (l−1)2

2q2K2 , (5)

where K is the number of ants, l is the rank of the solution
on the archive, and q is a variable called locality of the search
process. The role of variable q is to balance exploitation and
exploration. The center of each Gaussian is then defined as
being the correspondent archive solution, and its variance is
given by Equation 6:

σ
i
l = ξ

K
∑

e=1

||si
e − si

l||
K − 1

, i = 1, ..., dim, (6)

where ξ – called the speed of convergence – determines how
fast the solutions of the archive will converge, s is a solution
belonging to the archive, and dim is the dimension of the
search space.

Finally, this Gaussian distribution with center and vari-
ance defined as described above is used to generate a new
solution to the problem. After each ant has built a can-
didate solution, these candidate solutions are inserted into
the archive, which is sorted again. The algorithm then iter-
atively removes the worst solutions until the archive returns
to its original size. This approach has a clear advantage –
the evolution of several Gaussian distributions in parallel –
and an interesting feature: it reduces the selective pressure
by adopting the rank-based selection mechanism.

Even though this process reduces the chance of prema-
ture convergence, the algorithm may still converge to local

11

optima, particularly when the elements of the archive are
very close to each other. As will be shown in Section 4,
ACOR has a poor performance when applied to problems
with multiple optima and/or large plateaus. Furthermore,
the inclusion of the sorting step and the calculation of the
distance between each solution lead to a significantly higher
computational demand when compared to the CACS algo-
rithm.

3. MACACO: MULTIVARIATE ANT COL-
ONY ALGORITHM FOR CONTINUOUS
OPTIMIZATION

One aspect of the CACS and ACOR algorithms described
on the previous section is that they both treat each dimen-
sion of the search space as an independent variable when
generating new solutions using a Gaussian pdf. Whenever
the variables are taken to be independent, the given distri-
bution always takes the shape of a hypersphere (e.g. Figure
2(a)) but, when the covariance matrix is used to create a
multivariate distribution, it is possible to mould the shape of
the given samples into a hyperellipse (as in Figure 2(b)) that
can be rotated by any angle in order to bias the sampling
process toward the promising regions of the search space.

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y

(a)

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y

(b)

Figure 2: Differences on using univariate and mul-
tivariate distributions to generate samples on a 2-
dimensional problem. (a) Samples generated using
two univariate distributions; and (b) using a multi-
variate distribution.

Therefore, in an attempt to explore the higher flexibility
provided by the multivariate distribution, we propose a mul-

tivariate ant colony algorithm for continuous optimization,
denoted MACACO. To do so, given a covariance matrix Σ
and center ~µ, we have chosen to create the solution vectors
according to the transformation-based technique described
in [9], which consists of three simple steps:

• First create a vector ~x ∈ ℜn by means of a Gaus-
sian distribution with independent variables (i.e., ~xi =
N(0, 1), i = 1, ..., dim), so that ~x obeys the distribution

N(~0, I), where I is an identity matrix.

• Next calculate the matrix Φ of normalized eigenvectors
(where each eigenvector corresponds to each column of
Φ) of the covariance matrix Σ, and create a diagonal
matrix Λ whose values are the corresponding eigenval-
ues. Let:

Q = Λ
1
2 Φ. (7)

• Finally the vector ~x is transformed by Equation 8 so
that ~y obeys the distribution N(~µ, Σ):

~y = Q~x + ~µ. (8)

It is important to remark that, although the process of
performing the required eigendecomposition may be costly,
the very essence of the modus operandi of the MACACO
algorithm allows that both the covariance update and the
computation of the transformation matrix Q be carried out
only once per generation.

As MACACO works with a covariance matrix (instead of
a simple variance vector like the other two contenders), the
updating step for each ant should be made in a way that
the new distribution of the solutions tends to the promising
region supposedly indicated by the candidate solutions at
the previous iteration. This can be accomplished by simply
recalculating this matrix using just 70% (empirical value) of
the best solutions found at the current iteration. By doing
that, the generated distribution will close down until the co-
variance becomes almost zero and centered at the best local
optima found so far. Unfortunately, this updating procedure
has a drawback, since it requires a large number of candidate
solutions in order to make a good sampling.

