
Rank Based Variation Operators for Genetic Algorithms

Jorge Cervantes
Universidad Autónoma Metropolitana

Departamento de Matemáticas Aplicadas y
Sistemas, México D.F. 01120

JorgeCervantesO@aim.com

Christopher R. Stephens
Instituto de Ciencias Nucleares

Universidad Nacional Autónoma de México
A. Postal 70-543, México D.F. 04510
stephens@nucleares.unam.mx

ABSTRACT
We show how and why using genetic operators that are ap-
plied with probabilities that depend on the fitness rank of a
genotype or phenotype offers a robust alternative to the Sim-
ple GA and avoids some questions of parameter tuning with-
out having to introduce an explicit encoded self-adaptation
mechanism. We motivate the algorithm by appealing to pre-
vious theoretic analysis that show how different landscapes
and population states require different mutation rates to
dynamically optimize the balance between exploration and
exploitation. We test the algorithm on a range of model
landscapes where we can see under what circumstances this
Rank GA is likely to outperform the Simple GA and how
it outperforms standard heuristics such as 1/N . We try to
explain the reasons behind this behaviour.
ACM Primary Classification:

I.2.8 Problem Solving, Control Methods and Search
Subjects: Heuristic methods.

ACM Additional Classification:
J.2 Subjects: Engineering.
J.3 Subjects: Biology and Genetics.
J.4 Social and behavioral sciences.

General Terms:
Algorithms, Performance, Reliability, Theory.

Keywords:
Parameter Tuning, Rank GA, Robustness.

1. INTRODUCTION
Optimal parameter setting and optimal operator tuning

for a given class of Evolutionary Algorithms (EAs) [1, 2] and
a given class of fitness landscapes is a difficult task. As has
been shown in [3] for instance, “optimal” mutation rates can
vary from 0 to nearly 1, depending on with respect to what
one is “optimizing”, and can depend on many factors, such
as the fitness landscape, population size, population status
and the set of operators being used. In this paper we ex-
tend previous work [4] to show how and specially why using
rank-based genetic variation operators can greatly amelio-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07 ...$5.00.

rate the problem of parameter tuning in EAs while adding
much more robustness to search.

There have been three recurring themes with respect to
an “optimal” mutation rate: i) that a rate p ∼ 1/N is pre-
ferred [5], where N is the string length; ii) that a preferred
rate should be dynamic [6, 7, 8, 9, 10] p = p(t); and iii) that
the error threshold p∗ offers guidance as to an optimal rate
[11, 12, 13]. Of course, the desire has been to derive useful
heuristics for setting mutation rates and, the more universal
the better. The well known p = 1/N heuristic is too univer-
sal in that it is independent of the fitness landscape. The er-
ror threshold p∗ of a signal in the fitness landscape is defined
as the mutation rate above which this signal would not be
able to influence the population’s dynamics and thus it offers
no preferential selective benefit. This error threshold does
depend on the fitness landscape details and has been argued
to offer guidance to an optimal balance between exploration
and exploitation. However, in order to use it one has the
problem of how to calculate or measure it for a “black box”
landscape. Other work [9] has argued that an optimal muta-
tion rate depends not only on the fitness landscape but also
on the actual population, and hence is dynamic. To have
to go to such a fine-grained level is clearly not practically
feasible. A possible solution is to consider a self-adaptive
mutation rate that evolves with the population as in [6, 9,
10]. However, this can be computationally expensive and
can end up with a premature convergence of the mutation
rate itself.

With this in mind, we see the need of a method for ap-
plying different mutation rates to different subpopulations
all running at the same time. In [14] a fitness based rule
is used to assign mutation and recombination rates, with
higher rates being assigned to those genotypes that are most
different in fitness from the fittest individual in the popula-
tion. One disadvantage of this approach is that, if there is
more than one individual with maximum fitness, i.e. they
belong to the same optimal (or best found) neutral net, then
all will be assigned mutation rate zero and hence there is no
exploration on the neutral net.

Another adaptive scheme, is that proposed in [15] where
a fitness rank based rule is used. However, there, the chosen
mutation rate is not applied bit-wise but rather to the full
genotype. This means that each individual can have only
one mutation per generation if any. This limits the possi-
bility of escaping local optima because the actual mutation
rate can not be comparatively higher than 1/N and it has
been shown in [3] that higher mutation rates can be optimal
under certain circumstances.

905

In this paper we justify (based on previous theoretical
work) and demonstrate the potential utility of a method
proposed in [4], where each subpopulation is assigned a mu-
tation rate directly proportional to fitness rank and com-
bined with a suitable recombination operator. Besides of-
fering a more general framework and having a wider ap-
plicability, our analysis here is much more firmly grounded
in previous theoretical analyses as well as being tested on
a wider range of fitness landscapes than the previously re-
ferred works. This justification explains why the method
is useful and also gives the possibility to apply the method
almost directly to other areas in evolutionary computation.

2. METRICS AND LANDSCAPES
We will use as an evaluation metric the Run Length Dis-

tribution (RLD) [16]. These are curves that show the char-
acteristic behaviour of a given search algorithm on a given
environment, such as a fitness landscape and/or initial pop-
ulation. RLDs are obtained by performing many runs (here,
throughout, we use 100) of an algorithm, evaluating the ef-
fort (number of fitness evaluations) needed to find the op-
timum associated with a given run, sorting these runs from
minimum to maximum effort and graphing the resultant
curve. The curves are noisy when the number of runs is
small but, as this number grows, noise is reduced, and the
curves are smoother. RDLs provide more information than
simple summary statistics, such as min, max and average
effort, since one can see at a glance the proportion of runs
that are expected to find the optimum below any fixed level
of effort, as well as phenomena that affect only a fraction of
the runs.

