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ABSTRACT
Standard particle swarms exhibit both multiplicative and
additive stochasticity in their update equations. Recently,
a simpler particle swarm with just additive stochasticity
has been proposed and studied using a new theoretical ap-
proach [14]. In this paper we extend the main results of
that study to a large number of existing particle swarm op-
timisers by defining a general update rule from which actual
algorithms can be instantiated via the choice of specific re-
combination operators. In particular, we derive the stability
conditions and the dynamic equations for the first two mo-
ments of the sampling distribution during stagnation, and
show how they depend on the used recombination opera-
tor. Finally, the optimisation efficiency of several particle
swarms with additive stochasticity is compared in a suite of
16 benchmark functions.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms

Keywords
Swarm Intelligence, Optimization, Recombination Opera-
tors, Theory, Empirical Study

1. INTRODUCTION
In the standard formulation of the Particle Swarm Opti-

miser (PSO), the movement of the particles is ruled by a set
of second order difference equations with both multiplicative
and additive stochasticity [2]. In [14], Poli et al. proposed
SPSO, a simpler PSO involving only additive stochasticity,
and studied it using a moment analysis technique firstly in-
troduced in [15].
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Poli et al.’s SPSO is not the only particle swarm with ad-
ditive stochasticity existing in the literature. In an effort to
obtain simpler algorithms, several researchers have proposed
PSOs that, intentionally or not, also remove multiplicative
randomness from their update rules. Examples of these al-
gorithms are Kennedy’s Bare-bones PSO [7], GDPS [8] and
Essential FIPS [9], as well as Peña et al.’s PSO-DR [12]
(further studied by Bratton and Blackwell [3, 4]).

In this paper, a general formulation for particle swarms
with additive stochasticity that encompasses all of these al-
gorithms is proposed (Section 2). Single instances that cor-
respond to actual particle swarms can be derived by defining
appropriate recombination operators (Section 3). In Sec-
tion 4 this family of algorithms is formally studied, extend-
ing the main results presented in [14] for SPSO. In particu-
lar, stability conditions and the dynamic equations describ-
ing the first two moments of the sampling distribution during
stagnation are derived. Then, the optimisation efficiency of
several members of this family of methods is compared in
Section 5. Finally, conclusions are drawn (Section 6).

2. PARTICLE SWARMS WITH ADDITIVE
STOCHASTICITY

In Standard PSO, position updates for each dimension are
given by

xt+1 = xt + w (xt − xt−1) +

KX
k=1

φ

K
uk (pk − xt) , (1)

where pk is the personal best of the k-th informer, K is
the number of informers, uk ∼ U [0, 1] is a random variable
uniformly distributed in the interval [0, 1], w is the inertia
weight, and φ is the acceleration coefficient. In the best-of-
neighbourhood (BN) model of influence, the set of informers
is constituted by the particle itself and the neighbourhood
best. In the fully informed (FI) model [10], all neighbours
are considered as informers1. The specification of a popu-
lation topology, of a model of influence and of the values
for the parameters w and φ defines an instance of Standard
PSO.

Notice that Eq. 1 can be rewritten as:

1We will also use the acronyms BNPS (for BN particle
swarms) and FIPS (for FI particle swarms). Standard BNPS
(resp. Standard FIPS) refers to Standard PSO with a BN
(resp. FI) model of influence.
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xt+1 + atxt + bxt−1 = ct, (2)

with

8<
:

at =
P

k
φ
K

uk − w − 1
b = w

ct =
P

k
φ
K

ukpk

. (3)

Since at and ct are random variables, Standard PSO is
ruled by second order difference equations with both addi-
tive and multiplicative stochasticity [2].

