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ABSTRACT 
This paper investigates a new method for Genetic Algorithms’ 

mutation rate control, based on the Sandpile Model: Sandpile 

Mutation. The Sandpile is a complex system operating at a critical 

state between chaos and order. This state is known as Self-

Organized Criticality (SOC) and is characterized by displaying 

scale invariant behavior. In the precise case of the Sandpile 

Model, by randomly and continuously dropping “sand grains” on 

top of a two dimensional grid lattice, a power-law relationship 

between the frequency and size of sand “avalanches” is observed. 

Unlike previous off-line approaches, the Sandpile Mutation 

dynamics adapts during the run of the algorithm in a self-

organized manner constrained by the fitness values progression. 

This way, the mutation intensity not only changes along the 

search process, but also depends on the convergence stage of the 

algorithm, thus increasing its adaptability to the problem context. 

The resulting system evolves a wide range of mutation rates 

during search, with large avalanches appearing occasionally. This 

particular behavior appears to be well suited for function 

optimization in dynamic environments, where large amounts of 

genetic novelty are regularly needed in order to track the moving 

extrema. Experimental results confirm these assumptions. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 

and Search. 

General Terms 
Algorithms, Experimentation. 

Keywords 
Genetic Algorithms, Dynamic Optimization Problems, Self-

Organized Criticality. 

1. INTRODUCTION 
Evolutionary Algorithms (EAs) [3] are bio-inspired metaheuristics 

used to solve demanding computational problems hardly tackled 

by deterministic methods. Their simple design and adaptive 

characteristics makes them suitable for a wide range of 

applications.  However,  the  convergence  behavior  and resulting 
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performance is strongly dependent on a proper setting of 

parameter values, a procedure that may be found hard to deal with 

by non-expert users. The parameter values control techniques are 

usually divided into three categories [14]:  

1. Deterministic:  parameter values are changed by some 

deterministic rule. 

2. Adaptive: values change during the EA run depending on its 

behavior  

3. Self-Adaptive: EAs evolve the parameter values together with 

the problem solution.  

Deterministic methods may be useful when developing an EA for 

a specific problem for which the algorithm behavior and 

requirements are known for the different search stages. However, 

these methods are not robust and usually do not maintain their 

performance when changing to different problems or even 

different problem instances. For these purposes, adaptive methods 

are more suitable since the variation depends indirectly on the 

problem and the search stage. Self-adaptive methods follow the 

same intuition that led to EAs, by letting the parameter values 

evolve in the same way solutions advance towards the optima by 

natural selection. Nevertheless, self-adaptation, by relying on 

evolution and natural selection, suffer from the handicap 

associated with the process: convergence to proper values may be 

too slow, and the same applies for re-adaptation if the search 

conditions change and the EA needs to self-adapt the parameters 

to different values. Besides, it enlarges the search space by 

including the parameters into it. Dynamic Optimization Problems 

(DOPs) create extra problems to EAs when concerning the 

variation of parameter values. Deterministic methods are only 

useful when it is possible to recognize the instant when the fitness 

function changes (in real-world problems the changes in the 

fitness functions are not always detectable). Adaptive control 

methods require variation strategies that may depend, for instance, 

on population genotypes, phenotypes or fitness.  The application 

of self-adaptive methods is even more critical when solving DOPs 

since the slow evolution of the parameter values may not be 

compatible with fast changing extrema. 

Another approach is possible when engaging in the issue of 

parameter control. Systems with Self-Organized Criticality (SOC) 

[4, 5] may be attached to EAs in order to control the parameter 

values, diversity or population size and possibly overcome the 

difficulties inherent to deterministic, adaptive and self-adaptive 

control methods.  Previous works [22, 23, 30] suggest that the 

task is feasible and may improve traditional EA’s performance, 

especially when dealing with DOPs. Following this idea, a 

modified version of the classical mutation operator using the 

Sandpile Model as an auxiliary tool to control the mutation of a 

Genetic Algorithm (GA) is presented.  
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The present work is organized as follows. Section 2 provides a 

State of the Art on EAs, DOPs and SOC. Section 3 introduces the 

Sandpile Mutation. Section 4 describes the test environment and 

discusses the results and Section 5 concludes the paper and 

outlines future research.   

2. STATE OF THE ART 
Optimization problems are said to be dynamic when there is a 

change in the fitness function, problem instance or restrictions, 

thus making the optimum change as well. When changes occur, 

the solutions already found may be no longer valid and the 

process must engage in a new search effort. EAs adaptive 

characteristics make them good candidate tools to solve DOPs. 

However, these algorithms typically converge to an optimum and 

thereby lose the diversity necessary to adapt to a change in the 

environment when such a change occurs. In EAs research on 

DOPs, a number of authors have addressed the problem of 

convergence and subsequent loss of adaptability in many different 

ways, but most of these approaches may be grouped into one of 

the following three categories [10].  

