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ABSTRACT

Evolutionary algorithms operating on bit strings usually em-
ploy a global mutation where each bit is flipped indepen-
dently with some mutation probability. Most often the mu-
tation probability is set fixed in a way that on average ex-
actly one bit is flipped in a mutation. A seemingly very
similar concept is a local one realized by an operator that
flips exactly one bit chosen uniformly at random.

Most known results indicate that the global approach leads
to run-times at least as good as the local approach. The
draw-back is that the global approach is much harder to an-
alyze. It would therefore be highly useful to derive general
principles of when and how results for the local operator
extend to the global ones.

In this paper, we show that there is little hope for such
general principles, even under very favorable conditions. We
show that there is a fitness function such that the local oper-
ator from each initial search point finds the optimum in small
polynomial time, whereas the global operator for almost all
initial search points needs a weakly exponential time.
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1. INTRODUCTION
Evolutionary algorithms (EAs) are typically described as

robust general problem solvers. They are able to perform
a global search different from gradient-descent methods or
hill-climbers, which easily are trapped in local optima.

It is in fact easy to prove that evolutionary algorithms
find a global optimum with probability converging to 1 with
time if they make use of a positive mutation operator, i. e., a
mutation that changes any point in the search space to any
other point in the search space with positive probability.
If an EA operates on bit strings of fixed length n, the most
commonly used mutation operator is standard bit mutation.
With standard bit mutation, each bit is flipped indepen-
dently with a fixed mutation probability pm. The most rec-
ommended choice for the mutation probability is pm = 1/n.

Clearly, with mutation probability pm = 1/n, on aver-
age exactly 1 bit is flipped in each mutation. Therefore,
it seems to be a small change to replace standard bit mu-
tation by a local mutation operator that flips exactly one
bit chosen uniformly at random. However, with such a local
mutation operator the EA may now get stuck in a local opti-
mum, and consequently, the probability to finally reach the
global optimum might no longer converge to 1 with time.
In addition, most results indicate that the local operator in
case of convergence leads to similar run-times as the global
one. Therefore, one might be tempted to believe that the
global operator generally is superior to the local one. Since
typically rigorous analyses for the global operator are much
harder than for the local one, general results of how a good
optimization behavior of the local operator extends to the
global one would be highly desirable.

When analyzing such general phenomena of evolutionary
algorithms one often considers particularly simple evolution-
ary algorithms to facilitate a rigorous analysis. The proba-
bly most simple example is the well-known (1+1) EA. It uses
a population of size only 1, produces only 1 offspring using
standard bit mutation and a plus-selection. Thus, the par-
ent x is replaced by its offspring y if and only if f(y) ≥ f(x)
holds (assuming that we want to maximize the fitness func-
tion f). If we replace standard bit mutation by a local mu-
tation operator that flips exactly one bit chosen uniformly
at random, we obtain an algorithm that is well known as
randomized local search (RLS). Since RLS is a hill-climber
and no evolutionary algorithm, the (1+1) EA is right on the
borderline and a comparison of RLS and the (1+1) EA is a
comparison between an evolutionary algorithm and a sim-
pler search heuristic. This is one motivation for comparing
the performance of these two algorithms in a rigorous way.
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As indicated above, in many cases the analysis of RLS is
much simpler than that of the (1+1) EA. For example, for
linear functions an upper bound of O (n log n) for the ex-
pected optimization time of RLS follows as a direct conse-
quence of the coupon collector’s theorem [8], simply because
it suffices that each bit was touched once by the algorithm.

For the (1+1) EA, things are more complicated. The rea-
son is that mutations involving more than one bit may result
in some bits being flipped“in the wrong direction”. Hence to
prove the O(n log n) bound, which holds as well, much more
work is necessary. Currently, there are two proofs for this re-
sults, a rather complicated analysis making use of a potential
function [4] and one using deep methods like drift analysis
[5]. Hence a simple results telling that (under certain con-
ditions) results for RLS carry over to the (1+1) EA would
be highly desirable. Even a by far less precise statement de-
scribing for which functions a polynomial upper bound on
the expected optimization time for RLS implies some (other)
polynomial upper bound on the expected optimization time
for the (1+1) EA would be of interest.

In this paper, however, we show that such a character-
ization is unlikely to exist. Even under relatively strong
conditions, namely that RLS finds the optimum from any
initial search point in polynomial time, it can happen that
the (1+1) EA needs weakly exponential time to find the op-
timum for almost all initial search points. This shows that
the existence of more-bit flips can significantly put the EA
behind.

In the next section we give precise formal definitions of
the (1+1) EA and RLS, describe our analytical model, and
define useful tools. First simple results showing extreme
performance differences are presented and discussed in Sec-
tion 3. We discuss what intuition follows from these exam-
ples and prove this intuition wrong in Section 4. Finally, we
conclude and discuss directions of possible future research
in Section 5.

2. ALGORITHMS AND

ANALYTICAL FRAMEWORK
We begin the formal description of our objects of study

with the definition of the two algorithms under considera-
tion, randomized local search (RLS) and the (1+1) evolu-
tionary algorithm ((1+1) EA). We describe both algorithms
without stopping criterion since we are interested in the first
hitting time of a global optimum. By yi we denote the i-th
bit in a bit-string y ∈ {0, 1}n.

Algorithm 1 ((1+1) EA).
1. Initialization

Choose x(1) ∈ {0, 1}n uniformly at random. Set t := 1.
2. Mutation

Set y := x(t). Independently for each i ∈ {1, 2, . . . , n},
with probability 1/n set yi := 1 − yi.