Consider now the update rule for Standard BNPS

xt+1 = xt + w (xt − xt−1) +
2X

k=1

φ

2
uk (pk − xt) , (4)

and rewrite it as:

xt+1 = xt + w (xt − xt−1) +
φ

2
(u1 + u2) (q − xt) , (5)

with

q =
u1p1 + u2p2

u1 + u2
. (6)

Looking for a PSO easier to analyse while still retaining
Standard PSO’s key properties, the authors of [14] argued
for the replacement of the random variable u1 + u2 by its
mean value E [u1 + u2] = 1 and of Eq. 6 by

q = up1 + (1 − u) p2, (7)

with u ∼ U [0, 1].
These changes led to SPSO’s update rule:

xt+1 = xt + w (xt − xt−1) +
φ

2
(up1 + (1 − u) p2 − xt) . (8)

In this paper, we study the more general model:

xt+1 = xt + w (xt − xt−1) + α (q − xt) , (9)

where α needs not to be related to the original parameter
φ, and q can be derived from any imaginable recombination
operator (see Section 3). Furthermore, informers can be
those specified by either a BN or a FI model of influence
with K ≥ 2.

Remark that Eq. 9 can still be rewritten as Eq. 2, but the
coefficients now take the values

8<
:

a = α − w − 1
b = w

ct = αq
. (10)

Since ct is the only coefficient involving a random variable,
only additive stochasticity is present in Eq. 9. Hereafter we
refer to a PSO with such an update rule as a Particle Swarm
with Additive Stochasticity (PSAS).

3. RECOMBINATION OPERATORS
Recombination is a variation operator usually used in Evo-

lution Strategies (ES) and other evolutionary computation

techniques in order to combine already tested good solu-
tions [1]. In the context of particle swarms, we define a
recombination operator as a mapping between the set of in-
formers’ personal bests and the stochastic variable q (see
Eq. 9). Below we define 5 types of recombination opera-
tors for particle swarms: standard, rectangular, discrete-1,
discrete-2 and gaussian. For the sake of clarity, we limit
ourselves to the case K = 2, giving k = 1 to the best of the
two informers.

The standard (S) and rectangular (R) recombination op-
erators have been already presented in the last section and
are respectively given by Eq. 6 and Eq. 7. The discrete-1
(D1) recombination operator2 is given by

q = ηdp1 + (1 − ηd) p2, (11)

and the discrete-2 (D2) recombination operator by

q =
(1 + ηd) p1 + (1 − ηd) p2

2
, (12)

where ηd ∼ U {0, 1} is a discrete random number drawn
from a Bernoulli distribution with success probability 1/2.

Finally, we define the gaussian (G) recombination opera-
tor as

q = N
“p1 + p2

2
, γ|p1 − p2|

”
, (13)

where γ > 0 is a real constant, and N (μ, σ) denotes a
random variable from a normal distribution with mean μ
and standard deviation σ.

Actual PSASs are recovered by coupling the general for-
mula of Eq. 9 with the definition of q via a recombination
operator. Hereafter, we refer to a PSAS with a recombi-
nation operator X as PSAS-X. Table 1 show the original
formulations of several existing PSOs and their equivalent
formulations as recombinant PSASs. Little algebra is re-
quired to pass from one formulation to the other.

Two comments should be made here about the original
formulations presented in Table 1. Firstly, even though
some of the listed methods were originally designed with
a particular model of influence in mind (e.g. FI in Essential
FIPS, BN in SPSO), all of them have been generalised so
that p1 and p2 are the personal bests of any set of two inform-
ers. Secondly, the formulations have been slightly modified
so that only the personal bests of these two informers are
taken into account. The introduced modifications are most
obvious in the cases of GDPS and Essential FIPS, for which
the frange and rangep variables do not involve differences
with respect to the self’s p vector (as proposed in the orig-
inal papers), but only the difference between the personal
bests of the two informers. Notice also that Bare-bones,
GDPS and Essential FIPS are essentially the same algorithm
(PSAS-G) with different values for w, α and γ. In the case
of the different PSO-DR formulations, PSO-DR and PSO-
DR M2 correspond to a velocity-based and a velocity-free
PSAS-D2, whereas PSO-DR M3 is a velocity-free PSAS-D1.