React on Changes. The EA is run in standard fashion, but as soon 

as a change in the environment has been detected, explicit actions 

are taken to increase diversity and thus facilitate the shift to the 

new optimum. Techniques such as Hypermutation [12] pursue the 

first category, keeping the whole population after a change but 

increasing population diversity by drastically increasing the 

mutation rate for some number of generations.  

Maintaining diversity. Convergence is avoided all the time and it 

is hoped that a spread-out population can adapt to changes more 

easily. The Random Immigrants Genetic Algorithm (RIGA) [18] 

is one well-known example of a strategy that falls in the second 

category. Other examples of diversity oriented EAs for DOPs may 

be found in [11], [21] and [27]. 

Memory schemes. The EA is supplied with a memory to recall 

useful information from past generations. Memory may be 

provided in two general ways: implicitly [17] by using redundant 

representations or explicitly by introducing an extra memory and 

formulating strategies to deposit and retrieve solutions later [9].  

Estimation of Distribution Algorithms (EDAs) [24, 28] is a class 

of EAs that replaces the standard crossover and mutation 

operators by building a probabilistic model of promising solutions 

and sampling from the corresponding probability distribution. 

Although dynamic problems have been a subject of EAs research 

for the last two decades, only recently this issue has started to 

raise a strong interest on EDAs’ researchers. The Population 

Based Incremental Learning [6] was used in [32] to solve DOPs 

created by a problem generator proposed by the same authors. In 

[31], Yang proposes the Univariate Marginal Distribution 

Algorithm [26] with enhanced memory. Abass et al. introduced 

[1] the Extended Compact Genetic Algorithm [20] to solve 

dynamic problems. Their approach is based on random restarts of 

the population at each change (React on Changes).  

Some recent proposals have been made using a Swarm 

Intelligence [8] approach to attempt to solve dynamic problems. 

Examples of Swarm Intelligence applied to dynamic 

environments may be found in [19] and [29], amongst many 

others. In [15], Fernandes et al. developed the Binary Ant 

Algorithm (BAA), based on the ACO [13] framework, to take 

advantage of ACO’s ability to solve combinatorial DOPs and 

generalize it to binary problems. However, this method may be 

also regarded as a type of EDA, because BAA creates the possible 

solutions to a problem via transition probability vectors. 

In 1987, Bak at al. [4] identified the SOC phenomenon associated 

with dynamical systems. The first system were SOC was observed 

was named after its inspiration as the Sandpile model, and 

consists of a cellular automata where at each cell of the lattice, 

there is a value which corresponds to the slope of the pile. Grains 

of sand are randomly “thrown” into the lattice where they pile up 

and increment the values of the cells. When a value exceeds a 

specific threshold, an avalanche takes place and four grains 

belonging to that cell are distributed by the neighboring sites (von 

Neumann neighborhood). If one of those sites also exceeds the 

threshold value, the avalanche continues, and the grains are also 

sent to the adjacent cells. The procedure of the Sandpile model is 

shown in figure 1. With these settings, and depending on the state 

of the lattice and the position of the new grain, a grain may cause 

rather different responses. It may not cause any change in the 

system if it falls in a cell with its value bellow threshold (other 

than increasing the sand on the cell, of course) and it may 

generate large avalanches of sand that will strongly redefine the 

shape of the pile. The likelihood of an avalanche is in power-law 

proportion to the size of the avalanche, and avalanches are seen to 

occur at all size scales. Large avalanches are very rare while small 

ones appear very often. Without any fine-tuning of parameters, 

the system evolves to a non-equilibrium critical state: SOC. 

The Bak-Sneppen system [5] is a model of co-evolution between 

interacting species where SOC is also present. The model consists 

of a number of species, each one with a fitness value assigned and 

each connected to two other species (neighbors). Every time step, 

the specie with the worst fitness and both its neighbors are 

eliminated from the system and replaced by individuals with 

random fitness. Such an event is recorded as an avalanche of size 

1, and if the next extinction involves one of the newly created 

species, then the size is incremented. By plotting the size of the 

extinctions over their frequency, a power-law relationship 

emerges, like in the Sandpile model.  

SOC has already been applied in bio-inspired computation in the 

past [7, 22, 23, 30]. Since SOC associated with EAs may 

periodically insert large amounts of new material in the 

population or completely reorganize a solution to a problem, it 

soon was adopted by EA researchers in order to provide new 

means to control parameter values or maintain population 

diversity, thus avoiding premature convergence to local optima. 