3. Selection

If f(y) ≥ f(x(t)) Then x(t+1) := y Else x(t+1) := x(t).
4. Set t := t + 1. Continue at line 2.

Algorithm 2 (Randomized Local Search (RLS)).
1. Initialization

Choose x(1) ∈ {0, 1}n uniformly at random. Set t := 1.
2. Random Selection from Neighborhood

Choose y ∈
n

x | H
“

x, x(t)
”

= 1
o

uniformly at random.

3. Hill Climbing

If f(y) ≥ f(x(t)) Then x(t+1) := y Else x(t+1) := x(t).
4. Set t := t + 1. Continue at line 2.

Clearly, the (1+1) EA (Algorithm 1) and RLS (Algo-
rithm 2) differ only in the way the next potential search
point is chosen in line 2. As we shall discuss in the following,
this can make a huge difference in performance. As usual,
we measure the performance of our algorithms by means of
the so-called optimization time.

Definition 3. Let f : {0, 1}n → R. Denote by

OPT(f) := max
˘

f(x′) | x′ ∈ {0, 1}n¯

the maximum value of f , and by

T(1+1)-EA,f := min
n

t ∈ N | f(x(t)) = OPT(f)
o

and

TRLS,f := min
n

t ∈ N | f(x(t)) = OPT(f)
o

the optimization times of the (1+1) EA and RLS, respec-
tively, on f .

Clearly, T(1+1)-EA,f and TRLS,f are random variables. We
are mostly interested in their mean values, called expected
optimization time. Starting one of the algorithms A and
letting it run for TA,f steps is called a run of the algorithm.
Since the optimization time is non-negative, it follows from
Markov’s inequality that if the expected optimization time
is small then the probability for long runs cannot be close
to 1. Large lower bounds on the expected optimization time,
however, can be misleading: It is still possible that with
probability close to 1 a run will be short. Therefore, in the
case of lower bounds, we are also interested in lower bounds
for the probability that a single run will take long.

We take the usual approach in the analysis of (random-
ized) algorithms and concentrate on the asymptotic behavior
using the well-known Landau symbols O, Ω, Θ, o, and ω,
see, e. g., [1]. We remark that these notions are not only
well-defined for functions t : N → R

+
0 but also for functions

t : N → R
+
0 where N ⊆ N is an infinite set.

To construct the fitness function in Section 4, we use the
well-known long k-paths. These paths, that can be easily
extended to unimodal functions, were first introduced by
Horn, Goldberg, and Deb [6], and later formally defined in
the general form by Rudolph [10, 9].

Definition 4. Let n ≥ 1. For all k > 1 that fulfill (n −
1)/k ∈ N, the long k-path of dimension n, denoted by P n

k , is
a sequence of bit strings from {0, 1}n defined as follows. The
long k-path of dimension 1 is defined by P 1

k := (0, 1). The
long k-path of dimension n is defined via the long k-path of
dimension n−k, P n−k

k , as follows. Let the long k-path of di-

mension n−k be given by P n−k
k = (v1, . . . , vl). Then we de-

fine the sequences of bit strings S0, Bn, and S1 from {0, 1}n,
where S0 := (0kv1, 0kv2, . . . , 0kvl), S1 := (1kvl, 1kvl−1,
. . . , 1kv1), and Bn := (0k−11vl, 0k−211vl, . . . , 01k−1vl). The
points in Bn build a bridge between the points in S0 and S1,
that differ in the k leading bits. Therefore, the points in Bn

are called bridge points. The resulting long k-path P n
k is

constructed by appending S0, Bn, and S1, so P n
k is a se-

quence of |P n
k | = |S0| + |Bn| + |S1| points. We call |P n

k | the
length of P n

k . The i-th point on the path P n
k is denoted as

pi, pi+j is called the j-th successor of pi.
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It is known that the (1+1) EA started in the first half of
P n√

n−1 (assuming that (n − 1)/
√

n − 1 ∈ N holds) needs an

expected number of Θ
“

n3/2 · 2
√

n
”

steps to reach the path’s

end. Also, with probability 1− o(1), o
“

n3/2 · 2
√

n
”

steps do

not suffice to do so [3].
The recursive definition of long k-paths allows us to de-

termine the length of the paths easily.

Lemma 5. The long k-path of dimension n has length
|P n

k | = (k + 1)2(n−1)/k − k + 1. All points of the path are
different.

A proof of this lemma can be found in [10].
The most important property of long k-paths are the regu-

lar rules, that hold for the Hamming distances between each
point and its successors.

Lemma 6. Let n, k ∈ N be such that the long k-path P n
k

is well defined and let p1, . . . , p|P n

k
| denote its points. Then

for all 1 ≤ i < j ≤ |P n
k | with j − i < k the following holds:

a) The Hamming distance of the points pi and pj is
H (pi, pj) = j − i.

b) For all i < ℓ ≤ |P n
k |, ℓ 6= j it holds that

H (pi, pℓ) 6= j − i.

Proof. Again the proof is carried out by induction. The
statement is obviously true for n = 1 and all values of
k. Assume that it holds for P n−k

k . We know that P n
k is

constructed by appending S0, Bn, and S1, with |P n
k | =

(k+1)2(n−1)/k−k+1, |S0| = |S1| = (k+1)2(n−k−1)/k−k+1,
and |Bn| = k − 1. We distinguish several cases according to
where on P n

k the points pi and pj lie.
If i < |S0| and j ≤ |S0|, then the statement holds by

assumption, since S0 has the same structure as P n−k
k .