We will examine a range of different well-known “model”
landscapes, taking the point of view that a principal task of
search is to distinguish “signal” from “noise” by a suitable
balance between exploration and exploitation. It is also im-
portant to differentiate between offline and online signals,
the former being the signals of the fitness landscape itself,
and the latter those signals that exist in the current state of
the algorithm, e.g. in the current population.

We assume that most of the real life landscapes are multi-
modal and that, often, a punctuated equilibrium takes place
in the search process whenever the population gets tem-
porarily stuck in a local optimum and then, when it finally
gets off that suboptimum, it jumps (or transits) from a re-
gion of one type to another. In this sense we believe that
a two signal model can tell you a lot about how genetic
operators interact in the search process.

Throughout this paper we have considered “model” as op-
posed to “real-world” landscapes. Although we have tested
the algorithms on a variety of the latter, with positive re-
sults, we here particularly wished to be able to relate this
work to previous theoretical and empirical work on optimal
mutation rates that was also carried out on “model” land-
scapes. By so doing we are patently not trying to create
the “killer” GA but rather are trying to rectify in a fairly
straightforward manner certain deficiencies of the Simple
GA (SGA) by appealing to results and observations gleaned
from more theoretical research. We consider:

1. The Counting Ones Landscape (ONEMAX). To un-
derstand what happens in a landscape that is very easy
for the GA and which has been studied extensively by
others. ft(x) = 1 + NumOnes(x)/N

2. A Deceptive Trap landscape (DTrap). The same as
ONEMAX but with the string of all 0s having its ft >
2 thus being the optimum. This case is the hardest for
the SGA.

3. Two anticorrelated signals. A two-needle NIAH (Nee-
dle In A Haystack) landscape with one suboptimal de-
generate needle (ft = 2) placed at the antipode of an
optimal single needle (ft > 2). The rest of the land-
scape is flat (ft = 1). A deceptive landscape too but
with a different shape for the deceptive signal so that
not all of the landscape pulls the population away from
the optimum.

4. Two correlated signals. A two needle NIAH landscape
with a suboptimal needle (ft = 2) placed at different
Hamming distances from an optimal needle (ft > 2).
The rest of the landscape is flat (ft = 1). To compare
how well the algorithms exploit correlations.

5. Concatenated Blocks. The string is split into k blocks
each one having its own NIAH or DTrap landscape.
The overall fitness of a string is the sum of the fitness
in each block. Here we test how well an algorithm uses
the landscape modularity and reuses partial solutions
found during a run.

3. OPTIMAL MUTATION RATES
In choosing a suitable mutation rate p for an EA, there are

three standard approaches: find an optimal rate experimen-
tally; use a standard heuristic; or use a self-adaptive algo-
rithm. Each has its advantages and disadvantages. There-
fore, in order to justify the method we are using [4] with re-
spect to mutation rates, it is important to understand what
are the traits that most affect the optimal value of p.

An investigation of this nature was carried out in [3] on
a set of model landscapes in order to try to understand un-
der what circumstances and why certain mutation rates were
preferred. For example, using a “needle-in-a-haystack” land-
scape as a model for a landscape with a global optimum that
is relatively uncorrelated with the rest of the landscape, i.e.
only one “signal”, it was shown that in this case the er-
ror threshold p∗, theoretically approximated in a straight-
forward manner1, can be too high or too low. When this
signal is present in the population, exploration of the search
space with a p in the vicinity of this approximation is quite
close to random search because there is a high probability
that the signal is quickly lost in the population and also
there is a low probability of its recovery since the rest of
the landscape is flat. So, if one wants to preserve the signal
in the population, one must use lower mutation rates that
are about half of this approximation, in other words, the
“‘real” p∗ is much lower. It was also shown (in [3]) that the
“real” p∗ decreases as a function of decreasing population
size and increasing noise level in the fitness function and
also if recombination is used (from [11]).

In this landscape the separation between exploration and
exploitation is total [3] - optimal search being random with a
mutation rate of 0.5, until the optimum is found, whereupon
the optimal rate is 0 in order to preserve the optimum in
the population. The standard heuristic 1/N works well in

1p∗ = ln(G)/N , where G = ftneedle/fthay is the fitness gain
of the needle with respect to the hay.

906

this landscape in terms of the exploration phase, but not
the exploitation phase. This example shows also how an
optimal mutation rate naturally depends on the state of the
population as well as what is the objective of the search. By
making the “needle” degenerate (a plateau signal consisting
of more than one genotype) it was also shown that there
is a universal relation between the error threshold and the
fraction of optimal configurations in the fitness landscape
and, consequently, on the optimal mutation rate. In fact,
beyond a redundancy of about 5% of the configuration space,
the error threshold disappears completely.

