
A Self-Organized Criticality Mutation Operator for Dynamic
Optimization Problems

 Carlos M. Fernandes1,2
cfernandes@laseeb.org

J.J. Merelo2
jjmerelo@gmail.com

Vitorino Ramos1
vitorino.ramos@alfa.ist.utl.pt

Agostinho C. Rosa1
acrosa@laseeb.org

1
LaSEEB, Technical Univ. of Lisbon

Av. Rovisco Pais, 1, TN 6.21, 1049-001,
Lisbon, PORTUGAL

2
Departamento ATC, University of Granada

 c/ periodista Daniel Saucedo, sn, 18071,
Granada, SPAIN

ABSTRACT
This paper investigates a new method for Genetic Algorithms’

mutation rate control, based on the Sandpile Model: Sandpile

Mutation. The Sandpile is a complex system operating at a critical

state between chaos and order. This state is known as Self-

Organized Criticality (SOC) and is characterized by displaying

scale invariant behavior. In the precise case of the Sandpile

Model, by randomly and continuously dropping “sand grains” on

top of a two dimensional grid lattice, a power-law relationship

between the frequency and size of sand “avalanches” is observed.

Unlike previous off-line approaches, the Sandpile Mutation

dynamics adapts during the run of the algorithm in a self-

organized manner constrained by the fitness values progression.

This way, the mutation intensity not only changes along the

search process, but also depends on the convergence stage of the

algorithm, thus increasing its adaptability to the problem context.

The resulting system evolves a wide range of mutation rates

during search, with large avalanches appearing occasionally. This

particular behavior appears to be well suited for function

optimization in dynamic environments, where large amounts of

genetic novelty are regularly needed in order to track the moving

extrema. Experimental results confirm these assumptions.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods

and Search.

General Terms
Algorithms, Experimentation.

Keywords
Genetic Algorithms, Dynamic Optimization Problems, Self-

Organized Criticality.

1. INTRODUCTION
Evolutionary Algorithms (EAs) [3] are bio-inspired metaheuristics

used to solve demanding computational problems hardly tackled

by deterministic methods. Their simple design and adaptive

characteristics makes them suitable for a wide range of

applications. However, the convergence behavior and resulting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

GECCO'08, July 12 -16, 2008, Atlanta, Georgia, USA.

Copyright 2008 ACM 978-1-60558-130-9/08/07...$5.00.

performance is strongly dependent on a proper setting of

parameter values, a procedure that may be found hard to deal with

by non-expert users. The parameter values control techniques are

usually divided into three categories [14]:

1. Deterministic: parameter values are changed by some

deterministic rule.

2. Adaptive: values change during the EA run depending on its

behavior

3. Self-Adaptive: EAs evolve the parameter values together with

the problem solution.

Deterministic methods may be useful when developing an EA for

a specific problem for which the algorithm behavior and

requirements are known for the different search stages. However,

these methods are not robust and usually do not maintain their

performance when changing to different problems or even

different problem instances. For these purposes, adaptive methods

are more suitable since the variation depends indirectly on the

problem and the search stage. Self-adaptive methods follow the

same intuition that led to EAs, by letting the parameter values

evolve in the same way solutions advance towards the optima by

natural selection. Nevertheless, self-adaptation, by relying on

evolution and natural selection, suffer from the handicap

associated with the process: convergence to proper values may be

too slow, and the same applies for re-adaptation if the search

conditions change and the EA needs to self-adapt the parameters

to different values. Besides, it enlarges the search space by

including the parameters into it. Dynamic Optimization Problems

(DOPs) create extra problems to EAs when concerning the

variation of parameter values. Deterministic methods are only

useful when it is possible to recognize the instant when the fitness

function changes (in real-world problems the changes in the

fitness functions are not always detectable). Adaptive control

methods require variation strategies that may depend, for instance,

on population genotypes, phenotypes or fitness. The application

of self-adaptive methods is even more critical when solving DOPs

since the slow evolution of the parameter values may not be

compatible with fast changing extrema.

Another approach is possible when engaging in the issue of

parameter control. Systems with Self-Organized Criticality (SOC)

[4, 5] may be attached to EAs in order to control the parameter

values, diversity or population size and possibly overcome the

difficulties inherent to deterministic, adaptive and self-adaptive

control methods. Previous works [22, 23, 30] suggest that the

task is feasible and may improve traditional EA’s performance,

especially when dealing with DOPs. Following this idea, a

modified version of the classical mutation operator using the

Sandpile Model as an auxiliary tool to control the mutation of a

Genetic Algorithm (GA) is presented.

937

The present work is organized as follows. Section 2 provides a

State of the Art on EAs, DOPs and SOC. Section 3 introduces the

Sandpile Mutation. Section 4 describes the test environment and

discusses the results and Section 5 concludes the paper and

outlines future research.

2. STATE OF THE ART
Optimization problems are said to be dynamic when there is a

change in the fitness function, problem instance or restrictions,

thus making the optimum change as well. When changes occur,

the solutions already found may be no longer valid and the

process must engage in a new search effort. EAs adaptive

characteristics make them good candidate tools to solve DOPs.

However, these algorithms typically converge to an optimum and

thereby lose the diversity necessary to adapt to a change in the

environment when such a change occurs. In EAs research on

DOPs, a number of authors have addressed the problem of

convergence and subsequent loss of adaptability in many different

ways, but most of these approaches may be grouped into one of

the following three categories [10].