Extremal Optimization (EO) [7] is based on the Bak-Sneppen 

model of SOC. Unlike EAs and Swarm Intelligence algorithms, it 

does not work with a population of individuals, but instead it 

evolves a single solution to the problem by local search and 

modification. EO removes the worst components of the solution 

and replaces them with randomly generated material. By plotting 

the fitness of the solution, it is possible to observe distinct stages 

of evolution, where improvement is disturbed by brief periods of 

dramatic decrease in the quality of the solution. In [22] the 

authors propose a mass extinction model and a mutation model 

for EAs (later extended to cellular GAs [23]) based on the 

Sandpile. The Sandpile is previously computed in order to obtain 

power-law values. Those values are then used during the run to  
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Procedure Sandpile  

Considerer a lattice (x,y) and a function z(x,y) which represents the 
number o grains in the cells. 

Starting with a flat surface z(x,y) = 0 for all x and y: 

Add a grain of sand:   

 if z(x,y) > zc then an avalanche occurs 

 

 

 

if z(x, y±1) = 4 or z(x±1, y) = 4 

Update z recursively 

Figure 1. 2D Bak-Tang-Wisenfeld Sandpile Model 

control the number of individuals that will be replaced by 

randomly generated solutions (SOC mass extinction model) or the 

mutation rate of the EA (SOC mutation model). In [30] a RIGA 

associated with the Bak-Sneppen model is presented and tested on 

DOPs: the Self-Organized Random Immigrants Genetic Algorithm 

(SORIGA). In each generation, SORIGA replaces the worst 

individual of the population and its neighbors by rr random 

solutions (neighborhood relations are determined by the 

individuals’ indexes in the population). To avoid new individuals 

to be quickly replaced by the fittest chromosomes in the 

population, the random solutions are stored in a subpopulation 

and the individuals from the main population are not allowed to 

replace the new individuals. Furthermore, selection and crossover 

are allowed only between individuals that belong to the 

subpopulation. By plotting the extent of extinction events, the 

authors argue that the model exhibits SOC behavior. 

This paper’s proposal differs from previous approaches in many 

ways. Unlike Extremal Optimization, it works on a population-

based EA: the SOC mutation is attached to a GA. In addition, 

power-law values are not previously computed and then used to 

vary mutation rate, like in [22, 23]. This feature, as it will be 

shown in Section 4, is very important on DOPs, since large 

avalanches appear to be connected to changes in the environment: 

the distribution avalanche sizes varies with DOP characteristics 

(speed and severity of change); these self-adaptive features of the 

system would not be achievable if the power-law values were 

computed off-line. Finally, SORIGA gives new genetic material 

to the population by inserting rr new chromosomes in each 

generation, while the Sandpile Mutation may completely 

reconfigure the population’s alleles in only one generation. In 

addition, SORIGA always performs N+rr function evaluations in 

each time step. When compared with a generational GA with N 

individuals, SORIGA needs extra computational effort to perform 

the same number of generations. 

3. THE SANDPILE MUTATION 
The Sandpile Mutation, uses the original 2D Sandpile model with 

minor modifications in order to evolve self-regulated mutation 

rates. The pseudo-code is shown in figure 2 (maximization is 

assumed). The Sandpile Mutation replaces the traditional 

mutation in the Standard GA (SGA). However, while traditional 

mutation is done at bit level, that is, mutation is attempted in 

every bit and it is performed every time a gene passes the 

probability test, Sandpile Mutation procedure is performed every 

generation in the way described in figure 2. The procedure works 

as follows. 

Sandpile Mutation 

The Sandpile is evolved on a n×l lattice with n = 1, 2, …N and l = 1, 
2, …L. The lattice is randomly initialized with values between 1 and 

3. This way, a first stage of search with rare avalanche events is 

avoided. The critical threshold zc is set to 4 (equal to the number of 
grains that topple when a avalanche occurs). In the occurrence of an 

avalanche, the 4 grains drop into the cell’s von Neumann 

neighborhood. If z reaches threshold zc, but the mutation does not 
occur, then the grain is discarded.  

for g grains do 

    drop grain at random  
    compute normalized fitness: 

 

(1) 

where i is the index of the chromosome associated with the cell (n, l), 

worstFitness is the lowest fitness in the current population and 

bestFitness is the best fitness in the population. Note: if bestFitness = 
worstFitness, fn is set to 0.5 

 

    if randomValue(0, 1.0) > fn and cell (n, l) not active 
           mutate (bit flip mutation) 

           avalanche  

 

 

 

         and update lattice z recursively  

Figure 2. The Sandpile Mutation pseudo-code. 