In landscapes with more than one “signal”, where the op-
timum’s signal competed against a second local degenerate
one, it was shown that there exists a mutation rate, pf ,
above which the suboptimal signal is preferred asymptot-
ically, thus clearly misleading the search. Further, it was
seen that, more often than not, pf < p∗ and hence was of
greater practical relevance. Moreover, even when p < pf

there is a substantial part of the evolution wherein the sub-
optimum is preferred [3]. pf increases when the Hamming
distance between the optimum and suboptimum is very low
and decreases as the fitness differential between the optima
and suboptima decreases [3]. It was shown also that, when
the suboptimum is anti-correlated with the optimum (at the
maximal Hamming distance), an optimal mutation rate for
minimizing computational effort is close to one! So, gen-
erally, a suboptimum can either help or hamper the search
for the optimum depending on its Hamming distance to the
optimum. For an optimum and suboptimum quite close to-
gether, where the initial condition is to have all the popu-
lation in the suboptimal state, there exists an optimal mu-
tation rate for maximizing the success rate of the algorithm
and it may be substantially lower than p = 1/N or the the-
oretical error threshold p∗ = ln(G)/N . For an optimum and
suboptimum quite far away from each other the optimal p
may be substantially higher than that [3].

In the counting ones landscape each Hamming class (the
set of all genotypes at equal Hamming distance to the op-
timum), considered as degenerate signals, exhibits its own
error threshold, there being an increase in this threshold as a
function of the Hamming distance from the optimum. How-
ever, in this case, unlike the “needle-in-a-haystack” land-
scape, the optimal string dominates for any mutation rate,
though the probability to find it decreases as the mutation
rate increases. Cooperation here between “signals” (Ham-
ming classes) is total and competition is absent resulting in
a situation where these signals act effectively as one wide
signal.

So, generally, the 1/N and error threshold heuristics are
too universal. Canonically, they are too high for search in
landscapes with multiple correlated peaks. Uncorrelated
landscapes require a higher mutation rate than correlated
ones, while landscapes with anti-correlation, i.e., with “de-
ceptive” peaks, require even higher rates. Of course, one can
argue that a complicated landscape can exhibit all these
features. A mutation rate well below the 1/N and error
thresholds is recommendable in the case where either there
are weak peaks that are quite close in fitness value and
Hamming distance to the optimum or when the optimum
is present in the population, and values well above those are
recommendable when there are robust suboptimal signals
far away from the optimum and the optimum is not present
in the population.

4. A RANK BASED VARIATION GENETIC
ALGORITHM - RANK GA

In section 3 we argued that knowledge of the fitness land-
scape under consideration can aid in the choice of a suitable
mutation rate. However, we saw that the range of poten-
tial optimal rates was very large, depending not only on the
landscape but also on the current state of the population.
In many search problems detailed knowledge of the fitness
landscape is not readily at hand. The question then is, how
can the above lessons be applied to such “black box” search
problems? Below we describe the proposed method to deal
with these difficulties. Since this method is an extension of
that described in [4] we cite it accordingly.

4.1 Rank Proportional Mutation Regime
Given that the optimal mutation rate covers a large range,

the first lesson to be learned is to assign a large range of pos-
sible mutation rates to the population [4]. Secondly, we have
to choose which individuals will have a certain mutation rate
applied [4]. We thus define a rank-based mutation operator
such that in a given generation t it is applied in the following
way:

The mutation rate range Rm will be specified by a mini-
mum and maximum mutation rate - pmin and pmax respec-
tively [4]. As we have seen in section 3 a natural range to
cover “any” eventuality is pmin = 0, pmax = 1 [4]. Clearly, if
there is knowledge of the fitness landscape details and the
population status, then a lower pmax or a higher pmin may
be appropriate but if not, a lower pmax, for instance, could
leave out some mutation rates that may be just the optimal
ones for the current problem.

The next step is to divide the current population into m
groups Obviously, if m = 1 then we have the configuration
of the SGA, i.e. the same mutation rate is applied to the
whole population. At the other extreme, if m = s, s be-
ing the population size, then every individual is associated
with their own mutation rate. By making such a rule we
are essentially turning the population from one where the
exploration aspect of search is the same, to one where it is
different for every individual (in [4] the concept of groups is
not present but it is equivalent to using m = s).

Having defined m groups, the next step is to choose from
Rm a set of m mutation rates. Here we will use the simple
deterministic rule of choosing the m mutation rates such
that (pmax − pmin) is divided into m equal parts (as in [4]).

The next step is to assign a given mutation rate to a
given group. The most simple method would be to do it
at random, but fixed in time, i.e. a given group is given a
mutation rate and keeps that mutation rate throughout the
evolution. Alternatively, a different mutation rate could be
assigned randomly every generation. Of course, by doing
so one is not taking advantage of any information that the
population possesses, for example in terms of the population
fitness values or the explicit genotypes present. Here, we will
consider assigning mutation rates according to the fitness
rank of the group, i.e. the average fitness of a group (a single
individual for our tests) is evaluated then the m groups are
ranked and mutation rates are assigned from pmin to pmax

according to their rank. The lowest mutation rate is assigned
to the top ranked group, the next lowest rate to the next
ranked etc., until the highest rate is assigned to the lowest

907

ranked group. In our case (as in [4]) this is done linearly:

px = pmin + (pmax − pmin) ∗ (Rank(x) − 1)/(m − 1) (1)

where px is the mutation rate assigned to individual x, and
Rank(x) is the rank (ranging from 1 to m with m > 1) of
the group of x in the (average) fitness sorted population (by
groups). The idea is to protect the top ranked groups and
exploit their genotypes while the worst groups are used to
perform exploration of the search space using all possible
mutation rates.