React on Changes. The EA is run in standard fashion, but as soon

as a change in the environment has been detected, explicit actions

are taken to increase diversity and thus facilitate the shift to the

new optimum. Techniques such as Hypermutation [12] pursue the

first category, keeping the whole population after a change but

increasing population diversity by drastically increasing the

mutation rate for some number of generations.

Maintaining diversity. Convergence is avoided all the time and it

is hoped that a spread-out population can adapt to changes more

easily. The Random Immigrants Genetic Algorithm (RIGA) [18]

is one well-known example of a strategy that falls in the second

category. Other examples of diversity oriented EAs for DOPs may

be found in [11], [21] and [27].

Memory schemes. The EA is supplied with a memory to recall

useful information from past generations. Memory may be

provided in two general ways: implicitly [17] by using redundant

representations or explicitly by introducing an extra memory and

formulating strategies to deposit and retrieve solutions later [9].

Estimation of Distribution Algorithms (EDAs) [24, 28] is a class

of EAs that replaces the standard crossover and mutation

operators by building a probabilistic model of promising solutions

and sampling from the corresponding probability distribution.

Although dynamic problems have been a subject of EAs research

for the last two decades, only recently this issue has started to

raise a strong interest on EDAs’ researchers. The Population

Based Incremental Learning [6] was used in [32] to solve DOPs

created by a problem generator proposed by the same authors. In

[31], Yang proposes the Univariate Marginal Distribution

Algorithm [26] with enhanced memory. Abass et al. introduced

[1] the Extended Compact Genetic Algorithm [20] to solve

dynamic problems. Their approach is based on random restarts of

the population at each change (React on Changes).

Some recent proposals have been made using a Swarm

Intelligence [8] approach to attempt to solve dynamic problems.

Examples of Swarm Intelligence applied to dynamic

environments may be found in [19] and [29], amongst many

others. In [15], Fernandes et al. developed the Binary Ant

Algorithm (BAA), based on the ACO [13] framework, to take

advantage of ACO’s ability to solve combinatorial DOPs and

generalize it to binary problems. However, this method may be

also regarded as a type of EDA, because BAA creates the possible

solutions to a problem via transition probability vectors.

In 1987, Bak at al. [4] identified the SOC phenomenon associated

with dynamical systems. The first system were SOC was observed

was named after its inspiration as the Sandpile model, and

consists of a cellular automata where at each cell of the lattice,

there is a value which corresponds to the slope of the pile. Grains

of sand are randomly “thrown” into the lattice where they pile up

and increment the values of the cells. When a value exceeds a

specific threshold, an avalanche takes place and four grains

belonging to that cell are distributed by the neighboring sites (von

Neumann neighborhood). If one of those sites also exceeds the

threshold value, the avalanche continues, and the grains are also

sent to the adjacent cells. The procedure of the Sandpile model is

shown in figure 1. With these settings, and depending on the state

of the lattice and the position of the new grain, a grain may cause

rather different responses. It may not cause any change in the

system if it falls in a cell with its value bellow threshold (other

than increasing the sand on the cell, of course) and it may

generate large avalanches of sand that will strongly redefine the

shape of the pile. The likelihood of an avalanche is in power-law

proportion to the size of the avalanche, and avalanches are seen to

occur at all size scales. Large avalanches are very rare while small

ones appear very often. Without any fine-tuning of parameters,

the system evolves to a non-equilibrium critical state: SOC.

The Bak-Sneppen system [5] is a model of co-evolution between

interacting species where SOC is also present. The model consists

of a number of species, each one with a fitness value assigned and

each connected to two other species (neighbors). Every time step,

the specie with the worst fitness and both its neighbors are

eliminated from the system and replaced by individuals with

random fitness. Such an event is recorded as an avalanche of size

1, and if the next extinction involves one of the newly created

species, then the size is incremented. By plotting the size of the

extinctions over their frequency, a power-law relationship

emerges, like in the Sandpile model.

SOC has already been applied in bio-inspired computation in the

past [7, 22, 23, 30]. Since SOC associated with EAs may

periodically insert large amounts of new material in the

population or completely reorganize a solution to a problem, it

soon was adopted by EA researchers in order to provide new

means to control parameter values or maintain population

diversity, thus avoiding premature convergence to local optima.

Extremal Optimization (EO) [7] is based on the Bak-Sneppen

model of SOC. Unlike EAs and Swarm Intelligence algorithms, it

does not work with a population of individuals, but instead it

evolves a single solution to the problem by local search and

modification. EO removes the worst components of the solution

and replaces them with randomly generated material. By plotting

the fitness of the solution, it is possible to observe distinct stages

of evolution, where improvement is disturbed by brief periods of

dramatic decrease in the quality of the solution. In [22] the

authors propose a mass extinction model and a mutation model

for EAs (later extended to cellular GAs [23]) based on the

Sandpile. The Sandpile is previously computed in order to obtain

power-law values. Those values are then used during the run to

938

Procedure Sandpile

Considerer a lattice (x,y) and a function z(x,y) which represents the
number o grains in the cells.