After a new population is generated by selection and crossover, 

the individuals are ranked according to its fitness. Then each 

individual is mapped into a n×l lattice with n = 1,…N and l = 

1,…L, where N  is the population size and L is the chromosome 

length − see figure 3 for a detail of the Sandpile. The Sandpile 

starts evolving in the first generation (a specific initialization of 

the lattice is done in order to avoid a preliminary stage without 

events). In each generation g grains are randomly “thrown” into 

the lattice thus incrementing the cells values (z). When a cell 

reaches the critical value (zc) an avalanche occurs only if a 

randomly generated value (between 0 and 1.0) is higher than the 

normalized fitness of the individual on which the avalanche is 

located. This way, fitter individuals have lower chances of being 

mutated while the genes of poor solutions have a high probability 

of being mutated when a z value reaches zc (and please remember 

that ranking is done every generation, supplying the lattice with a 

sort of “slope”). After a first avalanche, the neighboring cells are 

updated in a recursively manner and the avalanche may proceed 

through the lattice as long as the state of the Sandpile and the 

fitness of the solutions are favorable to that progression. 

Threshold zc is set to 4, equal to the number of grains that topple 

to the von Neumann neighborhood when an avalanche occurs.  

The Sandpile Mutation has one restriction that is not present in 

original model: if a cell is already involved in an avalanche 

(active cell), and the recursive nature of the process has not 

allowed it to complete its sequence, then the cell is ignored. This 

restriction eliminates hypothetical avalanche cycles and several 

mutations of the same gene. Although there is no empirical 

evidence that this restriction improves the performance of the 

model, it is adopted in order to reduce the computational time of 

the mutation process. (With very complex fitness functions, the 

cost of a Sandpile Mutation with cycles may become irrelevant.) 
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Figure 3. A section of a sandpile attached to a population: 

genes l1, l2, l3 from chromosomes n1, n2, n3. Please note that 

cell (l2, n2) is close to zc = 4. If one grain falls in that site, an 

avalanche will take place (if fitness test is passed). Then, four 

grains will topple to the cell’s von Neumann neighborhood 

and (l2, n3) will reach threshold. If conditions are favorable, 

avalanche and mutations may proceed indefinably. 

Two more details must be referred. First, if a z value reaches zc 

but the mutation does not occur (due to the fitness test) then the 

grain is discarded. In addition, if an avalanche takes place in a cell 

on the edge of the lattice, then the grains will “fall off” the lattice.  

With this process, different purposes are achieved. By using a 

Sandpile associated with the population, avalanches of different 

sizes are generated, thus changing the population in diverse 

manners, from minor changes to radical reconfigurations of the 

genetic material. Associating the avalanche and consequent 

mutations with the quality of solutions, better individuals are 

favored, preventing them from being subject to extreme 

mutations, this way introducing an element of natural selection in 

the system. In the following experiments, the Sandpile Mutation 

replaces the traditional mutation of an SGA. The resulting 

algorithm is the Sandpile Mutation Genetic Algorithm (SMGA). 

Its characteristics may place it on the maintaining diversity 

category [10] described in section 2. 

4. EXPERIMENTS AND RESULTS 
The test environment proposed in [32] was used to investigate the 

Sandpile Mutation on DOPs. Given a stationary problem 

 where l is the chromosome length, the dynamic 

environments may be constructed by applying a binary mask 

 to each solution before its evaluation in the following 

manner: 

 (2) 

Where t is the generation index,  is the period index and 

 is the fitness of solution .  can be incrementally 

generated as follows: 

 (3) 

where  is an intermediate binary mask for every period k. 

This mask  has  ones, where  is a value between 0 and 

1.0 which controls the intensity or severity of change. Notice that 

 corresponds to a stationary problem since T vectors will 

carry only 0’s and no change will occur in the environment. On 

the other hand,  guarantees the highest degree of change. 

Therefore, by changing  and  in the previous set of equations it 

is possible to control two of the most important features when 

testing algorithms on DOPs: severity ( ) and speed (  of change 

[2]. Following the experiments in [30], a Royal Road function and 

two Deceptive functions were used as stationary problems where 

the dynamic frame was applied.  

Royal Road functions [25] were specifically designed to study 

GA’s performance on the level of building block interactions, and 

are widely used for GAs test and analysis. From the set of Royal 

Road functions, R1 was selected. R1 is defined by: 

 

(4) 

where q is the number of schemata S = {s1,…, sq} and, for the 

function in this paper,  s(x) is set as 1 if x is an instance of S and 

0 otherwise, and cs = 8 for all s; a 64-bit string was used and each 

schema is composed of 8 contiguous bits. 