In the rest of the paper we work with a rank-based mu-
tation operator with the following parameters: pmin = 0,
pmax = 1; m = s (as in [4]). We use pmin = 0 to force
elitism (with respect to mutation), as the best individual
will never mutate. Often, using elitism in the SGA can pro-
duce too little genetic diversity due to excessive convergence
to the current optimum. With rank-based mutation using
pmax = 1 elitism is not a problem because there are always
some individuals that use low and some that use high mu-
tation rates, thus ensuring that part of the population is
exploiting (totally and partially) the best found genotype,
and part is exploring the search space. If a landscape has
correlations to the optimum then it is not unreasonable to
suppose that those individuals that are close to the opti-
mum in Rank are also likely to be close to it in Hamming
distance (although not necessarily). Thus, it is reasonable
to perform few mutations on these individuals if one wants
to follow the online signal provided by the current optimum.
However, other individuals farther away in the fitness rank-
ing will use higher mutation rates thus providing exploration
further away and making it possible to escape from the cur-
rently followed landscape signal, which is desirable in the
case that this signal leads to a local suboptimum.

4.2 Near-Rank Mating
When recombination is applied, selection has already acted

on the population filtering the worst individuals out but
maintaining some genetic diversity. So, this population con-
tains some good and some not so good individuals. A re-
combination of the best individual with the worst one is very
likely to destroy both rather than construct a better solution
because the worst can contain genes that are quite incom-
patible with those of the best. The same can happen if any
highly ranked individual is recombined with a low ranked
one. Two good individuals containing very different genetic
solutions but as good as each other have a high probability
to produce better offspring when recombined in case they
have found different building blocks of the global optimum.
This individuals would have a high probability to be nearly
ranked. Therefore one can also envision a rank-based re-
combination operator.

We chose a crossover operator such that only those indi-
viduals that are closely ranked in the fitness-sorted list are
allowed to crossover with probability 1. We set a maximum
rank difference between parents for mating as a fraction,
α = 5% of the number of individuals2 (as in [4]). We also
ensure that the current population best does not perform
crossover in order to guarantee that the algorithm remains
elitist (as in [4]).

We can anticipate that this Near-Rank mating procedure
will work in the following way: In the fitness sorted list, if the

2We have tested other values of α with the performance
being robust to different choices.

landscape has some modularity, individuals will be sorted
according to the number and value of the building blocks
they have already found. If a bad individual eventually finds
a block, it will escalate in the list and so it should have bet-
ter chances of being recombined with the next “level” of
individuals (with more building blocks) and, in case this
discovered block is not already present at that level, it will
have an enhanced probability of producing better offspring.
Distinct but nearly ranked individuals will tend to have the
same number of building blocks, some different and some
in common. When their genomes are recombined, crossover
points can be placed anywhere in the common blocks with-
out damaging them, thus the probability of recombining the
blocks that are distinct without damage increases.

The idea of recombining genotypically similar parents has
been tested for instance in [17, 18], in the context of Evolu-
tionary Multi-objective Optimization (EMOO). That work
reported quicker convergence to the so called Pareto Front
but also the negative effect of having low genetic diversity.
To overcome this, some parameters need to be adjusted to
every problem. In contrast, the method we are using, being
based only on fitness rank similarity, allows for the recom-
bination of two genotypically and/or phenotypically quite
distinct individuals thus providing more genetic diversity.

Another related work is the aforementioned paper [14],
where a fitness based probability of crossover as opposed
to the rank-based one we propose was used. This results
in a reduced probability of crossover for the best solutions
available in an attempt to protect them. However, this does
not recognize the possibility that recombining the very fit
solutions could lead to a better one in the case that they
contain equally valuable but different building blocks.

In [19] the probability of recombining similarly fit solu-
tions is increased as the number of generations approaches
a predefined number. The idea is that, after a number of
generations, the best individuals are protected from being
destroyed by recombinations with bad ones. One problem
with this is that they give no guidance to set this predefined
number of generations, so it can lead to stagnation in lo-
cal optima when this number is set too low because genetic
diversity is too limited, and if this number is set too high,
then good solutions are not protected for too much time.
So, when is it good to recombine dissimilarly fit parents?
It is clear that it is sometimes good, so this must always
be a possibility but also some kind of protection must be
provided for fit individuals. When the fit individuals have
found many building blocks of the global solution (highly
fit) and there is another individual that has found only one
building block (lowly fit) but that has not been found by the
good ones yet, a recombination between these could produce
the addition of all the found building blocks even if their
fitness values are very different. In our rank-based recom-
bination it is always possible to recombine individuals with
very dissimilar fitness values while good ones are protected
because most of them will be recombined with similar ones
(similarly ranked does not necessarily mean similarly fit nor
genetically similar but this is the most likely situation). For
instance, suppose 80% of the population has the same high
fitness value and the rest has the same low value. In such a
situation, the method in [19] would tend to recombine only
those with a similar fitness value while ours would recombine
a few from both groups, thus providing more genotypically
varied population but protecting most of the fit individuals.

908

1 . E + 0 41 . E + 0 51 . E + 0 61 . E + 0 7
0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0e f f o r t � s o r t e d r e p e t i t i o n s

eff ort
S G A 0 S G A 0 . 0 0 0 4 S G A 0 . 0 0 0 8 S G A 0 . 0 0 1 2S G A 0 . 0 0 1 6 S G A 0 . 0 0 2 R G A 1

Figure 1: Run Length Distribution (RLD) curves
for the Rank GA vs a “meta” SGA in the Counting
Ones landscape.

4.3 Intermediate Evaluations
The above described Rank-based operators are designed

under the assumption that all individuals are ranked accord-
ing to their fitness value. As these operators are applied
sequentially however, one must resort the population after
every step. Thus, after applying recombination, the result-
ing population is resorted before applying mutation which
implies a fitness reevaluation in case it changed.