The expected value and the variance of q (E [q] and V ar [q]),
as well as the expected value of q2 (E

ˆ
q2

˜
) will be found in

the equations presented in the next section. E [q] = p1+p2
2

for S, R, D1 and G, and E [q] = 3p1+p2
4

for D2. V ar [q]
2Compare to the dominant or discrete recombination used
in ES [1].
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Table 1: Existing PSOs and their equivalent formulations as PSASs with recombination. Parameter values
are those suggested by the cited original papers.

Algorithm Original formulation Equivalent formulation

Bare-bones xt+1 = N

„
p1+p2

2 , |p1 − p2|
«

PSAS-G

[7] w = 0, α = 1, γ = 1
GDPS frange = |p1 − p2|, PSAS-G

[8] xt+1 = xt + w1
“

xt − xt−1
”

+ w2

„
p1+p2

2 − xt

«
w = w1 = 0.7298, α = w2 = 2.187,

+N (0, 1) frange
2 , γ = 1

2w2
= 0.2286

w1 = 0.7298, w2 = 2.187
Essential FIPS rangep = |p1 − p2| PSAS-G

[9] xt+1 = xt + χ
“

xt − xt−1
”

+ φ
2

(p1−xt)+(p2−xt)
2 w = χ = 0.7298, α = φ

2 = 2.05,

+ 1
2 N (0, 1) rangep γ = 1

φ
= 0.2439

χ = 0.7298, φ = 4.1
PSO-DR r = ηdp1 +

`
1 − ηd

´
p2 PSAS-D2

[12, 3, 4] xt+1 = xt + w
“

xt − xt−1
”

+
φ1
2 (r − xt) +

φ2
2 (p1 − xt) w = 0.5, α = 2.0

w = 0.5, φ = 2.0, ηd ∼ U {0, 1}
PSO-DR M2 r = ηdp1 +

`
1 − ηd

´
p2 PSAS-D2

[4] xt+1 = xt + φ
2 (r − xt) + φ

2 (p1 − xt) w = 0.0, α = φ = 1.6
φ = 1.6, ηd ∼ U {0, 1}

PSO-DR M3 r = ηdp1 +
`
1 − ηd

´
p2 PSAS-D1

[4] xt+1 = xt + φ (r − xt) w = 0.0, α = φ = 1.2
φ = 1.2, ηd ∼ U {0, 1}

SPSO xt+1 = xt + χ
“

xt − xt−1 + φ
2 ((p1 − p2) u + p2 − xt)

”
PSAS-R

[14] χ = 0.7298, φ = 4.1, u ∼ U [0, 1] w = χ = 0.7298, α = χφ
2 = 1.4961

Table 2: Statistical characterisation of different re-
combination operators

E
ˆ
q2

˜ V ar[q]
(p1−p2)2

S (log 2 − 1)
`
p2
1 + p2

2

´
+ (2 log 2 − 1) p1p2

3
4
− log 2

R 1
3

`
p2
1 + p1p2 + p2

2

´
1
12

D1 1
2
p2
1 + 1

2
p2
2

1
4

D2 5
8
p2
1 + 1

4
p1p2 + 1

8
p2
2

1
16

G
`
γ2 + 1

4

´ `
p2
1 + p2

2

´
+

`
1
2
− 2γ2

´
p1p2 γ2

is proportional to (p1 − p2)
2 for all the recombination op-

erators. The values of E
ˆ
q2

˜
and V ar[q]

(p1−p2)2
are reported in

Table 2 for each of the introduced recombination operators.

4. ANALYSIS
In order to analyse the search behaviour of PSASs, we

will make use of a technique originally introduced by Poli
and Broomhead in [15] to study the sampling distribution
of a PSO during stagnation. This technique has already
been used by the authors of [14] to analyse SPSO. Instead
of defining actual PSASs (by specifying a recombination op-
erator beforehand) and then deriving the results for each
particular case, we will give all the results in terms of the
stochastic variable q. Finally, although the analysis can be
extended to higher moments [13, 14], we limit ourselves to
the mean and the variance of the sampling distribution.