If i ≤ |S0| and |S0| < j ≤ |S0| + |Bn|, then the Hamming
distance of pi to the last point in S0 is |S0| − i which is
at least 0 and less than k by the assumption j − i < k.
By definition of Bn the ℓ-th point in Bn differs from the
last point of S0 in ℓ bits, so there is exactly 1 point in Bn

with Hamming distance j − i. All points in S1 have greater
Hamming distance, since the first k bits of points in S0 and
S1 are all different.

If |S0| < i < |S0| + |Bn| and j ≤ |S0| + |Bn|, the state-
ment is obviously true. All points in Bn just differ on the
first k bits, the Hamming distance of any point to its ℓ-th
successor is ℓ, so pi has exactly 1 successor in Bn with Ham-
ming distance j − i. All points in S1 have greater Hamming
distance.

If |S0| < i ≤ |S0|+ |Bn| and |S0|+ |Bn| < j hold, then the
situation is essentially the same as for the second case. The
parts S1 and S0 have the same structure, only the k leading
bits differ and the ordering of S1 is reversed. So the same
remarks apply.

Finally, if |S0|+ |Bn| < i, the statement holds by assump-
tion, since S1 has the same structure as P n−k

k .

We already mentioned that long k-paths can easily be em-
bedded in a unimodal function. For the sake of complete-
ness, we give a formal definition of unimodality.

Definition 7. For a function f : {0, 1}n → R, some x ∈
{0, 1}n is called local optimum if for all y ∈ {0, 1}n with

H (x, y) = 1 the inequality f(x) ≥ f(y) holds. The function
f is called unimodal if it has exactly one local optimum. The
function f is called weakly unimodal if all local optima have
equal function value.

3. EXTREMEDIFFERENCES IN PERFOR-

MANCE
In this section, we reiterate some known results on per-

formance differences of RLS and the (1+1) EA. Most of the
material is not completely new, but it helps to understand
the next section. In particular, we show that RLS can have
an exponentially larger expected optimization time even on
unimodal functions (that have no local optima other than
the global one). We then show an example where RLS with

probability 1 − 2−Ω(n) finds the optimum in Θ(n2) steps,

whereas the (1+1) EA with probability 1− 2−Ω(n) needs at
least 2n steps.

Since the local mutation is restricted to flipping only single
bits it can get stuck in local optima. Standard bit mutation,
on the other hand, reaches a global optimum with positive
probability from anywhere in the search space. Therefore, it
does not come as a surprise that this can lead to extremely
large performance differences and enormously different prob-
abilities of finding an optimal point at all. We consider the
following fitness function f1 as a concrete example.

Definition 8. The function f1 : {0, 1}n → R is defined
by

f1(x) :=

8

<

:

2 +
n

P

i=1

xi if
n

P

i=1

xi 6= n − 1

1 otherwise

for any x ∈ {0, 1}n.

The function f1 is known as Jump2 [4]. It has 1n with
f1(1

n) = n + 2 as unique global optimum, all x ∈ {0, 1}n

containing exactly 2 0-bits are local optima. It is known and
easy to see that E

`

T(1+1) EA,f1

´

= O
`

n2
´

holds [4]. RLS,
however, fails to optimize f1 with probability overwhelm-
ingly close to 1.

Theorem 9. RLS fails to find the global optimum of f1

with probability 1 − 2−(n−1).

Proof. RLS cannot reach the global optimum 1n if some
x ∈ {0, 1}n with at least 2 0-bits is reached. Thus, the only
way to reach the global optimum is either to have it as initial
search point (with probability 2−n) or to have an initial
search point with exactly 1 0-bit (with probability n · 2−n)
and flip exactly the global optimum as first new point (with
probability 1/n). This leads to

2−n + n · 2−n · 1

n
= 2−(n−1)

for the probability to find the global optimum.

It comes as no surprise that local optima pose an obstacle
for local search. But if we restrict our attention to (weakly)
unimodal functions it is still easy to see that standard bit
mutation is able to find short cuts by exploiting some struc-
ture in the search space that cannot be exploited by means
of mutations of single bits. We consider long 2-paths as a
well-known example.
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Definition 10. For n ∈ N with (n− 1)/2 ∈ N the fitness
function f2 : {0, 1}n → R is defined by

f2(x) :=

8

<

:

n2 + l if x = pl ∈ P n
2

n2 − n ·
„

3
P

i=1

x[i]

«

−
n

P

i=4

x[i] otherwise

for any x ∈ {0, 1}n.

The definition of f2 coincides with the definition of Path2

in [3]. It is easy to see that f2 is unimodal: For points
x /∈ P n

2 , it suffices to change any 1-bit to a 0-bit in order
to increase the function value. For points x ∈ P n

2 there is
either a neighbor on the path with larger function value or
the unique global optimum is reached. Due to symmetry
reasons, RLS and the (1+1) EA reach as first point on the
path P n

2 some point in the first half of P n
2 with probability

at least 1/2. This implies Ω (n · |P n
2 |) = Ω(n · 2n/2) as lower

bound on E (TRLS,f2
). On the other hand, it is easy to see

that on average this number of steps is sufficient to optimize
f2, too. The (1+1) EA, however, can reach the optimum
of f2 much faster by using two-bit mutations. It is known
[9] that E

`

T(1+1) EA,f2

´

= O
`

n3
´

holds. So there is an
exponential gap between the expected optimization times of
RLS and the (1+1) EA on a unimodal function.