Including this reevaluation after recombination is not so
unnatural from a biological point of view if one thinks of
mutation as an operator that can also act on the individu-
als during the period from their birth (after recombination)
through to their reproductive maturity (adaptation to the
environment). In this sense, Rank-Mutation affects more
those individuals that inherited bad traits from their par-
ents and less on those who inherited good ones.

5. PERFORMANCE OF THE RANK GA
In this section we present plots of the characteristic search

curves by landscape type. We compare the Rank GA with a
“meta” SGA. The latter is tested with several different fixed
mutation rates in order to cover the best case for this param-
eter. The probability to perform crossover is set to 0.9 in the
SGA. In both algorithms the following applies: The popu-
lation size was always set to be N + 1; Fitness-proportional
selection; 2-point crossover; Parent replacement by two com-
plementary offspring.

We do not perform tests separately on each of the new op-
erators because they depend on each other and there is little
advantage in using them like that. The “normal” recom-
bination operator with Rank-based mutation would simply
be too destructive. Using Near-Rank recombination with a
fixed (normally low) mutation rate p produces protection for
the best individuals but also faster convergence which could
be compensated by increasing p. This is good but needs fine
tuning in each case. Besides, intermediate evaluations are
only meaningful when both operators are Rank-based.

5.1 Counting Ones
This is the easiest of all landscapes since the whole land-

scape leads the population to the optimum. In Figure 1 we
see the results with N = 100 and a population size of 101
individuals. Labels show Algorithm type and for the SGA

1 . E + 0 31 . E + 0 41 . E + 0 51 . E + 0 6
0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0e f f o r t ; s o r t e d r e p e t i t i o n s

eff ort
S G A I 0 . 0 2 S G A I 0 . 0 5 S G A I 0 . 0 6 2 5S G A I 0 . 1 S G A I 0 . 2 S G A I 0 . 3S G A I 0 . 4 S G A I 0 . 5 R G A I 1

Figure 2: RLD curves for the Rank GA vs a “meta”
SGA in the DTrap landscape.

also mutation rate, for the Rank GA pmax = 1 is shown. As
can be seen, for the SGA the best mutation rate is 0 (circles)
or at least something very close to 0. This means that the
principal search operator in this case is recombination. For
p ∼ 0.0012 the corresponding SGA appears to be as good as
the Rank GA (marked with Xs) in their worst case. Higher
mutation rates in the SGA only make it worse. This is no-
table because this mutation rate is very low. The heuristic
1/N here gives p ∼ 0.01, which is much higher than the plot-
ted values, meaning that the performance of the SGA with
this value must be much worse according to the tendency
observed in the graph. So this results show how the Rank
GA is quite well “tuned” for such an easy landscape.

5.2 Deceptive Trap - DTrap
The DTrap landscape is considered a difficult one since the

whole landscape leads, by selection, the search away from
the optimum. Our instance of this landscape was created
from the counting ones landscape with the only difference
that the string with all 0s has been assigned with a fitness
value greater than that of the string with all 1s. In Figure 2
we show the Run Length Distribution curves for this land-
scape where N = 16 and population size is 17. The best
case for the SGA is obtained by choosing a very high muta-
tion rate (0.5), i.e., random search (squares at the bottom).
Here we have that 1/N = 0.0625, for which the correspond-
ing curve of the SGA must be a little bit worse than the
one for 0.05 (plotted in filled squares at the top) which is
very bad compared to the Rank GA (marked with Xs). The
Rank GA performs a little bit worse than random search
but note that it is exactly the same algorithm used above
for the counting ones landscape while the SGA had to use a
radically different mutation rate in order to be “optimal”.

5.3 Two Anticorrelated Signals
This landscape with N = 20 consists of an optimal nee-

dle corresponding to one genotype at one vertex of the hy-
percube, and another more robust signal consisting of the
antipode of the needle and also those states at Hamming
distance one from the antipode. The rest of the landscape
is flat. As can be seen in Figure 3 the Rank GA (marked
with Xs), performs just a little bit worse than the best case
of the “meta” SGA which is the one that used a mutation
rate p = 1, radically different than the usual values. If a typ-
ical setting of the mutation rate for the SGA or that of the

909

1 . E + 0 4
1 . E + 0 5
1 . E + 0 6

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0e f f o r t e s o r t e d r e p e t i t i o n s
eff ort

S G A s 0 . 0 2 S G A s 0 . 0 5 S G A s 0 . 3 S G A s 0 . 5S G A s 0 . 9 9 S G A s 0 . 9 9 9 S G A s 1 R G A s 1
Figure 3: RLD curves for the Rank GA vs a “meta”
SGA in a landscape with two anticorrelated signals.

1/N = 0.05 heuristic or a lower value is used, then the corre-
sponding performance is bad. The corresponding algorithm
basically never finds the optimum. The SGA can perform
much better than random search but only by using a muta-
tion rate very close to 1 which is very unusual. Interestingly,
this mutation rate was not useful in the DTrap case above,
although both landscapes have a deceptive signal that tends
to take the population away from the optimum.