Deceptive functions are designed to be unfriendly for optimization 

via GAs. Instead of combining low order building blocks in order 

to form higher order building blocks, deceptive functions conduce 

the search towards deceptive attractors. To build the deceptive 

functions a trap function can be used: 

 

(5) 

 

where u(x) is the unitation function, l is length of x, a is local 

optimum, b is the global optimum and z is the slope-change 

location which separates the attraction basin sizes of the two 

optima. Following [30], two deceptive functions were defined by 

setting l, a, b and z values as. Deceptive 1: l = 10, a = 0.82 and z = 

8; Deceptive 2: l = 50, a = 0.8, z = 48; b is set to 1.0 in both 

functions. One characteristic of these functions must be noted: the 

Hamming distance between global and local optimum is equal to 

the chromosome length, that is, to change between the two optima 

is sufficient to flip all bits. This attribute, as explained latter, may 

benefit the Sandpile Mutation performance and induce wrong 

conclusions about the behavior of the model. 

For that reason, the Massively Multimodal Deceptive Problem 

(MMDP) [16] was added to the test set. MMDP is function 

composed of k deceptive subproblems (si) of 6 bits each whose 

values depend on the unitation of the bit string as shown in table 

1. The fitness of the binary string is then computed in the 

following way: 

 

     (6) 

 

Please note that MMDP has two global optima and unlike the 

deceptive functions previously described, the Hamming distance 

between the global and local optimum is lower than the 

chromosome length and to change between global and local 

optima is not enough to flip all bits. 

Before proceeding to an analysis of SMGA performance on 

dynamic environments it is important to observe how the 

algorithm behaves on a static and scalable problem. For that 

purpose, MMDP function was used. Although there are other trap  

Table 1. MMDP function. 

u(x) 0 1 2 3 4 5 6 

fs(x) 1.0 0 0.360384 0.640576 0.360384 0 1.0 
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and deceptive functions which have been a subject of more 

exhaustive and widespread studies amongst the community of EA 

researchers, those functions may lead to wrong conclusions about 

Sandpile Mutation performance. Consider for instance a deceptive 

function as the one described above. The function’s global 

optimum consists of a 1’s string while the local optimum is the 

0’s string. If a population converges to a local optimum, a 

massive avalanche of Sandpile Mutation may invert all the bits of 

an individual, thus immediately acquiring the global optimum. 

That is, SMGA may take advantage of the deceptive function’s 

structure. MMDP does not hold the same structure and a large 

avalanche over a population that has converged to local optima is 

not likely to create a global optimum string.  

As already stated, the Sandpile model is a system with SOC and 

exhibits a power-law relationship between the frequency and size 

of the avalanches. Although SMGA is based on the Sandpile 

model, modifications that arise from the attachment of the 

Sandpile to a GA do not guarantee that the resulting system also 

exhibits SOC. However, the general idea behind Sandpile 

Mutation is to take advantage of large avalanches that reconfigure 

the system from time to time. Large avalanches may lead to large 

mutation rates and in between those catastrophic events, lower 

rates give the algorithm a more steady behavior. The non-periodic 

manner in which avalanches of any size emerge in the system is 

also explored by SMGA because in dynamic problems the 

landscapes may change in many ways. To check if SMGA 

exhibits the expected behavior, it is necessary to observe the 

relationship between the frequency and size of the avalanches 

(and mutations). Figure 4 shows that relationship for MMDP with 

different length L. Although it is not the aim of this paper to prove 

that SMGA is a SOC system, it is evident that the Sandpile 

evolves (at least) near the desired state: small avalanches are 

frequent and large avalanches are scarce – see graphs at the left 

hand side of figure 4. The way this distribution affects the 

mutation rate may be seen on the right hand side of figure 4. 

Although the shape of the curves differs from the log-log graphs 

of the avalanches, they show SMGA’s general tendency to evolve 

small mutation rates in many generations and large rates on few 

generations. The algorithm was executed with pc = 0.7, 2-point 

crossover, binary tournament selection and g = 10×L. 

The test environment generator described above was used to 

determine how effective SMGA is when dealing with DOPs. DOP 

versions of the Royal Road and Deceptive functions were 

implemented and tested.  SMGA’s performance is compared with 

an SGA and two RIGAs – see table 2. As stated above the 

Deceptive functions described above may favor SMGA due to its 

specific search space. By modifying the Sandpile Mutation with 

the purpose of avoiding the convergence to the global optimum 

via catastrophically mutation of local optimum chromosomes, it is 

then possible to compare the algorithms with fairness. The 

modification was done in the mutation step of the Sandpile 

procedure – see figure 2. Instead of flipping the bit every time the 

conditions are satisfied, the modified SMGA (SMGA*) flips the 

bit with probability 0.5. To compensate the expected decrease in 

the resulting mutation rates, SMGA* parameter g value was set to 

g* = 5×g. 

For each DOP several degrees of severity ( ) and speed (  were 

set: = 10, = 200 and = 1000;  = 0.05 ,  = 0.6  = 0.95 

           Avalanches           Mutations 

L = 24 

  

L = 90 

  
Figure 4. Log-log graphs of size and frequency distribution of 

SMGA’s avalanches and mutations. L is chromosome length. 