The fitness functions f1 and f2 may lead to the impression
that standard bit mutation is inherently superior to flipping
single bits. This, however, is not true. Considering one-bit
flips only may save a search heuristic from reaching regions
of the search space that are difficult to leave. A fitness func-
tion using this idea has been presented and analyzed in [7]
to show that changing the mutation probability in standard
bit mutation can cause enormous performance differences.
We use a similar function to show a large gap between the
performance of RLS and the (1+1) EA.

Definition 11. The function f3 : {0, 1}n → R is defined
by

f3(x) :=

8

>

>

>

>

<

>

>

>

>

:

n + 2i if x = 1i0n−i

3n − 1 if x = 1i0j10k10n−i−j−k−2 with

(1/4)n ≤ i ≤ (3/4)n and j, k > 0

n −
n

P

i=1

x[i] otherwise

for any x ∈ {0, 1}n.

For the vast majority of the search space the function
f3 yields as function value the number of 0-bits. It is well
known that both RLS and the (1+1) EA can optimize such
a function and find 0n on average in O (n log n) steps. The
points 1i0n−i (with i ∈ {0, 1, . . . , n}) form a path with in-
creasing function values starting at 0n and leading to 1n,
the unique global optimum of f3. It is well known that
both RLS and the (1+1) EA find 1n in this situation in
O

`

n2
´

steps on average. The points 1i0j10k10n−i−j−k−2

(with (1/4)n ≤ i ≤ (3/4)n and j > 0) are local minima with
second best function value. Once such a point is reached,
only steps to other such local optima and a direct step to the
global optimum 1n is accepted. Since the Hamming distance
between any such point and 1n is Ω(n), RLS cannot reach
the global optimum and the (1+1) EA needs an exponential
number of steps on average and with overwhelming proba-
bility. Therefore, it does not make much sense to investigate
the expected optimization time. Instead we concentrate on

the probability that the optimization time is polynomially
bounded.

Theorem 12. For each constant c > 2, it holds that
Prob

`

TRLS,f3
≤ c · n2

´

= 1 − 2−Ω(n).

Proof. We describe three events A, B, and C and give
lower bounds on their probabilities. It will be clear that if
all three events happen, RLS reaches the global optimum
of f3 in at most c · n2 steps. The lower bounds on the
probabilities yield upper bounds on the probabilities for the
complementary events. The sum of these upper bounds is an
upper bound on the probability not to reach the optimum,
which completes the proof.

We denote the set of points 1i0n−i (with i ∈ {0, 1, . . . , n})
by P (for path) and the set of points 1i0j10k10n−i−j−k−2

(with (1/4)n ≤ i ≤ (3/4)n and j, k > 0) by L (for local
minima). Let A denote the event that the initial search
point does not belong to L. Clearly, Prob (A) > 1−n3 · 2−n

holds since we have |L| = O
`

n3
´

.
Let B denote the event that some point in P becomes cur-

rent search point within the first n2 steps. If no point in L is
hit, the random process of RLS on f3 before hitting P equals
the situation described by the coupon collector’s problem [8]:
the bits correspond to coupons, each bit is flipped with equal
probability 1/n (corresponding to obtaining a coupon), we
need to flip each bit at most once (corresponding to get-
ting each coupon once). Thus, we know that the proba-
bility not to hit P within n2 = (n/ log n) · n log n steps

is bounded above by n−(n/ log n)+1 = 2−n+log n. For each
i ∈ {0, 1, . . . , n}, we call the set of points with exactly i 0-
bits the i-th level. For symmetry reasons, on each level each
point has equal probability to become current search point
of RLS. Clearly, on each level at most 1 point can become
current search point of RLS. The levels containing points
in L all have size 2Ω(n) and contain O

`

n2
´

points belonging

to L. Thus, we have Prob (B) = 1 − 2−Ω(n).
Once a point in P is current search point of RLS, no point

in L can ever be reached. We reach the unique global op-
timum when the number of 1-bits is increased to n. For
each current search point in P , the probability to increase
the number of current 1 bits equals 1/n. Thus, the ex-
pected number of steps needed to reach the global optimum
is bounded above by n2. We consider (c− 1)n2 steps. Since
we have c > 2 we have c − 1 > 1 + ε for some constant
ε > 0. Applying Chernoff bounds [8] we obtain that with

probability 1−2−Ω(n) the global optimum is reached within
(c − 1)n2 steps yielding Prob (C) = 1 − 2−Ω(n).

Clearly, RLS optimizes f3 efficiently: the probability of a
failure is exponentially small. The (1+1) EA, however, is
likely to be trapped in the set L of local minima.

Theorem 13. Prob
`

T(1+1) EA,f3
< 2n

´

= 2−Ω(n).

Proof. We again use the sets P and L introduced in the
previous proof. We want to show that with high probability,
the (1+1) EA will at some point reach a search point in L.
As the search points in L have at least 1

4
n − 2 zeroes, once

the (1+1) EA reaches such a search point, it has to flip Ω(n)
bits at once to leave L (and reach the optimal search point).
The probability for this to happen is exponentially small.