Starting with a flat surface z(x,y) = 0 for all x and y:

Add a grain of sand:

 if z(x,y) > zc then an avalanche occurs

if z(x, y±1) = 4 or z(x±1, y) = 4

Update z recursively

Figure 1. 2D Bak-Tang-Wisenfeld Sandpile Model

control the number of individuals that will be replaced by

randomly generated solutions (SOC mass extinction model) or the

mutation rate of the EA (SOC mutation model). In [30] a RIGA

associated with the Bak-Sneppen model is presented and tested on

DOPs: the Self-Organized Random Immigrants Genetic Algorithm

(SORIGA). In each generation, SORIGA replaces the worst

individual of the population and its neighbors by rr random

solutions (neighborhood relations are determined by the

individuals’ indexes in the population). To avoid new individuals

to be quickly replaced by the fittest chromosomes in the

population, the random solutions are stored in a subpopulation

and the individuals from the main population are not allowed to

replace the new individuals. Furthermore, selection and crossover

are allowed only between individuals that belong to the

subpopulation. By plotting the extent of extinction events, the

authors argue that the model exhibits SOC behavior.

This paper’s proposal differs from previous approaches in many

ways. Unlike Extremal Optimization, it works on a population-

based EA: the SOC mutation is attached to a GA. In addition,

power-law values are not previously computed and then used to

vary mutation rate, like in [22, 23]. This feature, as it will be

shown in Section 4, is very important on DOPs, since large

avalanches appear to be connected to changes in the environment:

the distribution avalanche sizes varies with DOP characteristics

(speed and severity of change); these self-adaptive features of the

system would not be achievable if the power-law values were

computed off-line. Finally, SORIGA gives new genetic material

to the population by inserting rr new chromosomes in each

generation, while the Sandpile Mutation may completely

reconfigure the population’s alleles in only one generation. In

addition, SORIGA always performs N+rr function evaluations in

each time step. When compared with a generational GA with N

individuals, SORIGA needs extra computational effort to perform

the same number of generations.

3. THE SANDPILE MUTATION
The Sandpile Mutation, uses the original 2D Sandpile model with

minor modifications in order to evolve self-regulated mutation

rates. The pseudo-code is shown in figure 2 (maximization is

assumed). The Sandpile Mutation replaces the traditional

mutation in the Standard GA (SGA). However, while traditional

mutation is done at bit level, that is, mutation is attempted in

every bit and it is performed every time a gene passes the

probability test, Sandpile Mutation procedure is performed every

generation in the way described in figure 2. The procedure works

as follows.

Sandpile Mutation

The Sandpile is evolved on a n×l lattice with n = 1, 2, …N and l = 1,
2, …L. The lattice is randomly initialized with values between 1 and

3. This way, a first stage of search with rare avalanche events is

avoided. The critical threshold zc is set to 4 (equal to the number of
grains that topple when a avalanche occurs). In the occurrence of an

avalanche, the 4 grains drop into the cell’s von Neumann

neighborhood. If z reaches threshold zc, but the mutation does not
occur, then the grain is discarded.

for g grains do

 drop grain at random
 compute normalized fitness:

(1)

where i is the index of the chromosome associated with the cell (n, l),

worstFitness is the lowest fitness in the current population and

bestFitness is the best fitness in the population. Note: if bestFitness =
worstFitness, fn is set to 0.5

 if randomValue(0, 1.0) > fn and cell (n, l) not active
 mutate (bit flip mutation)

 avalanche

 and update lattice z recursively

Figure 2. The Sandpile Mutation pseudo-code.

After a new population is generated by selection and crossover,

the individuals are ranked according to its fitness. Then each

individual is mapped into a n×l lattice with n = 1,…N and l =

1,…L, where N is the population size and L is the chromosome

length − see figure 3 for a detail of the Sandpile. The Sandpile

starts evolving in the first generation (a specific initialization of

the lattice is done in order to avoid a preliminary stage without

events). In each generation g grains are randomly “thrown” into

the lattice thus incrementing the cells values (z). When a cell

reaches the critical value (zc) an avalanche occurs only if a

randomly generated value (between 0 and 1.0) is higher than the

normalized fitness of the individual on which the avalanche is

located. This way, fitter individuals have lower chances of being

mutated while the genes of poor solutions have a high probability

of being mutated when a z value reaches zc (and please remember

that ranking is done every generation, supplying the lattice with a

sort of “slope”). After a first avalanche, the neighboring cells are

updated in a recursively manner and the avalanche may proceed

through the lattice as long as the state of the Sandpile and the

fitness of the solutions are favorable to that progression.

Threshold zc is set to 4, equal to the number of grains that topple

to the von Neumann neighborhood when an avalanche occurs.

The Sandpile Mutation has one restriction that is not present in

original model: if a cell is already involved in an avalanche

(active cell), and the recursive nature of the process has not

allowed it to complete its sequence, then the cell is ignored. This

restriction eliminates hypothetical avalanche cycles and several

mutations of the same gene. Although there is no empirical

evidence that this restriction improves the performance of the

model, it is adopted in order to reduce the computational time of

the mutation process. (With very complex fitness functions, the

cost of a Sandpile Mutation with cycles may become irrelevant.)

939

Figure 3. A section of a sandpile attached to a population:

genes l1, l2, l3 from chromosomes n1, n2, n3. Please note that

cell (l2, n2) is close to zc = 4. If one grain falls in that site, an

avalanche will take place (if fitness test is passed). Then, four

grains will topple to the cell’s von Neumann neighborhood

and (l2, n3) will reach threshold. If conditions are favorable,

avalanche and mutations may proceed indefinably.