Empirically, it was observed that this updating procedure
works better whenever the initial distribution is centered
near the global optimum. Since this optimum is unknown
in practice, MACACO was divided into two steps, being the
first one devoted to finding a good initial center vector and
the second one conceived to locally optimize the region iden-
tified in the previous step. The pseudocode of the proposed
algorithm is shown in Algorithm 2.

In Algorithm 2, the function generate_initial_ants()

creates n ants candidate solutions with uniform distribu-
tion U(0, range), where range is the domain of the problem.
This function also calculates the initial covariance matrix
and the transformation matrix Q. During Phase 1, the solu-
tions are built according to Equation 8, using the best candi-
date solution found so far as the center vector ~µ (this is done
in the procedure build_solution_meanbest()). In Phase 2,
the procedure build_solution() considers as the center of
the distribution the mean of the recently created popula-
tion of individuals, in order to obtain the transformation

12

Algorithm 2 MACACO Algorithm.

generate initial ants();
phase = 1;
while iteration < maximumNumberOfIterations do

for each ant do
if phase == 1 then

build solution meanbest();
else

build solution();
end if

end for
update pheromone();
if best solution is no more improving then

phase = 2;
restart covar();

end if
end while

of the multivariate distribution. The update_pheromone()

procedure works by taking the 70% best solutions found at
the current iteration and considering such individuals in the
recalculation of the covariance matrix, as described above.
Additionally, it recalculates the transformation matrix Q for
the next iteration. When the best solution stops improving
for a given number of iterations (empirically set as 10 it-
erations), the covariance is recalculated by sampling n ants

vectors with distribution U(ant best, range), where ant best

is the best solution found so far. And if the algorithm is still
working in Phase 1, it turns to Phase 2.

4. PERFORMANCE EVALUATION
In the experimental section of this work, we will compare

our proposal (the MACACO algorithm) with two of the ex-
isting continuous-domain ACO algorithms: CACS [12] and
ACOR [14]. The rationale of our choice is twofold: i) in
[14], a thorough comparison between ACOR and other ACO-
based approaches has already been made, but CACS was not
included therein; and ii) the majority of the approaches not
cited in [14] are very similar to CACS.

To evaluate the performance of the three algorithms, we
have chosen six well-known benchmark problems from the
literature (given in Table 1) and calculated the mean and
standard deviation of the fitness of the best individuals (func-
tion values) found by each algorithm in 30 independent runs.

The parameters of the ACOR were set as suggested in
the original paper [14], vide Table 2. The number of iter-
ations was not chosen a priori; it was defined instead, for
the sake of fairness, that each algorithm should be allowed a
maximum of 106 function evaluations for all the benchmark
problems studied here, except for the Rosenbrock function,
which could be evaluated up to 6× 106 times.

A population of 1000 ants was defined for both CACS
and MACACO algorithms. It is important do highlight here
that, although those algorithms had much more ants than
ACOR, the latter was executed for a smaller total number of
iterations to keep the total number of function evaluations
the same.

Also, to infer that even though we maintain a higher num-
ber of ants when compared to ACOR, it will be shown,
through some experiments, that raising this value may even
worsen its average results.

It should be notice that the adopted parameters for the
ACOR algorithms were the optimum values reported by the
respective authors on similar experiments.

All the simulations performed in this work were made on
an AMD Athlon64 3500+, 2.2GHz, 1GB of RAM running
Windows XP Professional SP2 and all the algorithms were
programmed in C++ and compiled with GCC 3.4.2. In the
following sub-section, we will describe the obtained exper-
imental results and discuss the performance of each algo-
rithm.

4.1 Experimental Results
For each benchmark problem considered in this work, we

have, in Table 3, the mean and standard deviation produced
by each algorithm after 30 independent runs, being the best
results outlined in bold.