The probability that the first search point lies on the path
P is n · 2−n, as |P | = O (n). Furthermore, it is well known
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that the first search point will with overwhelming probabil-
ity have at most 7

12
n bits set to one. So assume that the

first search point has at most this many bits set to one and
does neither lie on the path P nor in L. As long as no
search point on P is reached, the number of ones of the cur-
rent search point can only decrease, as this will increase the
fitness (alternatively, a search point in L could be reached,
which concludes the proof). We now argue that the first
search point on the path P reached by the (1+1) EA will
with overwhelming probability have at most 8

12
n = 2

3
n bits

set to one. This is because to reach a search point on P with
more bits set, at least 1

12
n specific bits need to be flipped at

once, which happens with probability at most (1/n)−n/12.
For each search point on P that has at least 1

4
n and at

most 3
4
n bits set to one, it suffices to flip any two non-

neighboring of the last 1
4
n bits to reach a point in L. Such

a two-bit flip will happen with probability

1

n2

„

1 − 1

n

«n−2 n/4
X

i=1

(i − 2) = Ω(1).

We now prove that the (1+1) EA needs Ω(n2) mutations
with overwhelming probability to reach a search point on P
with at least 3

4
n bits set if it starts from a search point on P

that has at most 2
3
n bits set. This immediately yields that

the probability that the (1+1) EA will not stray from the

path P is c−Ω(n2) for a positive constant c > 1.
To increase the number of bits of a search point on P

by i, the (1+1) EA has to flip i specific bits at once. The
probability for this to happen is

1

ni
·

„

n − 1

n

«n−i

≤ 1

ni
· n − 1

n

for all i < n. Hence, we can upper bound the success of
each mutation by a geometrically distributed random vari-
able Yj for which Prob (Yj = i) = 1

ni · n−1
n

holds for all i ∈ N.

The expected value of Yj is E (Yj) = 1
n−1

. How much the

(1+1) EA increases the number of bits of a search point on
P in t ∈ N steps is then bounded by the random variable
Y :=

Pt
j=1 Yj . If we set t = 1

24
n(n − 1), the expected value

of Y is given by E (Y ) = 1
24

n. We can now apply the Cher-
noff bound for geometrically distributed random variables
introduced in [2] to see that

Prob

„

Y >
3

2
E (Y )

«

≤ 2−Ω(n2)

holds. Hence, at least t ∈ Ω(n2) mutations are needed to
reach a search point on P with at least 3

4
n bits set, conclud-

ing the proof.

4. INTUITIONANDCOUNTER-EXAMPLE
The fitness function f3 shows a simple reason why a local

search may outperform a global search: the global search
may be lured into regions of the search space that the local
search cannot reach and that are difficult to leave. That
this region (the points in L in our example) is difficult to
leave for the (1+1) EA came at the price that it cannot be
left at all by RLS. This shows that RLS and the (1+1) EA
might be affected in different ways by the existence of local
optima.

One might hope that without local optima, similar prob-
lems cannot occur, and the (1+1) EA is similarly efficient as
RLS. In this section, we spoil this hope. We present a weakly
unimodal function f4 that is easily optimized by RLS, but
that is very hard for the (1+1) EA. This function is not only
uni-modular, but also has the property that RLS finds an
optimal solution in time O(n2) for any initial solution.

More precisely, let T x
A,f denote the optimization time of

algorithm A on function f when started with x ∈ {0, 1}n as
first search point (instead of random initialization). Then
we show the following theorem.

Theorem 14. There is a fitness function f4 such that the
following holds.
1) For all x ∈ {0, 1}n, E(T x

RLS,f4
) = O(n2).

2) With probability 1 − 2−Ω(
√

n), T(1+1)EA,f4
= 2Ω(

√
n).

The function f4 will be made precise in Definition 15. The
key idea is as follows. Consider some weakly unimodal func-
tion with a weakly exponential number of rather short paths
leading to a global maximum. Regardless of the starting
point, RLS will follow one of these paths and reach a global
optimum rather quickly. The (1+1) EA, however, may leave
a path by flipping more than a single bit. The function f4

is designed such that this is likely to happen and that the
algorithm is then lead to the beginning of another path.
Since there is a weakly exponential number of paths, the
(1+1) EA needs on average and with probability very close
to 1 a weakly exponential number of steps to reach a global
maximum. We proceed by making these ideas concrete.

Definition 15. The function f4 : {0, 1}n → R is defined
for any n ∈ N with n ≥ 16. For such an n we define n1 :=
4·⌊n/8⌋, k :=

¨√
n1 − 1

˝

, n2 := k2+1, and n3 := n−n1−n2.
For x ∈ {0, 1}n we write x = uvw with u ∈ {0, 1}n1 , v ∈
{0, 1}n2 , and w ∈ {0, 1}n3 . For v ∈ {0, 1}n2 write v = vavb

with va ∈ {0, 1}k and vb ∈ {0, 1}n2−k. We consider P n2

k ,
the long k-path of dimension n2. Let (0 . . . 0) = p1, p2, . . . , pl

with l = |P n2

k | denote its points.
Using these notions we define f4(x) :=

8
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:

2n · n2 if u = 1n1 or v = pl

i · n2 + j if u = 1j0n1−j, v = pi, j < n1

i · n2 + n + n1 − j1 if u = 1j10j210j310n∗

1 ,

n1/4 ≤ j1 + j2 ≤ n1/2, j2 > 0,

j1 + j2 + j3 ≥ (3/4)n1,

n∗
1 = n1 − j1 − j2 − j3 − 2,

v = pi

i · n2 + 2n if u = 0j10n1−j−1,

n1/4 ≤ j ≤ n1/2,

v = pi, i odd

i · n2 − 1 if u = 0j10n1−j−1,

n1/4 ≤ j ≤ n1/2,

v = pi, i even

i · n2 + 2n if u = 0j10n1−j−1,

j > (3/4)n1 + 1,

v = pi, i even

i · n2 − 1 if u = 0j10n1−j−1,

j > (3/4)n1 + 1,

v = pi, i odd

n2 −
˛

˛uvb
˛

˛

1
− n |va|1 otherwise
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for any x = uvw ∈ {0, 1}n.