Two more details must be referred. First, if a z value reaches zc

but the mutation does not occur (due to the fitness test) then the

grain is discarded. In addition, if an avalanche takes place in a cell

on the edge of the lattice, then the grains will “fall off” the lattice.

With this process, different purposes are achieved. By using a

Sandpile associated with the population, avalanches of different

sizes are generated, thus changing the population in diverse

manners, from minor changes to radical reconfigurations of the

genetic material. Associating the avalanche and consequent

mutations with the quality of solutions, better individuals are

favored, preventing them from being subject to extreme

mutations, this way introducing an element of natural selection in

the system. In the following experiments, the Sandpile Mutation

replaces the traditional mutation of an SGA. The resulting

algorithm is the Sandpile Mutation Genetic Algorithm (SMGA).

Its characteristics may place it on the maintaining diversity

category [10] described in section 2.

4. EXPERIMENTS AND RESULTS
The test environment proposed in [32] was used to investigate the

Sandpile Mutation on DOPs. Given a stationary problem

 where l is the chromosome length, the dynamic

environments may be constructed by applying a binary mask

 to each solution before its evaluation in the following

manner:

 (2)

Where t is the generation index, is the period index and

 is the fitness of solution . can be incrementally

generated as follows:

 (3)

where is an intermediate binary mask for every period k.

This mask has ones, where is a value between 0 and

1.0 which controls the intensity or severity of change. Notice that

 corresponds to a stationary problem since T vectors will

carry only 0’s and no change will occur in the environment. On

the other hand, guarantees the highest degree of change.

Therefore, by changing and in the previous set of equations it

is possible to control two of the most important features when

testing algorithms on DOPs: severity () and speed (of change

[2]. Following the experiments in [30], a Royal Road function and

two Deceptive functions were used as stationary problems where

the dynamic frame was applied.

Royal Road functions [25] were specifically designed to study

GA’s performance on the level of building block interactions, and

are widely used for GAs test and analysis. From the set of Royal

Road functions, R1 was selected. R1 is defined by:

(4)

where q is the number of schemata S = {s1,…, sq} and, for the

function in this paper, s(x) is set as 1 if x is an instance of S and

0 otherwise, and cs = 8 for all s; a 64-bit string was used and each

schema is composed of 8 contiguous bits.

Deceptive functions are designed to be unfriendly for optimization

via GAs. Instead of combining low order building blocks in order

to form higher order building blocks, deceptive functions conduce

the search towards deceptive attractors. To build the deceptive

functions a trap function can be used:

(5)

where u(x) is the unitation function, l is length of x, a is local

optimum, b is the global optimum and z is the slope-change

location which separates the attraction basin sizes of the two

optima. Following [30], two deceptive functions were defined by

setting l, a, b and z values as. Deceptive 1: l = 10, a = 0.82 and z =

8; Deceptive 2: l = 50, a = 0.8, z = 48; b is set to 1.0 in both

functions. One characteristic of these functions must be noted: the

Hamming distance between global and local optimum is equal to

the chromosome length, that is, to change between the two optima

is sufficient to flip all bits. This attribute, as explained latter, may

benefit the Sandpile Mutation performance and induce wrong

conclusions about the behavior of the model.

For that reason, the Massively Multimodal Deceptive Problem

(MMDP) [16] was added to the test set. MMDP is function

composed of k deceptive subproblems (si) of 6 bits each whose

values depend on the unitation of the bit string as shown in table

1. The fitness of the binary string is then computed in the

following way:

 (6)

Please note that MMDP has two global optima and unlike the

deceptive functions previously described, the Hamming distance

between the global and local optimum is lower than the

chromosome length and to change between global and local

optima is not enough to flip all bits.

Before proceeding to an analysis of SMGA performance on

dynamic environments it is important to observe how the

algorithm behaves on a static and scalable problem. For that

purpose, MMDP function was used. Although there are other trap

Table 1. MMDP function.

u(x) 0 1 2 3 4 5 6

fs(x) 1.0 0 0.360384 0.640576 0.360384 0 1.0

940

and deceptive functions which have been a subject of more

exhaustive and widespread studies amongst the community of EA

researchers, those functions may lead to wrong conclusions about

Sandpile Mutation performance. Consider for instance a deceptive

function as the one described above. The function’s global

optimum consists of a 1’s string while the local optimum is the

0’s string. If a population converges to a local optimum, a

massive avalanche of Sandpile Mutation may invert all the bits of

an individual, thus immediately acquiring the global optimum.

That is, SMGA may take advantage of the deceptive function’s

structure. MMDP does not hold the same structure and a large

avalanche over a population that has converged to local optima is

not likely to create a global optimum string.

As already stated, the Sandpile model is a system with SOC and

exhibits a power-law relationship between the frequency and size

of the avalanches. Although SMGA is based on the Sandpile

model, modifications that arise from the attachment of the

Sandpile to a GA do not guarantee that the resulting system also

exhibits SOC. However, the general idea behind Sandpile

Mutation is to take advantage of large avalanches that reconfigure

the system from time to time. Large avalanches may lead to large

mutation rates and in between those catastrophic events, lower

rates give the algorithm a more steady behavior. The non-periodic

manner in which avalanches of any size emerge in the system is

also explored by SMGA because in dynamic problems the

landscapes may change in many ways. To check if SMGA

exhibits the expected behavior, it is necessary to observe the

relationship between the frequency and size of the avalanches

(and mutations). Figure 4 shows that relationship for MMDP with

different length L. Although it is not the aim of this paper to prove

that SMGA is a SOC system, it is evident that the Sandpile

evolves (at least) near the desired state: small avalanches are

frequent and large avalanches are scarce – see graphs at the left

hand side of figure 4. The way this distribution affects the

mutation rate may be seen on the right hand side of figure 4.