From Table 3, comparing firstly ACOR and CACS, it can
be seen that the CACS algorithm was capable of outper-
forming the ACOR in five of the six functions, being just
slightly worse than ACOR on the Schwefel function, albeit
presenting a smaller variance for this function.

Considering now the results obtained with the MACACO
algorithm, it can be seen that a significant overall improve-
ment was achieved, both on the mean and variance values
for all benchmark problems, except for the Rosenbrock (and
the Sphere, for which our proposal has found the global op-
timum similarly to the other algorithms). This is even more
noticeable in functions like Rastrigin and Schwefel, which
give rise to highly multimodal problems that represent a
challenging task in continuous optimization.

In order to attest that the MACACO and CACS algo-
rithms are not just exploiting the high number of ants to
find good solutions as a simple sampling method, the prob-
lems on Table 4 was tested on ACOR changing the number
of ants to 1000 and the number of iterations accordingly.
As we can see on Table 4, some of the presented ACOR re-
sults are worse than those obtained with the recommended
parameters.

Let us now take a closer look at the Rosenbrock problem:
in Figure 3 the box-plot for the results obtained by the three
algorithms in the 30 independent executions is presented.
Both CACS and MACACO present a very similar behavior,
specially with respect to their medians, but MACACO has
presented some outliers that have significantly increased the
mean values given in Table 3. These results are corroborated
by the high standard deviation also given in Table 3. This
might be due to the fact that the Rosenbrock function for a
number of dimensions greater than 2 becomes multimodal,
as pointed out in [13], and to the nature of the MACACO
algorithm itself. Although the covariance matrix is restarted
from time to time in order to try to escape from local op-
tima, since the center value will still correspond to the local
minimum, the number of samples generated at each itera-
tion may not be enough to reach a better local optimum, or
even the global optimum, due to the dimension of the search
space.

Table 5 presents the average execution time for each of
the three algorithms studied in this work. As can be seen
from this table, the MACACO algorithm presents an aver-
age execution time about two times higher than the CACS
algorithm, but it is about ten times faster than ACOR. Al-
though an analysis of execution times is always subject to a
number of technical issues - including implementation poli-

13

Table 1: Benchmark problems adopted in this work

Name Problem Dimension (n) Range

Sphere f(x) =
∑n

i=1 x2
i 30 [−100, 100]n

Rosenbrock f(x) =
∑n−1

i=1 100(xi+1 − x2
i)

2 + (xi − 1)2 30 [−30, 30]n

Rastrigin f(x) = 10n +
∑n

i=1 [x2
1 − 10 cos (2πxi)] 30 [−5.12, 5.12]n

Griewank f(x) = 1 + 0.00025
∑n

i=1 x1 −
∏n

i=1 cos xi√
i

30 [−500, 500]n

Schwefel f(x) = −
∑n

i=1 xi sin
√

|xi| 30 [−500, 500]n

Salomon f(x) = 1− cos (2π
√

∑n

i=1 x2
i) + 0.1

√
∑n

i=1 x2
i 30 [−100, 100]n

Table 2: Suggested parameters for ACOR

Parameter Value

Number of Ants 2
Speed of Convergence (ξ) 0.85
Locality of the Search Process (q) 10−4

Archive Size 50

ACO_R CACS MACACO

0

20

40

60

80

100

120

140

160

f(x
)

Algorithm

Figure 3: Boxplot for the Rosenbrock function.

cies - which demand great care, the results in Table 5 can
be interpreted as a good indication of the comparative per-
formance of the three algorithms studied in this work.

As a final experiment, the number of ants required by
MACACO to achieve a pre-defined solution of the Rastrigin
problem with higher dimensions (30, 50, 70 and 100) was
empirically verified. The number of ants was obtained so
that the algorithm could reach a mean solution of at least
0.5 for this problem, which is close to the global optimum,
keeping the number of iterations fixed in 1000 (the same
value adopted for the experiments performed before). Figure
4 shows the evolution of the required number of ants with
the increase of the dimension of the problem, and suggests
that these two variables are linearly related.