We observe that f4 is actually well defined: In particular,
P n2

k is well defined since (n2 − 1)/k = k2/k = k ∈ N clearly
holds. It is easy to see that n1 = n/2 − O (1), n2 = n/2 −
O (

√
n), and n3 = O (

√
n) hold. When dividing x into the

three parts x = uvw, we only care about u and v, the two
large parts. The small part w only contains the bits that
remain due to our requirements to have n1 be a multiple of 4
and

√
n2 − 1 ∈ N. Gathering these left-overs in w allows us

to define the function f4 for arbitrary values of n (if they
are not too small) and not only for those values of n with
n3 = 0, so we do not need to worry whether such values of n
do at all exist.

Before giving a formal proof, let us sketch how RLS and
the (1+1) EA optimize the function f4 (Definition 15). RLS
can optimize this function easily: As long as the function
value is given by n2 −

˛

˛uvb
˛

˛

1
− n |va|1, the function is not

harder than a linear function. Thus, on average this region of
the search space is left after O (n log n) steps. After this the
function value can always be increased by changing a single
bit in u as well as by changing a single bit in v. Changing
a single bit in v leads from pi to pi+1 on the long k-path
and increases the fitness by n2. We do not care about these
steps. In u, after O (n) changes of a single bit each, a point
of the form 1j0n−j is reached. Once this happens the form
of strings in u cannot change any more. After another O (n)
changes of single bits in u, a global optimum with function
value 2n · n2 is reached. It is not difficult to prove that a
global optimum is found on average after O

`

n2
´

steps. Note
that this holds regardless of the starting point.

For the (1+1) EA, the situation is different. The main
difference is in the situation where u = 1j0n−j (with j ≤
n/3) and v = pi holds. We observe that flipping exactly two
bits in the right (n1/4) bits of u and no other bits increases
the function value. Since such a step occurs with probability

Ω(1), it is likely that this happens before in u some 1j′0n−j′

with j′ − j = ω(1) is reached. Since such a step increases
the function value there are only two possible ways back to
some point of the form 1h0n−h in u. Either in v we advance
from pi to pi′ for some i′ > i. Such a step has probability
O (1/n). Or we reduce the number of 1-bits in u. Since this
has a probability of Ω(1/n), it is likely that this occurs before
we advance in v too many times. As the long k-path P n2

k

is weakly exponentially long in n, this is likely to happen a
weakly exponential number of times before a global optimum
is reached. This implies a weakly exponential lower bound
on the expected optimization time of the (1+1) EA on f4.
We now prove these ideas to be correct rigorously.

Proof of Theorem 14. Since the bits in w have no in-
fluence on the optimization behavior and n3 = o(n), we can
assume that n3 = 0 for convenience .

First observe that both the (1+1) EA and RLS inde-
pendent of the initial search point leave the boring area
B := {x ∈ {0, 1}n | f4(x) < n2} in expected time O(n log n).

In consequence, with probability 1 − 2−Ω(n/ log n), they find
an optimum in time O(n2). Note that restricted to B ∪{0},
f4 is an affine linear function with negative coefficients. Such
an objective function, like the more commonly investigated
case of positive coefficients, is optimized in expected time
O(n log n) (see e.g. [4, 5]). Hence within this time, the opti-
mum (0, . . . , 0) is found if not some other solution outside B
is found before. Since (0, . . . , 0) /∈ B, this proves the claim.

Run-time analysis for RLS: To prove the statement on
RLS, we show that E

`

T x
RLS,f

´

= O(n2) for all x ∈ {0, 1}n \
B. If x = 1j0n1−jpi for some 1 ≤ j < n1 and 1 ≤ i < l,
then x = 1j+10n1−(j+1)pi and x = 1j0n1−jpi+1 are the only
Hamming neighbors of x not having smaller fitness. Each
of them is found with probability 1/n in a single mutation
step. Hence the expected time to reach a search point of
type x = 1j+10n1−(j+1)pi′ for some i′ is O(n). Consequently,
E

`

T x
RLS,f

´

= O((n1 − j)n) = O(n2).

Now let x = 1j10j210j310n1−j1−j2−j3−2pi with j1 ≥ 1,
n1/4 ≤ j1 + j2 ≤ n1/2, j1 + j2 + j3 ≥ (3/4)n1 and 1 ≤ i < l.
Similarly as above, the only Hamming neighbors not hav-
ing smaller fitness are x = 1j1−10j2+110j310n1−j1−j2−j3−2pi

and x = 1j10j210j310n1−j1−j2−j3−2pi+1. Consequently, af-
ter an expected time of O(j1n), we find a solution x′ =
u′v′w′ having exactly two ones in u′, one at some position
j with n1/4 + 1 ≤ j ≤ n1/2 + 1, the other at some position
greater than (3/4)n1 + 1. Again there are two Hamming
neighbors that can be reached from x′, the one by changing
one of the two ones to zero (which of the two depends on
whether i is even or not), the other by changing v′ = pi′ to
pi′+1. Hence after another expected O(n) steps, we end up
in one of the cases having exactly one non-zero in the first
part of the solution (or with an optimal solution).

Each of the positions x having exactly one one in some
position j such that n1/4 + 1 ≤ j ≤ n1 has the following
properties. There are only one to three Hamming neighbors
having at least the same fitness (hence each is reached with
probability 1/n in a single mutation). These neighbors are
of the following types:

(a) They have two ones as discussed in the previous para-
graph,

(b) they have the same u segment as x and an v segment
one ahead in the long k-path,

(c) they have only zeroes in the u segment.