Although the shape of the curves differs from the log-log graphs

of the avalanches, they show SMGA’s general tendency to evolve

small mutation rates in many generations and large rates on few

generations. The algorithm was executed with pc = 0.7, 2-point

crossover, binary tournament selection and g = 10×L.

The test environment generator described above was used to

determine how effective SMGA is when dealing with DOPs. DOP

versions of the Royal Road and Deceptive functions were

implemented and tested. SMGA’s performance is compared with

an SGA and two RIGAs – see table 2. As stated above the

Deceptive functions described above may favor SMGA due to its

specific search space. By modifying the Sandpile Mutation with

the purpose of avoiding the convergence to the global optimum

via catastrophically mutation of local optimum chromosomes, it is

then possible to compare the algorithms with fairness. The

modification was done in the mutation step of the Sandpile

procedure – see figure 2. Instead of flipping the bit every time the

conditions are satisfied, the modified SMGA (SMGA*) flips the

bit with probability 0.5. To compensate the expected decrease in

the resulting mutation rates, SMGA* parameter g value was set to

g* = 5×g.

For each DOP several degrees of severity () and speed (were

set: = 10, = 200 and = 1000; = 0.05 , = 0.6 = 0.95

 Avalanches Mutations

L = 24

L = 90

Figure 4. Log-log graphs of size and frequency distribution of

SMGA’s avalanches and mutations. L is chromosome length.

(if ρ×L is not integer, the value is rounded). Each algorithm was

executed for 10 periods of environmental changes and, for each

configuration, 30 runs were performed. The fitness was measured

and averaged over the 30 runs. Evaluation of GAs’ performance is

done by comparing the mean best-of-generation values (this is the

standard procedure for DOPs). Results and parameters are shown

in Table 2. A statistical comparison was carried out by t-tests with

58 degrees of freedom at a 0.05 level of significance. If SGA or

RIGA are significantly worse than SMGA, then the sign + is

shown in parenthesis; else, the sign − appears; if the GAs are

statistically equivalent, then the ~ symbol is used. A general

analysis of the results reveals that there are only a small number

of combinations of and for which any of the GAs (SGA,

RIGA 1 or RIGA 2) is significantly better than SMGA. (Please

note that RIGAs perform N+rr function evaluations in each

generation.) In addition, the results show that, in general,

SMGA’s efficiency increases with and , especially in

Deceptive functions 1 and 2. This behavior may be explained by

SMGA’s dynamic and non-deterministic characteristics. Sandpile

Mutation main feature (and possibly its major force) consists on

its capacity to reconfigure the population in a non-deterministic

manner. Large mutations appear from time to time, but it is

impossible to determine or set the exact moment when those

avalanches take place. Fast changes in the environment mean that

the optimum is moving without giving any chance for SMGA to

evolve large mutation rates that might release the population from

previous optimal regions of the search space. From table 2 it is

clear that DOPs with = 10 do not require such a dynamic

variation of the mutation rate as the one provided by SMGA. On

the other hand, with slower rates of change (, SMGA’s

overcomes the difficulties faced by SGA and RIGA and generally

outperforms the other GAs. The observation of SMGA’s behavior

in Royal Road with different also reveals a pattern: SMGA

tends to perform better (that is, to outperform SGA and RIGA)

with higher . Low means that the changes are not severe.

SMGA ability to generate large amounts of genetic novelty,

providing the algorithm with means to escape previous optimal

regions, is not so useful when the fitness function changes only by

a small amount. However, when increases, SMGA’s exposes it

skills to solve DOPs with severe changes.

941

 Table 2. Mean best-of-generation and standard deviation. General parameters: N = 120, 2-point crossover, tournament selection (kts =

0.9). SGA: pm = 1/L, pc = 0.7; RIGA 1: pm = 1/L, pc = 0.7, rr = 3; RIGA 2: pm = 1/L, pc = 0.7, rr = 12; SMGA: pc = 0.7; g = 10×L (Royal

Road) and g* = 50×L (Deceptive 1 and 2). Royal Road: L = 64; Deceptive 1: L = 10; Deceptive 2: L = 50

 Royal Road Deceptive 1 Deceptive 2

 τ ρ SGA RIGA 1 RIGA 2 SMGA SGA RIGA 1 RIGA 2 SMGA* SGA RIGA1 RIGA2 SMGA*

10 0.05

32.99

±4.29

(~)

31.20

±3.29

(~)

31.76

±3.89

(~)

31.41

±3.55

0.837

±0.007

(+)

0.831

±0.010

(+)

0.829

±0.081

(+)

0.855

±0.043

0.753

±0.004

(~)

0.665

±0.009

(+)

0.667

±0.007

(+)

0.752

±0.007

10 0.60

11.2

±1.32

(+)

10.69

±1.34

(+)

11.06

±1.07

(+)

13.40

±1.01

0.811

±0.023

(~)