Let us start by collecting terms and rewrite Eq. 9 as

xt+1 = θxt − wxt−1 + αq, (14)

where θ = 1+w−α. Applying expectations to both sides
of Eq. 14, we obtain

E [xt+1] = θE [xt] − wE [xt−1] + αE [q] . (15)

This recursion is the same as the one derived for Stan-
dard PSO with the variable substitutions E [q] = p1+p2

2
and

α = φ
2

(see [15]). Thus, PSASs with E [q] = p1+p2
2

and

α = φ
2

preserve the behaviour of the mean of the sampling
distribution of Standard PSO. Eq. 15 can be easily solved
analytically, giving

E [xt] = c1

`
θ −√

θ2 − 4w
´t

2−t+

c2

`
θ +

√
θ2 − 4w

´t
2−t + E [q] ,

(16)

where c1 and c2 depend on initial conditions.
Now, multiplying both sides of Eq. 14 by xt and taking

their expected values:

E [xt+1xt] = θE
ˆ
x2

t

˜ − wE [xt−1xt] + αE [q] E [xt] , (17)

where we used E [qxt] = E [q] E [xt] because of the sta-
tistical independence of q and xt during stagnation. Taking
the square of Eq. 14, expanding the resulting expression and
applying the expectation operator to both sides:

E
ˆ
x2

t+1

˜
= θ2E

ˆ
x2

t

˜
+ 2wθE [xt−1xt] +

w2E
ˆ
x2

t−1

˜
+ 2αθE [q] E [xt]−

2αwE [q] E [xt−1] + α2E
ˆ
q2

˜
.

(18)

Solving analytically the recursions for E [xtxt−1] and E
ˆ
x2

t

˜
is less straightforward than for E [xt]. They can however be
integrated numerically after specifying initial conditions. Fi-
nally, a recursion for the variance of xt can be constructed
from Eq. 18 and 15 using V ar [xt] = E

ˆ
x2

t

˜ − (E [xt])
2.

4.1 Stability analysis
In order to analyse the stability of the system, we again

follow Poli and Broomhead [15] and write Eq. 15, 17 and 18
as the following system of first order equations

zt+1 = Mzt + b, (19)

where

zt =
`
E [xt] , E [xt−1] , E

ˆ
x2

t

˜
, E

ˆ
x2

t−1

˜
, E [xtxt−1]

´T
.
(20)
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The state update matrix M is given by

M =

0
BBB@

θ −w 0 0 0
1 0 0 0 0

2αθE [q] −2αwE [q] θ2 w2 −2wθ
0 0 1 0 0

αE [q] 0 θ 0 −w

1
CCCA , (21)

and the forcing vector by

b =
`
αE [q] , 0, α2E

ˆ
q2˜

, 0, 0
´T

. (22)

In order for E [xt], E
ˆ
x2

t

˜
and E [xtxt−1] to converge to

stable fixed points, the magnitudes of all the eigenvalues of
M must be less than one. In this case, the first two moments
of the sampling distribution converge and the system is said
to be order-2 stable [13]. If only the first moment converges,
the system is called order-1 stable [13].

The eigenvalues of M can be shown to be given by

8><
>:

λ1,2 =
θ±

√
(w−α)2−2α−2w+1

2
λ3 = w

λ4,5 =
1−2α+(φ−w)2±θ

√
1−2(α+w)+(α−w)2

2

. (23)

Since none of the eigenvalues depend on q, stability is inde-
pendent of the choice of the recombination operator, as long
as E [q] and E

ˆ
q2

˜
take finite values. An empirical analysis

of these eigenvalues shows that the region of order-2 stability
is given by

j |w| < 1
0 < α < 2 (1 + w)

. (24)

It is noteworthy that the region of order-2 stability for
PSASs coincides with their region of order-1 stability, which
is not the case for Standard PSO [15]. With the appropriate
variable substitutions, the region of convergence given by
Eq. 24 can be shown to be equivalent to the ones derived by
Poli et al. for SPSO [14] and by Blackwell and Bratton for
PSO-DR [3]. Fig. 1 compares the regions of order-2-stability
for Standard PSO and for PSASs. Notice that, for the mean
preserving case α = φ

2
, the region of convergence of PSASs

goes beyond the corresponding to Standard PSO.