Every second search point of type (b) has a neighbor of type
(c). In consequence, after an expected number of O(n) steps,
RLS finds a search point of type (c).

From a type (c) search point, RLS has a 1/n chance to
proceed to a search point with first segment 10n1−1, a 1/n
chance to move on to another type (c) search point and
an O(1) chance reach a type (b) search point. Thus, after
O(n2) steps it actually finds a search point with first segment
10n1−1. From there, as shown above, it takes O(n2) steps
to find a global optimum.

In summary, for all initial search points x, it takes only an
expected number of O(n2) steps to find an optimal search
point.

Run-time analysis for the EA: We now show that

with probability 1 − 2−Ω(
√

n), the (1+1) EA needs Ω(
√

n)
steps to find an optimal search point. To ease the language
in this proof, we shall say that an event that happens with

probability 1 − 2−Ω(
√

n) happens typically. Note that, to
prove the claim, we may assume Ω(

√
n) that a typical event

holds.
The proof consist of three main arguments. We shall first

show that the EA typically finds a search point upi with i ≤
1
2
(l+k) and |u|1 ≤ 0.2n1. We shall then argue that from such

a search point, typically no solution x with |u|1 > 0.25n1 is
reached. In consequence, the EA has to reach an optimum

934



of type upl. We show that typically the EA does not leave
the long path encoded in the second segment and only does
improvements of less than k steps on the path. Hence finding
the end of the path would take at least 1

2
(l + k)/k steps.

Properties of the first solution outside B: Let x ∈ {0, 1}n

be the random initial search point. Typically, x is in the
boring area B := {x ∈ {0, 1}n | f4(x) < n2} and satisfies
|va|1 ≤ (3/4)k. As shown in the beginning of the proof,
typically the EA needs at most O(n log n) steps to leave the
boring area. We first argue that typically, this results in a
solution y = uyvywy with

˛

˛va
y

˛

˛

1
= 0. Note first that from

x with |va|1 ≤ (3/4)k only solutions y are accepted that
satisfy

˛

˛va
y

˛

˛

1
≤ |va|1 or

˛

˛va
y

˛

˛

1
= k. The probability for the

latter to happen in a single mutation is at most (1/n)(1/4)k.
Hence, typically, no such mutation is found. In consequence,
typically, B is left to some position upi with i ≤ (l + k)/2.

We shall now argue that the first solution y outside B ob-
tained above typically satisfies |u|1 ≤ 0.2n1. We note that
|u|1 may increase due to more-bit mutations that flip some
bits in va to zero and other bits in u to one. However, the
total increase can be bounded by 0.1n1: Consider a muta-
tion transforming an x ∈ B into some other solution y. If
y ∈ B and

˛

˛va
y

˛

˛

1
= |va|1, then |uy|1 ≤ |u|1. If

˛

˛va
y

˛

˛

1
< |va|1

or y /∈ B, then |uy|1 = |u|1 +
Pn1

j=1((uy)j − (u)j), where the

((uy)j − (u)j) are independent −1, 0, +1 random variables
with expectation at most 1/n. Hence a Chernoff bound ar-
gument shows that typically, |uy|1 ≤ |u|1+(1/10)

√
n1. Since

there are at most k ≤ √
n1 such mutations, the total increase

of |u|1 through such more-bit mutations is at most 0.1n1.
We now estimate the decrease of |u|1 through one-bit

mutations. For the initial solution x, we typically have
|u|1 ≤ 0.6n1. We first claim that typically it takes at least

100n rounds to obtain a solution y such that va
y = 0j1k−j

for some 1 ≤ j ≤ k. Fix such a j. Then typically va

deviates from 0j1k−j in at least k/4 positions. The prob-
ability that a fixed such position was flipped (regardless
of acceptance) in one of 100n mutation steps it at most
1 − (1 − 1/n)100n ≤ 1 − exp(−100). Hence the probabil-
ity that all the at least k/4 positions were flipped in these

rounds, is at most (1 − exp(−100))k/4 = 2−Ω(
√

n).
We continue by showing that within these 100n rounds,

at least once a solution y with |uy| < (1/10)n1 was reached.
Assume not. Then in each round with probability at least
(1/10)(n1/n)(1−(1/n))n−1 ≤ (1/20e)(1+o(1)) a one-bit flip
changing a one in the first n1 bits to zero occurs. The ex-
pected number of such mutations would be (5/e)(1+o(1))n.
Since only n1 ≤ (1/2)n such bits are available, we have devi-
ation from the expectation by Θ(n). Chernoff bounds show
that this occurs with probability exp(−Ω(n)) only. Hence,
typically, at some time a solution y with |uy| < (1/10)n1

is reached. Since at most 0.1n1 new ones are produced by
more-bit mutations, we have proven that the first solution
uypi outside B satisfies |uy|1 ≤ 0.2n1 and i ≤ (l + k)/2.

Up and down. For u ∈ {0, 1}n1 write ua to denote the
string of its first ⌊n1/4⌋ bits. For x /∈ B and |u|1 6= n1, we
denote by i(x) the integer 1 ≤ i ≤ l such that x = upi.

We now analyze how a solution x /∈ B with |ua|1 ≤ 0.20n1

and i(x) < l develops. We call such a solution upward, if u =
1j0n1−j , and downward, if u = 1j10j210j310n1−j1−j2−j3−2,
n1/4 ≤ j1 + j2 ≤ n1/2, j1 +2 +j3 ≤ (3/4)n1, and turning, if
u = 0j10n1−j−1, j ≥ n1/4.