0.802

±0.028

(~)

0.802

±0.026

(~)

0.793

±0.020

0.562

±0.006

(+)

0.588

±0.004

(+)

0.593

±0.005

(~)

0.594

±0.006

10 0.95

17.16

±1.96

(~)

16.62

±1.96

(~)

16.35

±1.79

(~)

17.12

±1.48

0.979

±0.020

(−)

0.960

±0.021

(−)

0.956

±0.021

(−)

0,922

±0.031

0.504

±0.004

(+)

0.559

±0.004

(~)

0.562

±0.005

(−)

0.558

±0.005

200 0.05

60.03

±1.46

(−)

59.26

±1.42

(−)

59.67

±2.05

(−)

57.80

±2.38

0.823

±0.008

(+)

0.824

±0.010

(+)

0.824

±0.010

(+)

0.957

±0.026

0.7980

±0.0002

(−)

0.7394

±0.006

(+)

0.7413

±0.005

(+)

0.7973

±0.0005

200 0.60

37.87

±1.41

(+)

37.26

±1.27

(+)

37.70

±1.50

(+)

42.15

±1.45

0.842

±0.018

(+)

0.843

±0.020

(+)

0.840

±0.021

(+)

0.908

±0.025

0.7751

±0.0006

(+)

0.7155

±0.004

(+)

0.7185

±0.004

(+)

0.7832

±0.0007

200 0.95

31.87

±1.23

(+)

30.96

±1.17

(+)

31.82

±1.25

(+)

46.43

±2.15

0.976

±0.012

(−)

0.971

±0.016

(−)

0.964

±0.017

(−)

0.939

±0.016

0.7579

±0.0008

(+)

0.7145

±0.004

(+)

0.7160

±0.003

(+)

0.7808

±0.0009

1000 0.05

62, 87

±0.78

(~)

62.80

±0.82

(~)

62.90

±0.99

(~)

62.36

±1.14

0.823

±0.008

(+)

0.826

±0.012

(+)

0.821

±0.051

(+)

0.994

±0.003

0.79960

±0.00005

(−)

0.76793

±0.00216

(+)

0.77155

±0.00324

(+)

0.79947

±0.00007

1000 0.60

54. 20

±1.35

(~)

54.38

±1.17

(~)

54.38

±1.45

(~)

54.85

±1.40

0.854

±0.021

(+)

0.846

±0.017

(+)

0.850

±0.021

(+)

0.984

±0.006

0.79506

±0.00012

(+)

0.76181

±0.00334

(+)

0.76390

±0.00256

(+)

0.79670

±0.00014

1000 0.95

51. 85

±1.21

(+)

51.81

±1.10

(+)

51.59

±1.03

(+)

56.62

±1.63

0.973

±0.014

(+)

0.978

±0.014

(+)

0.966

±0.017

(+)

0.988

±0.005

0.79646

±0.00918

(~)

0.76207

±0.00281

(+)

0.76406

±0.00286

(+)

0.79623

±0.00016

Figure 5 shows SGA and SMGA’s best fitness during the run on a

dynamic Royal Road with τ = 200. The graphics illustrate previous

statements. When ρ = 0.05, SGA is slightly faster at tracking the

moving optimum. SMGA’s mutation rate distribution is not so

useful in these conditions, because the landscape changes in small

amounts. When ρ increases, SMGA’s discloses its abilities to solve

DOPs. With ρ = 0.95 (meaning that the landscape is suffering

dramatic changes every 200 generations), SMGA replicates, in

each period, the best-of-generation curve of the first environment

(from t = 0 to t = 200). SGA looses diversity during the first stage

of convergence and is unable to reach the same fitness values it has

achieved at t = 200. SMGA’s mutation rate in each generation

when solving the Royal Road with = 10 and several values is

shown in figure 6. Please note how the shape of the curves change

when increasing from 0 (meaning that no changes occurs in the

fitness landscape, that is, the problem is static) to 0.95. With =

0.05 there are already some hints of a relation between the

beginning of a new period and the mutation bursts. With = 0.95 a

rough periodicity starts to emerge. The algorithm self-adapts to the

environment changes. Computing the Sandpile Model off-line in

order to use the power-law values to control mutation rate would

not provide the algorithm with these self-adjusting capabilities.

One may argue that increasing the mutation rate when a change

occurs (like in Hypermutation [12]) may have the same effect.

However, that would mean that changes were detectable, which is

not always possible. A more general framework is considered here,

were dynamic optimization is assumed to be “blind”: changes in

the landscape are not detectable (or the detection is too costly).

ρ = 0.05 ρ = 0.6 ρ = 0.95

Figure 5. Comparing SGA and SMGA’s dynamic behavior on Royal Road. 𝜏 = 200

942

 = 0 = 0.05 = 0.95

Figure 6. Royal Road. SMGA mutation rate variation with = 10. Mutation rate is measured every generation by comparing all

the alleles in the population before and after g grains are thrown into the lattice.