Additionally, the time required to perform the optimiza-
tion process for each dimension of the Rastrigin problem was
plotted (and it is shown in Fig. 5) in order to evaluate the
impact on the algorithm when the number of ants and the
problem dimension grow. Figure 5 shows that the initial
growth is linear with the dimension of the problem but, af-

ter a number of 70 variables, the time requirement seems to
grow steeper.

30 50 70 100
1000

2000

3000

5000

dimensions

nu
m

be
r o

f a
nt

s

Figure 4: Evolution of the number of ants required
to solve the Rastrigin problem with distinct dimen-
sions.

5. DISCUSSION AND FUTURE WORKS
In this paper, a novel ant-based algorithm for contin-

uous environments was proposed. The technique, called
MACACO, which is based on the generation of random vec-
tors from a multivariate Gaussian pdf, was compared to the
ACOR and CACS approaches.

The reader was initially introduced to the concepts of Ant
Systems and the subsequent adaptations to continuous envi-
ronments. Two of these continuous-domain ACO algorithms
were highlighted: CACS and ACOR, which were explained
and had their positive and negative aspects outlined.

The proposed algorithm was then thoroughly described
and applied, together with CACS and ACOR algorithms,
to six well-known benchmark optimization problems. The
results have shown that the new proposal was able to pro-

14

Table 3: Mean and standard deviation values of the best individual obtained by ACOR, CACS and MACACO,
for the six benchmark problems studied in this paper (and given in Table 1). The best results are marked in
bold.

ACOR CACS MACACO

Sphere 0 0 0
Rosenbrock 29.93± 35.14 1.23± 1.91 7.48 ± 11.68
Rastrigin 101.65± 21.01 57.17± 14.14 0.00058± 0.00009
Griewank 0.09± 0.180 0.02± 0.02 0
Schwefel −8703.26± 721.53 −8934.57± 633.78 -12569.49 ± 0.01
Salomon 3.05± 1.43 0.33± 0.05 0.15 ± 0.05

Table 4: Results obtained by ACOR using a thousand ants on each test problem.

ACOR

Sphere 0
Rosenbrock 82818.94± 98832.77
Rastrigin 242.12± 38.18
Griewank 1.45± 0.42
Schwefel −9484.07± 977.79
Salomon 0.33± 0.05

30 50 70 100
0

200

400

600

800

1000

1200

1400

dimension

tim
e

Figure 5: Evolution of the mean time (in seconds)
required to solve the Rastrigin problem with distinct
dimensions.

duce significantly better results in four of the six bench-
mark problems (for the Sphere problem, all the algorithms
were capable of finding the global optimum). Only for the
Rosenbrock problem the proposal presented an average per-
formance worse than the one obtained by CACS. However,
analyzing the box-plot for this problem we could see that
both CACS and MACACO presented a very similar behav-
ior, although MACACO has presented some outliers, prob-
ably due to its inability to hop from a local optimum to a
better one when both are at a considerable distance from
each other on the search space.

Although MACACO demands the calculation of the eigen-
vectors and eigenvalues of a correlation matrix at each iter-
ation, its average computational time taken to optimize the
benchmark problems was smaller than the one presented

by ACOR and only about two times higher than the one
presented by CACS. However, the significant improvement
in the results presented by MACACO, when compared to
CACS, indicates that it is a price that may be worth paying
for.

This paper shows that ACO-like approaches to deal with
optimization in continuous spaces are quite promising, since
these algorithms can obtain good-quality solutions for chal-
lenging problems at a relatively low computational cost. In
future works, we plan to investigate new ways to deal with
local optima, better mechanisms to improve the exploration
of the search space and compare our ant-based proposal with
well-known continuous optimization algorithms based on dif-
ferent paradigms. We also plan to investigate the extension
of such approaches to multi-objective optimization problems
in continuous spaces.

6. ACKNOWLEDGMENTS
The authors would like to thank CAPES and CNPq for

the financial support.