Let x /∈ B and y be the outcome of a single mutation. We

call such a mutation exceptional, if y is accepted indepen-
dent of how the bits in u were mutated. This happens, e.g.,
if i(y) > i(x) or if x is upward and y is downward.

Let first x be an upward solution and y the outcome of
a single mutation step. Then y is downward with constant
probability pud.

Now let x be a downward solution and y the outcome of
a single mutation applied to x. Then the probability that
y is upward and accepted, is Θ(n−3), as both ones in posi-
tions n1/4 + 1, . . . , n1 have to flip and i(x) has to increase.
The probability that y is non-exceptional, accepted, and has
|uy|1 < |u|1 is Θ(1/n). Now let y be the outcome of apply-
ing a sequence of mutations to x until an upward or turning
position is reached. We shall call such a sequence of muta-
tions a downward run. Note that the probability that within
Θ(n2) mutations an upward position was reached, is at most

1−(1−Θ(n3))Θ(n2) = O(n−1). Since a non-exceptional mu-
tation in expectation reduces |ua|1 by at least 1/n, Θ(n2)
such mutations with probability 1 − exp(−Θ(n)) suffice to
reduce |ua|1 to 0. Calling such a downward run success-
ful, we just showed that a downward run is successful with
probability at least 1 − O(n−1).

We use the above to analyze how a solution x /∈ B with
|ua|1 ≤ 0.2n1 and i(x) < (3/4)l develops in a phase of sev-
eral mutations. Let y be the outcome after Θ(

√
n) changes

from upward to downward or turning and back to upward
(or vice versa).

We first analyze the increase of |ua|1 due to mutations gen-
erating an upward position out of an upward one or excep-
tional mutations. Since an upward solution has a constant
probability pud to become downward, typically our Θ(

√
n)

upward runs contain at most Ω(
√

n) mutations (either ex-
ceptional ones or mutations generating an upward position
out of an upward one). There are Θ(

√
n) exceptional muta-

tions marking the turn from an upward run to a downward
run and vice versa. Similarly, the downward runs typically
in total last Θ(n2.5) steps (ignoring steps that keep a turning
position unchanged). The probability for such a mutation to
be exceptional is Θ(n−3). Hence again, typically, we have at
most Θ(

√
n) exceptional mutations in the downward runs.

In summary, we have Θ(
√

n) mutations that may increase
|u|1. Typically, they will not succeed in increasing |u|1 by
say 0.01n1.

Typically, at least one of the downward runs is successful.
The above shows that, typically, each such phase maintains
the property |ua|1 ≤ 0.20n. In particular, typically, within

2Θ(
√

n) steps no solution x with |u|1 = n1 is generated. In
other words, the only optima that can be found within that
time are those of type upl.

Assume that the current search point x is upi with i ≤ l−
k. By construction of the long k-path, all points on the path
succeeding pi except pi+1 to pi+k−1 have Hamming distance
at least k from pi. Therefore, we can bound the probability
that the EA from x proceeds to some search point x′

1pi′ with

i′ ≥ i + k by 2−Θ(
√

n). Hence, typically, the EA does not
“leave the path” nor does it make a progress of k or more
along the path. In consequence, at least (l − k)/(2k) steps
are necessary to find an optimal solution. This concludes
the proof.

We also did experiments to show the concrete behavior of
RLS and the (1+1) EA on f4. Figure 1 shows the average
optimization time and standard deviation for search points
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Figure 1: The optimization time needed by the
(1+1) EA and by RLS on the function f4.

of size up to 280 bits averaged over 100 runs. The jumps
in the optimization time of the (1+1) EA are caused by the
rounded value of the square root in the definition of the value
k used by f4. As soon as the value under the square root
gets large enough to reach the next integer, the parameters
of the long path increase, causing the increase in runtime.

5. CONCLUSIONS
While the (1+1) EA is one of the simplest evolutionary

algorithms possible, randomized local search is an example
of a strictly simpler search heuristic that is in many ways
similar. Proofs about the performance, however, tend to be
very much simpler for randomized local search than for the
(1+1) EA due to the global nature of its mutation operator.
We investigated the compelling idea of transferring results
from RLS to the (1+1) EA and thereby saving a tremen-
dous amount of effort in proofs. Our results show that it is
at least very difficult to make such a transfer in non-trivial
cases. By presenting illustrative and simple fitness functions
we proved that the (1+1) EA can be much superior to RLS
due to the existence of local optima as well as the existence
of short cuts that cannot be exploited by any local search.
On the other hand, we presented an example where RLS al-
most surely outperforms the (1+1) EA due to a trap in the
search space that is almost certainly avoided by RLS but
almost unavoidable for the EA. We could prove, however,
that such traps are by no means the only reason why the
(1+1) EA may be defeated by local search. The existence of
a huge number of short paths to global optima can lure the
EA into exploring too many of those paths and thus taking
an extremely long time while local search stays put on one of
these paths reaching a global optimum quickly. The analyti-
cal result on the complicated fitness function is accompanied
by results of empirical runs demonstrating that this happens
even for relatively small dimensions of the search space.

It remains an open problem to find a useful characteri-
zation of functions where randomized local search does not
outperform the (1+1) EA. It cannot be doubted that such
a characterization would be very helpful and mark an im-
portant step in the understanding of different randomized
search heuristics. Our results, however, establish, that such
a characterization is at best very difficult to find.
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