This difference with the DTrap in case of the SGA can
be understood in terms of the strengths of the deceptive
signal in the neighborhoods of both the optimum and its an-
tipode. In the DTrap a mutation rate close to 1 does not
help because, in that case, when the population is nearby
the optimum’s antipode, it is attracted (by selection) to this
antipode with a strength say A and in the next generation,
this population is then closer to the optimum (because p is
close to 1), but now the deceptive signal repels the popula-
tion away from the optimum with a strength say R. If both
strengths A and R are equal then they cancel the overall
effect so that the population never gets closer to the opti-
mum’s antipode and consequently neither to the optimum.
If in a deceptive landscape A was weaker than R (this is
the case if the deceptive signal has low gradient nearby the
optimum’s antipode and a high gradient nearby the opti-
mum) the population gets gradually away from the opti-
mum. In the landscape tested here R = 0 because nearby
the optimum the landscape is flat and A > 0 because the
anticorrelated signal is degenerate and individuals closer to
the optimum’s antipode are more selected, thus, selection
attracts the population to the optimum’s antipode in one
generation and then, when the mutation rate close to 1 is
applied, there is no repulsion from the optimum. This gets
the population closer and closer to the optimum’s antipode
alternating in each generation with being closer to the op-
timum. When the optimum’s antipode is reached, there is
a high probability that in the next generation the optimum
will be found.

The Rank GA also behaves differently than in the case of
the DTrap but the explanation we found for the Rank GA
is another one. In the DTrap, the rank of the individuals
is always related with their Hamming distances to the opti-
mum’s antipode, while in this landscape, only a few of them
have the same fitness than the optimum’s antipode (2) and
the rest have the same lower fitness value (1). In such a case,
the rank of the good individuals ranges from 1 to some (low)

1 . E + 0 31 . E + 0 41 . E + 0 51 . E + 0 6
0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0e f f o r t � s o r t e d r e p e t i t i o n s

eff ort
S G A � 0 . 0 0 2 5 S G A � 0 . 0 0 5 S G A � 0 . 0 0 7 5 S G A � 0 . 0 0 8S G A � 0 . 0 0 8 5 S G A � 0 . 0 0 9 S G A � 0 . 0 0 9 5 S G A � 0 . 0 1S G A � 0 . 0 1 2 5 S G A � 0 . 0 3 3 3 R G A � 1

Figure 4: RLD curves for the Rank GA vs a “meta”
SGA in a landscape with one suboptimal needle
close to the optimal needle. The population is ini-
tialized at the subneedle.

value randomly, since any of them can be ranked as num-
ber 1. The rest of the individuals are ranked also randomly
with the rest of the positions. Since selection eliminates un-
fit individuals replacing them with fit ones, when mutation
is applied, there are more mutants that come from the fit
individuals (at the suboptimal signal) which in turn happen
to use low mutation rates. Thus, there are more unfit indi-
viduals close to the suboptimal signal than far away. The
next time mutation is applied, some of these will use very
high mutation rates and consequently explore the opposite
side of the vicinity of the suboptimal signal which is close
to the optimum. This effectively means that there are two
“clouds” of individuals, one searching around the optimum’s
antipode and another around the optimum. This obviously
increases the probability to eventually hit the optimum.

We think this landscape shows an extreme case of a non-
cooperative signal and how a SGA needs a very unusual
mutation rate to solve it efficiently, the usual mutation rate
heuristics being very poor while the Rank GA shows that it
can search at the antipode of the current best signal given
that the rest of the landscape is flat.

5.4 Two Correlated Signals
Here we will see how well the algorithms perform search

starting from a population that is concentrated at a subop-
timal peak when the optimum is nearby. In this case we
have a two needle NIAH landscape where we set the initial
population to be located at a suboptimal needle with this
needle twice as fit as the hay G = 2. The optimum was
set at a Hamming distance 3 from the suboptimum. Here,
N = 30. In Figure 4 we see the results for this case. It is
clear here that the Rank GA (Xs) has an advantage over
any of the SGA implementations. Random search in this
case is very bad and is not plotted.

The reason for the bad performance of the SGA is that, in
order to explore around the suboptimum, higher mutation
rates are needed, but that proves to be too destructive and
as a result the suboptimum frequently becomes extinct, thus
leaving the population to be driven only by genetic drift
since the rest of the landscape is flat and there is no signal in
the population to direct the population (and search) close to
the optimum. The Rank GA has no problem in keeping the
suboptimum always present while exploring both close and

910

1 . E + 0 11 . E + 0 21 . E + 0 31 . E + 0 41 . E + 0 51 . E + 0 6
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 991 2 3 4 5H D , e f f o r t Ã s o r t e d r e p e t i t i o n s

eff ort
S G A Ñ 0 . 0 1 S G A Ñ 0 . 0 1 4 S G A Ñ 0 . 0 1 8 S G A Ñ 0 . 0 2 2S G A Ñ 0 . 0 2 6 S G A Ñ 0 . 0 3 S G A Ñ 0 . 0 3 4 S G A Ñ 0 . 0 3 8S G A Ñ 0 . 0 4 2 S G A Ñ 0 . 0 5 S G A Ñ 0 . 5 R G A Ñ 1

Figure 5: RLD curves for the Rank GA vs a “meta”
SGA in a landscape with one suboptimal needle at
different hamming distances from the optimal nee-
dle. The population is initialized at the subneedle.

far away from it, irrespective of whether the suboptimum is
very robust or not.

As a function of the Hamming distance of the optimum
from the suboptimal peak, one can see in Figure 5 (made
with N = 20, G = 4) that for low Hamming distances the
SGA has better performance than the Rank GA. Nevertheless,
those are the easiest cases and the Rank GA can solve them
easily too. The advantage of the Rank GA becomes evident
when the SGA cannot reach the optimum with low muta-
tion rates and thus has to use higher mutation rates than
the current optimum’s critical mutation rate, with the con-
sequent loss of the current signal in the population which
then becomes just random search. The Rank GA, in con-
trast, is able to perform search locally and in a wider “ra-
dius” without losing the current optimum’s signal, thereby
increasing the chances of escaping from the local subopti-
mum and finding a nearby optimum. But, how much of this
can be achieved using simple elitism in the SGA? In this case
the population gets more concentrated around the current
best, which is in fact a negative trait since exploration is
limited. If then higher mutation rates are used, local search
is affected.