(if ρ×L is not integer, the value is rounded). Each algorithm was 

executed for 10 periods of environmental changes and, for each 

configuration, 30 runs were performed. The fitness was measured 

and averaged over the 30 runs. Evaluation of GAs’ performance is 

done by comparing the mean best-of-generation values (this is the 

standard procedure for DOPs). Results and parameters are shown 

in Table 2. A statistical comparison was carried out by t-tests with 

58 degrees of freedom at a 0.05 level of significance. If SGA or 

RIGA are significantly worse than SMGA, then the sign + is 

shown in parenthesis; else, the sign − appears; if the GAs are 

statistically equivalent, then the ~ symbol is used. A general 

analysis of the results reveals that there are only a small number 

of combinations of  and  for which any of the GAs (SGA, 

RIGA 1 or RIGA 2) is significantly better than SMGA. (Please 

note that RIGAs perform N+rr function evaluations in each 

generation.) In addition, the results show that, in general, 

SMGA’s efficiency increases with  and , especially in 

Deceptive functions 1 and 2. This behavior may be explained by 

SMGA’s dynamic and non-deterministic characteristics. Sandpile 

Mutation main feature (and possibly its major force) consists on 

its capacity to reconfigure the population in a non-deterministic 

manner. Large mutations appear from time to time, but it is 

impossible to determine or set the exact moment when those 

avalanches take place. Fast changes in the environment mean that 

the optimum is moving without giving any chance for SMGA to 

evolve large mutation rates that might release the population from 

previous optimal regions of the search space. From table 2 it is 

clear that DOPs with  = 10 do not require such a dynamic 

variation of the mutation rate as the one provided by SMGA. On 

the other hand, with slower rates of change ( , SMGA’s 

overcomes the difficulties faced by SGA and RIGA and generally 

outperforms the other GAs. The observation of SMGA’s behavior 

in Royal Road with different  also reveals a pattern: SMGA 

tends to perform better (that is, to outperform SGA and RIGA) 

with higher . Low  means that the changes are not severe. 

SMGA ability to generate large amounts of genetic novelty, 

providing the algorithm with means to escape previous optimal 

regions, is not so useful when the fitness function changes only by 

a small amount. However, when   increases, SMGA’s exposes it 

skills to solve DOPs with severe changes. 
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 Table 2. Mean best-of-generation and standard deviation. General parameters: N = 120, 2-point crossover, tournament selection (kts = 

0.9). SGA: pm = 1/L, pc = 0.7; RIGA 1: pm = 1/L, pc = 0.7, rr = 3; RIGA 2: pm = 1/L, pc = 0.7, rr = 12; SMGA: pc = 0.7; g = 10×L (Royal 

Road) and g* = 50×L (Deceptive 1 and 2). Royal Road: L = 64; Deceptive 1: L = 10; Deceptive 2: L = 50 

 Royal Road Deceptive 1 Deceptive 2 

 τ ρ SGA RIGA 1 RIGA 2 SMGA SGA RIGA 1 RIGA 2 SMGA* SGA RIGA1 RIGA2 SMGA* 

10 0.05   

32.99 

±4.29 

(~) 

31.20 

±3.29 

(~) 

31.76 

±3.89 

(~) 

31.41 

±3.55 

0.837 

±0.007 

(+) 

0.831 

±0.010 

(+) 

0.829 

±0.081 

(+) 

0.855 

±0.043 

0.753 

±0.004 

(~) 

0.665 

±0.009 

(+) 

0.667 

±0.007 

(+) 

0.752 

±0.007 

10 0.60 

11.2 

±1.32 

(+) 

10.69 

±1.34 

(+) 

11.06 

±1.07 

(+) 

13.40 

±1.01 

0.811 

±0.023 

(~) 

0.802 

±0.028 

(~) 

0.802 

±0.026 

(~) 

0.793 

±0.020 

0.562 

±0.006 

(+) 

0.588 

±0.004 

(+) 

0.593 

±0.005 

(~) 

0.594 

±0.006 

10 0.95 

17.16 

±1.96 

(~) 

16.62 

±1.96 

(~) 

16.35 

±1.79 

(~) 

17.12 

±1.48 

0.979 

±0.020 

(−) 

0.960 

±0.021 

(−) 

0.956 

±0.021 

(−) 

0,922 

±0.031 

0.504 

±0.004 

(+) 

0.559 

±0.004 

(~) 

0.562 

±0.005 

(−) 

0.558 

±0.005 

200 0.05 

60.03 

±1.46 

(−) 

59.26 

±1.42 

(−) 

59.67 

±2.05 

(−) 

57.80 

±2.38 

0.823 

±0.008 

(+) 