4.2 Fixed points of E [xt] and V ar [xt]

Following the algebraic procedure used in [15], it can be
shown that the fixed point E [x]∗ for E [xt] is given by

E [x]∗ = E [q] , (25)

whereas the fixed points E
ˆ
x2

˜∗
and E [xx]∗ for E

ˆ
x2

t

˜
and E [xtxt−1] are respectively given by

E
ˆ
x2˜∗

=
2

`
1 − α − w2

´
E [q]2 + (1 + w) αE

ˆ
q2

˜
(w − 1) [α − 2 (1 + w)]

(26)

and

E [xx]∗ =

`
2 − 2α − α2 − w2

´
E [q]2 + αθE

ˆ
q2

˜
(w − 1) [α − 2 (1 + w)]

. (27)

The fixed point for the variance of the sampling distribu-
tion can be calculated using V ar [x]∗ = E

ˆ
x2

˜∗ − (E [x]∗)2.
After little algebra:

w

al
ph

a=
ph

i/2

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Figure 1: Curves limiting the regions of order-2-
stability for Standard PSO (dotted line) and PSASs
(solid line).

V ar [x]∗ =
α (1 + w)

(w − 1) [α − 2 (1 + w)]
V ar [q] . (28)

As said before, order-2 stability does not depend on the
specific recombination operator used. Nevertheless, for a
stable system, the fixed points of the first two moments of
the sampling distribution are determined by the choice of the
recombination operator. Notice also that V ar [q] is propor-
tional to (p1 − p2)

2 for all of the presented recombination
operators (see the last column of Table 2), which allows us
to rewrite Eq. 28 as

V ar [x]∗ =
α (1 + w)

(w − 1) [α − 2 (1 + w)]
δq (p1 − p2)

2 (29)

where δq = V ar[q]

(p1−p2)2
is a constant depending on the re-

combination operator. Thus, the fixed point of the variance
for PSASs is proportional to (p1 − p2)

2, as it was already
the case for Standard PSO (see [15]).

Figure 2 shows a comparison of the multiplicative factors
accompanying (p1 − p2)

2 in the expression for V ar [x]∗ for
Standard PSO and PSAS-S (δq ≈ 0.0569), PSAS-R (δq ≈
0.0833) and PSAS-D1 (δq = 0.25). Observe that, when fix-
ing w, larger values of φ or α lead to larger variances. No-
tice also how larger values of δq move the lines of constant
V ar [x]∗ to the bottom, meaning that PSASs with larger δq

will have larger variances for any given w and α.

4.3 Transient analysis of E [xt]

The transient behaviour of the first moment of the sam-
pling distribution has been suggested to be important for
the performance of PSOs, since oscillations of the mean al-
low an amount of extrapolation that could be beneficial in
some functions [14]. We studied empirically the transient be-
haviour of the mean of the sampling distribution generated
by Standard PSO (resp. PSASs) by measuring the percent-
age overshoot and settling time of their step responses for
different values of w and φ (resp. α). We define the step
input as a sudden change in any of the informers’ personal
bests at t = 0 after an infinitely long period of stagnation.
Without loss of generality, we assumed that the system had
reached its fixed points corresponding to p1 = p2 = 0 (thus,
E [x0] = 0) and integrated numerically the equations for the
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Figure 2: Contour plots of log10
V ar[x]∗
(p1−p2)2

for Standard

PSO (top left) and PSAS-S (top right), PSAS-R (bot-
tom left) and PSAS-D1 (bottom right). Eq. 26 of [14]
was used to generate the contour plots for Standard
PSO.

new pair of values p2 = 0 and p1 = 1. This represents a
situation in which the best informer changed its p from 0 to
1, but the worst informer kept its old value.

PO, the percentage overshoot of E [xt], can be calculated
with

PO :=
max (E [xt] − E [x]∗)

E [x]∗
× 100%. (30)

and the settling time of E [xt] with

ST := min {ts : |E [xt] − E [x]∗ | < ε|E [x]∗ | ∀t > ts} ,
(31)

where 0 < ε < 1 gives a band of error.
Notice that both PO and ST depend on E [xt] − E [x]∗.