7. REFERENCES
[1] G. Bilchev and I. C. Parmee. The ant colony

metaphor for searching continuous design spaces. In
T. C. Fogarty, editor, Evolutionary Computing, AISB
Workshop, volume 993 of Lecture Notes in Computer
Science, pages 25–39. Springer, 1995.

[2] G. E. P. Box and M. A. Muller. A note on the
generation of random normal deviates. Annals. Math.
Stat., 29:610–611, 1958.

[3] F. O. de França, F. J. Von Zuben, and L. N. de
Castro. Max min ant system and capacitated
p-medians: Extensions and improved solutions.
Informatica (Slovenia), 29(2):163–172, 2005.

[4] M. Dorigo. Optimization, Learning and Natural Algo-
rithms. PhD thesis, Politecnico di Milano, Italy, 1992.

15

Table 5: Mean execution times (in seconds) obtained by ACOR, CACS and MACACO, for the six benchmark
problems studied in this paper.

ACOR CACS MACACO

Sphere 429.19 19.40 41.61
Rosenbrock 2113.82 110.56 222.75
Rastrigin 445.19 23.75 45.28
Griewank 385.26 17.52 47.26
Schwefel 411.11 18.93 47.30
Salomon 443.06 15.93 41.65

[5] M. Dorigo and G. Di Caro. The ant colony
optimization meta-heuristic. In D. Corne, M. Dorigo,
and F. Glover, editors, New Ideas in Optimization,
pages 11–32. McGraw-Hill, London, 1999.

[6] M. Dorigo and T. Stützle. The
ant colony optimization metaheuristic: Algorithms,
applications, and advances. In F. W. Glover and G. A.
Kochenberger, editors, Handbook of Metaheuristics,
pages 251–286. Kluwer Academic Press, 2003.

[7] J. Dréo and P. Siarry. A new
ant colony algorithm using the heterarchical concept
aimed at optimization of multiminima continuous
functions. In M. Dorigo, G. D. Caro, and M. Sampels,
editors, Ant Algorithms, volume 2463 of Lecture Notes
in Computer Science, pages 216–221. Springer, 2002.

[8] M. Guntsch and M. Middendorf.
A population based approach for ACO. In S. Cagnoni,
J. Gottlieb, E. Hart, M. Middendorf, and G. Raidl,
editors, Applications of Evolutionary Computing,
Proceedings of EvoWorkshops2002: EvoCOP,
EvoIASP, EvoSTim, volume 2279 of LNCS, pages
72–81, Kinsale, Ireland, 3-4 2002. Springer-Verlag.

[9] I. T. Hernádvölgyi. Generating random vectors
from the multivariate normal distribution. Technical
Report TR-98-07, University of Ottawa, Aug. 20 1998.

[10] G. Marsaglia and W. W. Tsang.
The ziggurat method for generating random variables.
Journal of Statistical Software, 5(8):1–7, 2000.

[11] N. Monmarché,
G. Venturini, and M. Slimane. On how Pachycondyla
apicalis ants suggest a new search algorithm. Future
Generation Computer Systems, 16(8):937–946, 2000.

[12] S. H. Pourtakdoust and H. Nobahari. An extension
of ant colony system to continuous optimization
problems. In M. Dorigo, M. Birattari, C. Blum, L. M.
Gambardella, F. Mondada, and T. Stützle, editors,
ANTS Workshop, volume 3172 of Lecture Notes
in Computer Science, pages 294–301. Springer, 2004.

[13] Y.-W. Shang and Y.-H. Qiu. A note
on the extended Rosenbrock function. Evolutionary
Computation, 14(1):119–126, March 2006.

[14] K. Socha and M. Dorigo. Ant colony optimization
for continuous domains. European Journal of
Operational Research, In Press, Corrected Proof, 2006.

[15] T. Stützle and M. Dorigo. ACO algorithms for the
quadratic assignment problem. In D. Corne, M. Dorigo,
and F. Glover, editors, New Ideas in Optimization,
pages 33–50. McGraw-Hill, London, 1999.

16