0.824 

±0.010 

(+) 

0.824 

±0.010 

(+) 

0.957 

±0.026 

0.7980 

±0.0002 

(−) 

0.7394 

±0.006 

(+) 

0.7413 

±0.005 

(+) 

0.7973 

±0.0005 

200 0.60 

37.87 

±1.41 

(+) 

37.26 

±1.27 

(+) 

37.70 

±1.50 

(+) 

42.15 

±1.45 

0.842 

±0.018 

(+) 

0.843 

±0.020 

(+) 

0.840 

±0.021 

(+) 

0.908 

±0.025 

0.7751 

±0.0006 

(+) 

0.7155 

±0.004 

(+) 

0.7185 

±0.004 

(+) 

0.7832 

±0.0007 

200 0.95 

31.87 

±1.23 

(+) 

30.96 

±1.17 

(+) 

31.82 

±1.25 

(+) 

46.43 

±2.15 

0.976 

±0.012 

(−) 

0.971 

±0.016 

(−) 

0.964 

±0.017 

(−) 

0.939 

±0.016 

0.7579 

±0.0008 

(+) 

0.7145 

±0.004 

(+) 

0.7160 

±0.003 

(+) 

0.7808 

±0.0009 

1000 0.05 

62, 87 

±0.78 

(~) 

62.80 

±0.82 

(~) 

62.90 

±0.99 

(~) 

62.36 

±1.14 

0.823 

±0.008 

(+) 

0.826 

±0.012 

(+) 

0.821 

±0.051 

(+) 

0.994 

±0.003 

0.79960 

±0.00005
 

(−)
 

0.76793 

±0.00216 

(+) 

0.77155 

±0.00324 

(+) 

0.79947 

±0.00007 

1000 0.60 

54. 20 

±1.35 

(~) 

54.38 

±1.17 

(~) 

54.38 

±1.45 

(~) 

54.85 

±1.40 

0.854 

±0.021 

(+) 

0.846 

±0.017 

(+) 

0.850 

±0.021 

(+) 

0.984 

±0.006 

0.79506 

±0.00012 

(+) 

0.76181 

±0.00334 

(+) 

0.76390 

±0.00256 

(+) 

0.79670 

±0.00014 

1000 0.95 

51. 85 

±1.21 

(+) 

51.81 

±1.10 

(+) 

51.59 

±1.03 

(+) 

56.62 

±1.63 

0.973 

±0.014 

(+) 

0.978 

±0.014 

(+) 

0.966 

±0.017 

(+) 

0.988 

±0.005 

0.79646 

±0.00918 

(~) 

0.76207 

±0.00281 

(+) 

0.76406 

±0.00286 

(+) 

0.79623 

±0.00016 
 

Figure 5 shows SGA and SMGA’s best fitness during the run on a 

dynamic Royal Road with τ = 200. The graphics illustrate previous 

statements. When ρ = 0.05, SGA is slightly faster at tracking the 

moving optimum. SMGA’s mutation rate distribution is not so 

useful in these conditions, because the landscape changes in small 

amounts. When ρ increases, SMGA’s discloses its abilities to solve 

DOPs. With ρ = 0.95 (meaning that the landscape is suffering 

dramatic changes every 200 generations), SMGA replicates, in 

each period, the best-of-generation curve of the first environment 

(from t = 0 to t = 200). SGA looses diversity during the first stage 

of convergence and is unable to reach the same fitness values it has 

achieved at t = 200. SMGA’s mutation rate in each generation 

when solving the Royal Road with  = 10 and several  values is 

shown in figure 6. Please note how the shape of the curves change 

when increasing  from 0 (meaning that no changes occurs in the 

fitness landscape, that is, the problem is static) to 0.95. With  = 

0.05 there are already some hints of a relation between the 

beginning of a new period and the mutation bursts. With  = 0.95 a 

rough periodicity starts to emerge. The algorithm self-adapts to the 

environment changes. Computing the Sandpile Model off-line in 

order to use the power-law values to control mutation rate would 

not provide the algorithm with these self-adjusting capabilities. 

One may argue that increasing the mutation rate when a change 

occurs (like in Hypermutation [12]) may have the same effect. 

However, that would mean that changes were detectable, which is 

not always possible. A more general framework is considered here, 

were dynamic optimization is assumed to be “blind”: changes in 

the landscape are not detectable (or the detection is too costly). 

ρ = 0.05 ρ = 0.6 ρ = 0.95 

   

Figure 5. Comparing SGA and SMGA’s dynamic behavior on Royal Road. 𝜏 = 200 
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 = 0  = 0.05  = 0.95 

   

Figure 6. Royal Road. SMGA mutation rate variation with  = 10. Mutation rate is measured every generation by comparing all 

the alleles in the population before and after g grains are thrown into the lattice. 