Subtracting Eq. 25 from Eq. 16 gives

E [xt] − E [x]∗ = c1

`
θ −√

θ2 − 4w
´t

2−t+

c2

`
θ +

√
θ2 − 4w

´t
2−t

, (32)

which is independent of q. Thus, both PO and ST are
independent of the choice of the recombination operator.

Figure 3 shows contour plots of PO and log10 (ST ) for
both Standard PSO and PSASs. Observe that the larger re-
gion of order-2-stability of PSAS allows stable systems with
larger overshoots of the mean. Remark how, in general,
larger values of φ or α correspond to larger values of PO
and larger values of w correspond to larger values of ST .

4.4 Sampling behaviour of particular PSASs
In the light of what has been presented in this section, nei-

ther order-2 stability nor the transient behaviour of E [xt]
depend on q. The use of a particular recombination oper-
ator, however, determines the fixed points of the first two
moments of the sampling distribution. It is then possible

w
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Figure 3: Contour plots of PO (left) and log10 (ST )
(right). For ST , a band error ε = 0.02 was used.
Limits of the region of order-2 stability for Standard
PSO (dashed line) and PSASs (dotted line) are also
shown.

Table 3: Characteristics of the sampling distribution
for different PSOs

Algorithm V ar[x]∗
(p1−p2)2

PO ST

Standard PSO [6, 5] 1.0868 84.57 26
PSAS-S 0.2773 84.57 26

SPSO [14] 0.4064 84.57 26
PSAS-D1-1 0.3750 50.00 10

PSO-DR [12, 3, 4] 0.3750 100.00 11
PSO-DR M2 [4] 0.2500 60.00 7
PSO-DR M3 [4] 0.3750 20.00 2
Bare-bones [7] 1.0000 0.00 0

GDPS [8] 0.5749 118.70 25
Essential FIPS [9] 0.5538 105.00 23

to design the transient behaviour of the mean by choosing
appropriate values for w and φ and then design the fixed
points of the mean and the variance via a given recombina-
tion operator.

Table 3 characterises the search properties of different
PSOs in terms of V ar [x]∗, PO and ST . For the already
introduced PSASs, parameters are those listed in Table 1.
Standard PSO uses w = 0.7289 and φ = 2.9924 (equiva-
lent to the standard constricted PSO with χ = 0.7298 and
ϕ = 4.1 [6, 5]). PSAS-D1-1 is a PSAS-D1, as PSO-DR
M3, but is not velocity-free, having w = 0.5 and α = 1.0.
PSAS-S has the same w and α as SPSO. Since α = φ

2
, the

behaviour of the mean of the sampling distribution is the
same for Standard PSO, PSAS-S and SPSO. The fixed point
of the variance for PSAS-S is however smaller than that for
SPSO because of its smaller δq (see Fig. 2).

As it can be seen from Table 3, search strategies of the
listed PSOs are very diverse. Standard PSO is characterised
by large amounts of exploration (large V ar [x]∗) and extrap-
olation (large PO and ST ). PSAS-S and SPSO maintain the
same amounts of extrapolation as Standard PSO but are
more exploitation-biased. Bare-bones has good exploration
but no extrapolation at all, whereas the other two algorithms
with gaussian recombination have important amounts of ex-
ploration and the largest amounts of extrapolation in terms
of PO. Finally, notice that the velocity-free algorithms
(PSO-DR M3 and Bare-bones) have the smallest PO.
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5. EXPERIMENTAL RESULTS
In the previous sections we have analysed the most salient

properties of the sampling distributions of PSASs with dif-
ferent recombination operators and have compared them
with those of Standard PSO. In this section, we study em-
pirically the optimisation efficiency of the PSOs listed in
Table 3.