Table 3 shows Sandpile Mutation results compared to those

attained by SORIGA in [30]. SMGA outperforms SORIGA in

eight of the nine scenarios in which Deceptive 1 was tested. On

Royal Road and Deceptive 2, SMGA tends to outperform SORIGA

when the speed of change is high, while SORIGA behaves better

when speed is lower. (There is not enough information in [30] to

perform statistical analysis). Please note that, like traditional

Random Immigrants GAs, SORIGA performs N+rr function

evaluations in each generation, meaning that setting rr = 24 (like in

some experiments described in [30]) causes a significant increase

of computational effort. In addition, rr value affects the

performance, which means that SORIGA’s parameter space is

more complex and more difficult to fine-tune. Sandpile Mutation

needs a new parameter g, but that replaces the mutation rate (pm) of

traditional GAs. Since SORIGA is the closest approach to Sandpile

Mutation, further experiments are obligatory in order to investigate

how both algorithms behave on dynamic environments, and if the

observed SMGA’s mutation bursts when fitness changes may help

to track the optimum of hard dynamic problems.

5. CONCLUSIONS AND FUTURE WORK
This paper presents a new method to control Genetic Algorithms’

mutation rate in order to tackle Dynamic Optimization Problems.

The new strategy is based on the Sandpile model and Self-

Organized Criticality and it is named Sandpile Mutation. Genetic

Algorithms’ populations are attached to a Sandpile with the

objective of generating a wide range of mutation rates − from

small mutations to catastrophic events that reconfigure large

amounts of the population. The Sandpile Mutation Genetic

Table 3. Comparison of SMGA and SORIGA. SORIGA: N =

120; pm = 0.01, pc = 0.7; rr = 3; SMGA: N = 120; pc = 0.7; g =

10×L (Royal Road) and g* = 50×L (Deceptive 1 and 2)

 Royal Road Deceptive 1 Deceptive 2

 τ ρ SORIGA SMGA SORIGA SMGA* SORIGA SMGA*

10 0.05 30.91 31.41 0.825 0.855 0.756 0.753

10 0.60 12.05 13.40 0.768 0.793 0.576 0.594

10 0.95 15.44 17.12 0.886 0,922 0.554 0.558

200 0.1 60.60 57.80 0.901 0.957 0.798 0.798

200 0.60 42.72 42.15 0.881 0.908 0.780 0.783

200 0.95 39.73 46.43 0.947 0.939 0.781 0.780

1000 0.05 63.34 62.36 0.975 0.994 0.800 0.799

1000 0.60 58.62 54.85 0.959 0.984 0.796 0.797

1000 0.95 57.84 56.62 0.979 0.988 0.797 0.796

Algorithm has been tested and compared with other algorithms on

three dynamic problems with different speed and severity settings.

Results showed that the proposed algorithm outperforms Standard

Genetic Algorithm and Random Immigrants Genetic Algorithm in

the majority of the tests. Due to its characteristics, Sandpile

mutation is expected to work better when the environment

experiences medium or severe changes, and the results confirmed

this assumption. Sandpile Mutation was also compared to another

Self-Organized Criticality GA: the Self-Organized Criticality

Random Immigrants GA, but further experiments are needed in

order to properly evaluate the performance of the two algorithms.

Results also showed that the Sandpile model self-regulates the

mutation rate, and gives rise to mutation bursts when the

environment changes. This particular behavior may be useful when

tackling problems that need large amounts of genetic novelty to

deal with the fitness changes, but that do not permit

Hypermutation strategies, because changes are not be detectable,

or are too costly to detect. Unlike some memory schemes and other

methods that react to changes, the Sandpile Mutation does not

need an explicit mechanism to respond to a shift in the optimum

and introduce genetic novelty. The increase in the mutation rate is

done in a self-regulated manner, without information from the

environment itself, other than the fitness of the individuals.

Due to the Sandpile’s structure, avalanches and resulting mutations

affect adjacent genes. However, the Sandpile may evolve in a grid

structure other than a lattice. A small-world network should allow

the avalanches to spread more quickly to distant bits in the

chromosome and distant chromosomes in the ranked population.

Further work will focus on the design of small-world grids for the

Sandpile Mutation. In addition, parameter g needs to be addressed

in order to understand how its variation affects the algorithm’s

performance and also to detect possible optimal values. Besides

deceptive trap functions, the Sandpile will also be tested on hard

combinatorial problems, with the aim of understanding how could

the model behave when dealing with real-world problems.

6. ACKNOWLEDGEMENTS
Authors wish to thank FCT, Ministério da Ciência e Tecnologia,

the Research Fellowships SFRH/BD/18868/2004 (also supported

by Fundação para a Ciência e a Tecnologia, ISR/IST plurianual

funding, through the POS_Conhecimento Program that includes

FEDER funds). This work has also been supported by the Spanish

MICYT project TIN2007-68083-C02-01, Junta de Andalucia

CICE P06-TIC-02025 and Granada University PIUGR 9/11/06.

Authors are grateful to R. Tinós and S. Yang for providing

documentation on SORIGA that will be very useful in future work.

943

7. REFERENCES
[1] Abbass, H. A., Sastry K., and Goldberg, D. E. 2004. Oiling

the wheels of change: The role of adaptive automatic problem

decomposition in non-stationary environments. Technical

Report 2004029, Illigal, University of Illinois at Urbana-

Champaign, IL, USA

[2] Angeline, P. 1997. Tracking Extrema in Dynamic

Environments. Proceedings of the 6th International Conf. on

Evolutionary Programming, Springer, 335-345.

[3] Back, T. 1996.Evolutionary Algorithms in Theory and

Practice. Oxford University Press.

[4] Bak, P., Tang, C., K. Wiesenfeld, K. 1987. Self-organized

criticality: an explanation of 1/f noise. Physical Review of

Letters, 381-384.