5.5 Concatenated Blocks
In this case we test the ability of the algorithms to keep

and exploit partial solutions of the landscape while at the
same time keep on exploring the search space. We show in
Figure 6, results for 3 concatenated 4-bit NIAH landscapes
(left) and 3 concatenated 4-bit DTrap landscapes (right). In
both cases the best results are those of the Rank GA (Xs).
For the NIAH blocks (left), the SGA always performs better
than random search (squares), the best mutation rate value
being very low but not 0. Recombination is in this case the
principal search operator. Since both algorithms perform
better than random search, one can say that they are able
to exploit the modularity of the landscape by “completing”
the optimum in one of the blocks and exploiting it while
exploring for the optimum in the other blocks. Here p =
1/N = 0.0833 is a little bit off the range we used in the plot

1 . E + 0 2
1 . E + 0 3
1 . E + 0 4

0 1 2 3 4 5 6 7 8 91 01 11 21 31 41 51 61 71 81 92 02 12 22 32 42 52 62 72 82 93 03 13 23 33 43 53 63 73 83 94 04 14 24 34 44 54 64 74 84 95 05 15 25 35 45 55 65 75 85 96 06 16 26 36 46 56 66 76 86 97 07 17 27 37 47 57 67 77 87 98 08 18 28 38 48 58 68 78 88 99 09 19 29 39 49 59 69 79 89 90 1 2 3 4 5 6 7 8 91 01 11 21 31 41 51 61 71 81 92 02 12 22 32 42 52 62 72 82 93 03 13 23 33 43 53 63 73 83 94 04 14 24 34 44 54 64 74 84 95 05 15 25 35 45 55 65 75 85 96 06 16 26 36 46 56 66 76 86 97 07 17 27 37 47 57 67 77 87 98 08 18 28 38 48 58 68 78 88 99 09 19 29 39 49 59 69 79 89 9N I A H D e c T r a pB l o c k T y p e , e f f o r t � s o r t e d r e p e t i t i o n s
eff ort

S G A � 0 S G A � 0 . 0 0 4 S G A � 0 . 0 0 8 S G A � 0 . 0 1 2S G A � 0 . 0 1 6 S G A � 0 . 0 2 S G A � 0 . 0 3 S G A � 0 . 0 4S G A � 0 . 5 R G A � 1
Figure 6: RLD curves for the Rank GA vs a “meta”
SGA in the Concatenated Blocks landscape. NIAH
blocks (left), DTrap blocks (right).

but one can see that its curve would be between the one
for p = 0.5 and p = 0.04 making it evident that it is far
from optimal. On the other hand, for the Dec-Trap blocks
landscape (right) we see a very different result for the SGA.
Now all the SGA cases are worse than random search as
high mutation rates are required in order to have sufficient
exploration so that the optimum of a block may be found,
while, at the same time, low mutation rates are needed in
order to keep the optimum of a block while the other ones are
being discovered. This is clearly contradictory and cannot
be solved by the SGA. Note that the curve for p = 1/N is
very close to random search. On the other hand, in both
cases the modularity of the landscape has strongly favoured
the Rank GA (compared with the cases where there is only
one big block) because it is able to keep any string with
at least one optimal block while at the same time keeps on
exploring. Then, when two individuals have found different
optimal blocks, the algorithm via recombination manages
to build a solution with more optimal blocks from these two
and keep it while waiting for further improvements through
recombinations with individuals that find the other optimal
blocks. In this way the problem is effectively split into 3
smaller (4-bit) DTrap problems. This case is a very good
example of a punctuated equilibrium that is very common
in real world landscapes.

6. CONCLUSIONS
We have seen that the optimal mutation rate for the SGA

depends on several features of the fitness landscape as well
as the population state. This leads to the conclusion that
if a problem is to be solved efficiently then a suitable muta-
tion rate needs to be found for each problem instance and
even at different stages of the same run of the algorithm.
Consequently, the SGA with a fixed mutation rate is not
such a general-purpose algorithm. When it is well tuned for
some situations it is necessarily badly tuned for others. Uni-
versal heuristics such as 1/N or the error threshold in this
sense are compromises trying to make the best of a bad job.
Rank-based GAs offer a very simple to implement robust al-
ternative to the SGA, offering an adequate dynamic balance

911

between exploration and exploitation for commonly found
situations in search. They are also an interesting alterna-
tive to using a more computationally expensive self-adaptive
algorithm that evolves the mutation rate. They need no tun-
ing in the mutation rate when a single run transits from one
regime to another (punctuated equilibria) wherein different
mutation rates are required, not to mention when the land-
scape itself is time dependent. The chances of stagnating
are minimal.

One could think of the Rank GAs presented here as mod-
els of societies, in which every individual (or group) is ob-
sessed with being more successful than any other. To do this
they are informed of their relative success (fitness) at any
time. The top ranked individuals tend to stay unchanged
while others tend to try different strategies (mutate) pro-
viding a chance to escape from local optima. At the same
time, mating is performed only between similarly ranked in-
dividuals thus protecting successful genotypes while trying
new combinations of their elements within a restricted scope
which provides the possibility to solve modular landscapes.
This mechanism has a positive effect in “black box” search
spaces because it performs search in the near and far neigh-
borhood of the current best individual, without loosing it,
in two ways: by mutations and by recombinations.