All of the PSAS listed in Table 3 have already been the
subject of empirical studies [7, 8, 9, 12, 14, 3, 4], except
for PSAS-S and PSAS-D1-1 which have been introduced in
this paper. The subject of these investigations has been
mainly the comparison of these methods to Standard PSO.
Experiments, however, have been performed under very vari-
able conditions. For instance, the author of [8] used one
population topology for GDPS (a randomly generated net-
work called “gr.2ed2”) and a different one for Standard PSO
(“Square”). In [12, 3, 4] local PSO-DR algorithms with ring
topologies (which are basically biased FIPS) were compared
to Standard BNPS, but not to Standard FIPS. These setups
hinder conclusions made about the efficiency of the proposed
update rules, since differences in the results may be due to
the different topologies or models of influence. Additionally,
a number of other parameters such as the number of par-
ticles, the termination conditions, and the used benchmark
functions vary across different papers, making the compari-
son of one PSAS to another rather difficult.

We have tried to avoid these shortcomings by running all
the studied algorithms under the same conditions. Our ex-
perimental setup follows closely the one proposed by Bratton
and Kennedy in [5] as a standard for comparing different
PSOs. All tested particle swarms used populations of 50
particles connected according to a ring topology. BN and
FI versions were coded for each algorithm. In both cases
neighbourhoods are open (i.e. the self is not considered to
calculate the neighbourhood best in BNPS or as an informer
in FIPS).

Algorithms were run on the suite of benchmark functions
shown in Table 4. Function f7 was optimised both in 10

and in 30 dimensions; we denote these instances as f
(10)
7

and f
(30)
7 . Functions belong to three distinguishable groups:

f1 − f3 are unimodal, f4 − f9 are complex high-dimensional
with many local minima, and f10 − f15 are low-dimensional
(f10 − f14 have few local minima and f15 has many local
minima).

In order to remove any centrist bias, both the region scal-
ing and the centre offset techniques [11] were used for all
functions, except for f4 where only region scaling was ap-
plied. The centre offset technique was implemented by shift-
ing the function by a vector of uniform random values in
U [−0.25l, 0.25l] for each run, being l the size of the search
space in each dimension. Particles flying out of the fea-
sible bounds were not evaluated. Table 5 shows the di-
mensionality, feasible bounds, location of the optimum and
initialization ranges for each function. Finally, the error
|f (x)− f (x∗) | found after 300000 function evaluations was
used as the measure for algorithm performance, where f (x∗)
is the value of the objective function at the global minimum.
Values less than 10−8 were rounded to 0.0. For the statistical
analyses we used t-tests corrected with a modified Bonfer-
roni procedure (see [5]).

With few exceptions, FIPSs performed better than BNPSs
in the multimodal functions, while BNPSs did better in the

Table 4: Benchmark Functions
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Table 5: Dimensionality, Feasible Bounds, Optima
and Initialization Ranges for the Benchmark Func-
tions

D Feasible Bounds Optimum Initialization

f1 30 (−100, 100)D 0.0D (50, 100)D

f2 30 (−100, 100)D 0.0D (50, 100)D

f3 30 (−30, 30)D 1.0D (15, 30)D

f4 30 (−500, 500)D 420.9687D (−500, −250)D

f5 30 (−5.12, 5.12)D 0.0D (2.56, 5.12)D

f6 30 (−32, 32)D 0.0D (16, 32)D

f7 10, 30 (−600, 600)D 0.0D (300, 600)D

f8 30 (−50, 50)D −1.0D (25, 50)D

f9 30 (−50, 50)D 1.0D (25, 50)D

f10 2 (−5, 5)D (−0.0898, 0.7126) , (2.5, 5)D

(0.0898, −0.7126)

f11 2 (−2, 2)D (0, −1) (1, 2)D

f12 4 (0, 10)D 4.0D (7.5, 10)D

f13 4 (0, 10)D 4.0D (7.5, 10)D

f14 4 (0, 10)D 4.0D (7.5, 10)D

f15 2 (−100, 100)D 0.0D (50, 100)D

unimodal functions. Given that one of the main reasons for
using stochastic population-based optimisation techniques
such as PSO is to cope with multimodal problems, we de-
cided to focus our analysis on the FI variants of the men-
tioned methods. Only the results of the BN variant of Stan-
dard PSO are reported for comparison reasons. Differences
in results for GDPS and Essential FIPS were statistically

insignificant in all functions, except for f2 and f
(10)
7 where

Essential FIPS was better. As both these algorithms are
basically the same PSO (a velocity-based PSAS-G) we only
report results of Essential FIPS.