[5] Bak, P., Sneppen. K. 1993. Punctuated equilibrium and

criticality in a simple model of evolution. Physical Review of

Letters 71, 4083-4086.

[6] Baluja, S. 1994. Population-Based Incremental Learning: A

Method for Integrating Genetic Search Based Function

Optimization and Competitive Learning. Technical Report

CMU-CS-94-163, Carnegie Mellon University, USA.

[7] Boettcher, S., Percus A.G. 2003. Optimization with extremal

dynamics. Complexity 8(2), 57-62.

[8] Bonabeau, E., Dorigo, M., Threraulaz, G. 1999. Swarm

intelligence: from natural to artificial systems. Oxford

University Press

[9] Branke, J. 1999. Memory enhanced evolutionary algorithms

for changing optimization problems. Proceedings of the 1999

Congress on Evolutionary Computation, 1875-1882

[10] Branke, J., Schmeck, H. 2002. Designing evolutionary

algorithms for dynamic optimization problems. Theory and

Application of Evolutionary Computation: Recent Trends,

239-262

[11] Cedeno, W., Vemuri. V.R. 1997. On the use of niching for

dynamic landscapes. Proceedings of the 1997 Conference on

Evolutionary Computation, IEEE, 361-367

[12] Cobb H.G. 1990. An investigation into the use of

hypermutation as an adaptive operator in genetic algorithms

having continuous, time-dependent nonstationary

environments. Technical Report AIC-90-001, Naval Research

Laboratory, Washington, USA

[13] Colorni, A., Dorigo M., and Maniezzo, V. 1992. Distributed

Optimization by Ant Colonies. Proceedings of the 1st

European Conference on Artificial Life, MIT Press, 134-142

[14] Eiben, A.E., Hinterding R., Michalewicz Z. 1999. Parameter

Control in Evolutionary. IEEE Transaction on Evolutionary

Computation 3(2), 124-141

[15] Fernandes, C., Rosa A.C., and Ramos V. 2007. Binary Ant

Algorithm. Proceedings of the 2007 Genetic and Evolutionary

Computation Conference, ACM, 41-48

[16] Goldberg, D.E, Deb, K., Horn, J. 1992. Massively

multimodality, deception and genetic algorithms. Parallel

Problem Solving from Nature II, North-Holland, 37-46

[17] Goldberg, D.E., Smith, R.E. 1987. Nonstationary function

optimization using genetic algorithms with dominance and

diploidy. Proceedings of the 2nd International Conference on

Genetic Algorithms, ACM, 59-68

[18] Grefenstette, J.J. 1992. Genetic algorithms for changing

environments. Parallel Problem Solving from Nature II.

North-Holland, 137-144,

[19] Guntsch, M., Middendorf, M. 2002. Applying population

based ACO to dynamic optimization problems. Proceedings

of 3rd International Workshop ANTS 2002, LNCS 2463, 111-

122

[20] Harik, G. R. 1999. Linkage learning via probabilistic

modeling in the ECGA. IlliGAL Report No. 99010, Illigal,

University of Illinois at Urbana-Champaign, IL, USA

[21] Huang, C., Kaur, J., Maguitman, A., and Rocha, L. 2007

Agent-based model of genotype editing. Evolutionary

Computation 15(3), 253-289.

[22] Krink, T., Rickers P., René T. 2000. Applying self-organised

criticality to evolutionary algorithms. Proceedings of the 6th

International Conference on Parallel Problem Solving from

Nature, 375-384

[23] Krink, T., Thomsen, R. 2001. Self-Organized Criticality and

Mass Extinction in Evolutionary Algorithms. Proceedings of

the 2001 Congress on Evolutionary Computation, vol.2,

1155-1161

[24] Lorrañga, P., Lozano J.A. 2002. Estimation of distribution

algorithms: A new tool for evolutionary computation. Boston:

Kluwer Academic Publishers, Boston

[25] Mitchell, M. 1991. When will a GA outperform Hilclimbing?

Advances in Neural Information Processing Systems 6, 51-58

[26] Muehlenbein, H. 1998. The equation for response to selection

and its use for prediction. Evolutionary Computation 5(3),

303-346

[27] Ochoa, G., Madler-Kron C., Rodriguez R., Jaffe K. 2005.

Assortative mating in genetic algorithms for dynamic

problems. Proceedings of the 2005 EvoWorkshops, 617-622

[28] Pelikan, M., Goldberg D., Lobo F. 1999. A Survey of

Optimization by Building and Using Probabilistic Models,

Computational Optimization and Applications 21(1), 5-20

[29] Ramos, V., Fernandes C., and Rosa A.C. 2005. On self-

regulated swarms, societal memory, speed and dynamics,

Proceedings of ALifeX, MIT Press, 393-399

[30] Tinós, R. and Yang, S. 2007. A self-organizing random

immigrants genetic algorithm for dynamic optimization

problems. Genetic Programming and Evolvable Machines 8,

255-286

[31] Yang, S. 2005. Memory-enhanced univariate marginal

distribution algorithms. Proceedings of the 2005 Congress on

Evolutionary Computation, 2560-2567

[32] Yang, S. and Yao, X. 2005. Experimental study on

population-based incremental learning algorithms for

dynamic optimization problems. Soft Computing 9(11), 815-

834

944