We saw, particularly that the Rank GA offers several ad-
vantages when considering landscapes that have correlations
(nearby peaks leading to the optimum) and/or modularity
(with difficult to find block optima) - both of these being
commonplace in real world problems. The Rank GA is able
to follow every correlation present in the peaks of the land-
scape that lead to higher (better) ones regardless of their
width or degeneracy (if two signals are equally fit, the more
robust is followed) and having as worst case something very
similar to random search (while a SGA performs much worse
than random search). So if this algorithm performs better
than random search it is an indicative that there are useful
correlations in the landscape and viceversa. This algorithm
can be useful, for instance, as an evaluation tool for different
representations of the same problem. A good representation
is one that contains the best “royal” road to the optimum by
means of signals that attract the population faster to it. Af-
ter evaluating many different representations with the Rank
GA, one could make an analysis of what are the common
traits present in those representations that were good and
try to extract knowledge from that.

This kind of differential evolution could also, in principle,
be applied to other adaptive systems such as game agents
or evolving neural networks for instance.

7. REFERENCES
[1] J.J. Grefenstette, Optimisation of Control Parameters

for Genetic Algorithms, IEEE Trans SMC, 16(1),
122-128 (1986).

[2] T. Bäck, Optimal Mutation Rates in Genetic Search.
In Proceedings of ICGA 5, ed. S. Forrest, 2-8, Morgan
Kaufmann (1993).

[3] J. Cervantes, C. R. Stephens, “Optimal” mutation
rates for genetic search. Proceedings of Genetic and
Evolutionary Computation Conference (GECCO) 06,
pp 1313-1320, Maarten Keijzer et. al. (2006).

[4] J. Cervantes, C. R. Stephens, A Rank Proportional
Generic Genetic Algorithm. Lecture Series on

Computer and Computational Sciences, Volume 7,
2006, pp 71-74. Brill Academic Publishers.

[5] H. Mühlenbein, How Genetic Algorithms Really Work:
Mutation and Hill Climbing, PPSN II, ed.s B. Männer
and R. Manderick, 15-25, North Holland (1992).

[6] T. Bäck, Self-adaptation in Genetic Algorithms, In
Proceedings of 1st European Conference on Artificial
Life, 263-271 MIT Press (1991).

[7] J. Hesser and R. Männer, Towards an Optimal
Mutation Probability for Genetic Algorithms, LNCS
496, ed. H.P. Schwefel, Springer Verlag (1991).

[8] T.C. Fogarty, Varying the Probability of Mutation in
the Genetic Algorithm, ICGA 3, ed. J.D. Schaffer,
104-109, Morgan-Kaufmann (1989).

[9] C.R. Stephens, I. Garcia Olmedo, J. Mora Vargas and
H. Waelbroeck, Self-Adaptation in Evolving Systems,
Artificial Life, Vol. 4, Issue 2, 183-201 (1998).

[10] J.E. Smith and T.C. Fogarty, Self Adaptation of
Mutation Rates in a Steady State Genetic Algorithm,
Proceedings of CEC, 318 - 323, IEEE Press (1996).

[11] G. Ochoa, I. Harvey and H. Buxton, Error Thresholds
and their Relation to Optimal Mutation Rates. In D.
Floreano, J-D. Nicoud, and F. Mondada (Eds.)
ECAL’99, Lecture Notes in Artificial Intelligence
1674, pp 54-63, Springer-Verlag, Berlin (1999).

[12] G. Ochoa, Setting the Mutation Rate: Scope and
Limitations of the 1/L Heuristics, GECCO-2002, pp
315-322, Morgan Kaufmann, San Francisco, CA
(2002).

[13] G. Ochoa, Error Thresholds in Genetic Algorithms.
Evolutionary Computation, MIT Press (in press).

[14] M. Srinivas, Lait M. Patnaik. Adaptive probabilities
of crossover and mutation in genetic algorithms. IEEE
Transactions on Systems, Man and Cybernetics,
24(4):656-667, April 1994.

[15] M. Sewell, J. Samarabandu, R. Rodrigo, and K.
McIsaac. The Rank-scaled Mutation Rate for Genetic
Algorithms. International Journal of Information
Technology, Volume 3 Number 1, 2006.

[16] H. Hoos, T. Stützle. Evaluating Las Vegas Algorithms:
Pitfalls and Remedies. Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence,
UAI-98 pages 238-245, Morgan Kaufmann Publishers,
San Francisco CA, 1998.

[17] H. Ishibuchi and Y. Shibata. A Similarity-Based
Mating Scheme for Evolutionary Multiobjective
Optimization. E.Cantú-Paz et al.(Eds.):GECCO 2003,
LNCS 2723, pp.1065 1076,2003. Copyright Springer
Verlag Berlin Heidelberg 2003.

[18] H. Ishibuchi and K. Narukawa. Recombination of
similar parents in EMO algorithms. Lecture Notes in
Computer Science 3410:Evolutionary Multi-Criterion
Optimization, pp.265-279, Springer, Berlin, March
2005.

[19] G. Chakraborty, K. Hoshi. Rank Based Crossover - A
new technique to improve the speed and Quality of
convergence in GA. Proceedings of the 1999 Congress
on Evolutionary Computation, CEC 99.

912