Table 6 displays the 95% confidence intervals of the mean
performance over 30 runs for all functions. Given the large
number of function evaluations, convergence plots for some
of the benchmark functions are also shown in Fig. 4. All
methods were able to effectively minimise the easy f1 and f10

functions, and almost all of them were able to achieve mean

objective function values below 10−8 for f
(30)
7 , f8, f9 and f11.

Exceptions were PSAS-S for f8, PSO-DR M2 for f8 and f9,

and both PSO-DR M3 and Bare-bones for f
(30)
7 , f9 and f11.

These methods seem to be hindered by their low exploration
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Figure 4: Convergence plots for selected functions

and/or extrapolation (see Table 3). In particular, f
(30)
7 and

f11 seem to be better optimised by methods exhibiting im-
portant amounts of extrapolation, whereas methods with
very low variances perform the worst in f8. This said, notice
that the best methods for the subset of unimodal functions
were precisely those with the lowest variances (PSAS-S and
PSO-DR M2). f6 seemed to favour methods with larger vari-
ances irrespective of their amounts of extrapolation (Stan-
dard FIPS, Bare-bones and Essential FIPS being the best),
while f4 is better minimised by methods with both large

exploration and extrapolation. In f5 and f
(10)
7 , PSOs with

moderate extrapolation and exploration got the best scores.
As a whole, low-dimensional multimodal functions with few
minima favoured large variances and percentage overshoots
of the mean.

In general, at least one of the PSASs achieved equal or
better performance than Standard FIPS for all the unimodal
functions, all of the high-dimensional multimodal functions
except for f4 and f6, and all of the low-dimensional functions
except for f12 and f13. Standard FIPS, however, was the
most consistent algorithm across different functions, achiev-
ing the best results for 9 of the 13 multimodal functions.

6. CONCLUSIONS
In this paper we have proposed a general formulation for

particle swarms with additive stochasticity from which ac-

tual PSOs can be derived by specifying particular recombi-
nation operators. It was shown how several PSOs previously
introduced in the literature (such as Bare-bones, GDPS, Es-
sential FIPS, PSO-DR and SPSO) can be thought as partic-
ular instances of this general class of algorithms. Following
the moment analysis technique by Poli and Broomhead [15],
we studied the stability and behaviour of the first two mo-
ments of the sampling distribution of these PSOs during
stagnation and compared them to those of Standard PSO.
By treating algorithms as particular cases of the same model,
we were able to extend to all PSASs some of the results de-
rived for SPSO in [14] and to study the effect of different
recombination operators. It was found that the choice of a
particular recombination operator does not affect the condi-
tions for order-2-stability nor the transient behaviour of the
mean of the sampling distribution during stagnation, but
that it defines the fixed points of both the mean and the
variance. We tested several instances of PSASs and com-
pared them to Standard PSO on a suite of 16 benchmark
problems, showing how the sampling characteristics of the
algorithms matched the specificities of different functions.

We focused on five types of recombination operators (stan-
dard, rectangular, discrete-1, discrete-2 and gaussian), and
gave definitions of them for K = 2. However, most of the
presented results are independent of the particularities of
the recombination operator being used. Thus, results should
still be valid for generalisations of the presented operators
to an arbitrary number of informers, and also to other re-
combination operators.

From the point of view of the performance, and in the light
of the presented empirical results no recombination operator
seems to be superior to another. Recombination operators
interact with parameters w and φ for determining a PSO
with specific sampling distribution characteristics that could
be beneficial for some functions, but detrimental for others.
Having the possibility of specifying different recombination
operators, however, helps the design of these algorithms by
introducing an additional parameter that allows for fixing
independently the required amounts of extrapolation and
exploration.
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