Table 3 shows Sandpile Mutation results compared to those 

attained by SORIGA in [30]. SMGA outperforms SORIGA in 

eight of the nine scenarios in which Deceptive 1 was tested. On 

Royal Road and Deceptive 2, SMGA tends to outperform SORIGA 

when the speed of change is high, while SORIGA behaves better 

when speed is lower. (There is not enough information in [30] to 

perform statistical analysis). Please note that, like traditional 

Random Immigrants GAs, SORIGA performs N+rr function 

evaluations in each generation, meaning that setting rr = 24 (like in 

some experiments described in [30]) causes a significant increase 

of computational effort. In addition, rr value affects the 

performance, which means that SORIGA’s parameter space is 

more complex and more difficult to fine-tune. Sandpile Mutation 

needs a new parameter g, but that replaces the mutation rate (pm) of 

traditional GAs. Since SORIGA is the closest approach to Sandpile 

Mutation, further experiments are obligatory in order to investigate 

how both algorithms behave on dynamic environments, and if the 

observed SMGA’s mutation bursts when fitness changes may help 

to track the optimum of hard dynamic problems.   

5. CONCLUSIONS AND FUTURE WORK 
This paper presents a new method to control Genetic Algorithms’ 

mutation rate in order to tackle Dynamic Optimization Problems. 

The new strategy is based on the Sandpile model and Self-

Organized Criticality and it is named Sandpile Mutation. Genetic 

Algorithms’ populations are attached to a Sandpile with the 

objective of generating a wide range of mutation rates − from 

small mutations to catastrophic events that reconfigure large 

amounts  of   the  population.  The   Sandpile  Mutation   Genetic 

Table 3. Comparison of SMGA and SORIGA. SORIGA: N = 

120; pm = 0.01, pc = 0.7; rr = 3; SMGA: N = 120; pc = 0.7; g = 

10×L (Royal Road) and g* = 50×L (Deceptive 1 and 2) 

  Royal Road Deceptive 1 Deceptive 2 

 τ ρ SORIGA SMGA SORIGA SMGA* SORIGA SMGA* 

10 0.05 30.91 31.41 0.825 0.855 0.756 0.753 

10 0.60 12.05 13.40 0.768 0.793 0.576 0.594 

10 0.95 15.44 17.12 0.886 0,922 0.554 0.558 

200 0.1 60.60 57.80 0.901 0.957 0.798 0.798 

200 0.60 42.72 42.15 0.881 0.908 0.780 0.783 

200 0.95 39.73 46.43 0.947 0.939 0.781 0.780 

1000 0.05 63.34 62.36 0.975 0.994 0.800 0.799 

1000 0.60 58.62 54.85 0.959 0.984 0.796 0.797 

1000 0.95 57.84 56.62 0.979 0.988 0.797 0.796 

Algorithm has been tested and compared with other algorithms on 

three dynamic problems with different speed and severity settings. 

Results showed that the proposed algorithm outperforms Standard 

Genetic Algorithm and Random Immigrants Genetic Algorithm in 

the majority of the tests. Due to its characteristics, Sandpile 

mutation is expected to work better when the environment 

experiences medium or severe changes, and the results confirmed 

this assumption. Sandpile Mutation was also compared to another 

Self-Organized Criticality GA: the Self-Organized Criticality 

Random Immigrants GA, but further experiments are needed in 

order to properly evaluate the performance of the two algorithms. 

Results also showed that the Sandpile model self-regulates the 

mutation rate, and gives rise to mutation bursts when the 

environment changes. This particular behavior may be useful when 

tackling problems that need large amounts of genetic novelty to 

deal with the fitness changes, but that do not permit 

Hypermutation strategies, because changes are not be detectable, 

or are too costly to detect. Unlike some memory schemes and other 

methods that react to changes, the Sandpile Mutation does not 

need an explicit mechanism to respond to a shift in the optimum 

and introduce genetic novelty. The increase in the mutation rate is 

done in a self-regulated manner, without information from the 

environment itself, other than the fitness of the individuals.  

Due to the Sandpile’s structure, avalanches and resulting mutations 

affect adjacent genes. However, the Sandpile may evolve in a grid 

structure other than a lattice. A small-world network should allow 

the avalanches to spread more quickly to distant bits in the 

chromosome and distant chromosomes in the ranked population. 

Further work will focus on the design of small-world grids for the 

Sandpile Mutation. In addition, parameter g needs to be addressed 

in order to understand how its variation affects the algorithm’s 

performance and also to detect possible optimal values. Besides 

deceptive trap functions, the Sandpile will also be tested on hard 

combinatorial problems, with the aim of understanding how could 

the model behave when dealing with real-world problems.              
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