
The Node-Depth Encoding: Analysis and Application to
the Bounded-Diameter Minimum Spanning Tree Problem

Telma W. de Lima
Institute of Mathematics and

Computer Sciences
University of Sao Paulo
telma@icmc.usp.br

Franz Rothlauf
Dept. of IS and Business

Administration
University of Mainz

rothlauf@uni-mainz.de

Alexandre C. B. Delbem
Institute of Mathematics and

Computer Sciences
University of Sao Paulo
acbd@icmc.usp.br

ABSTRACT
The node-depth encoding has elements from direct and in-
direct encoding for trees which encodes trees by storing the
depth of nodes in a list. Node-depth encoding applies spe-
cific search operators that is a typical characteristic for di-
rect encodings. An investigation into the bias of the ini-
tialization process and the mutation operators of the node-
depth encoding shows that the initialization process has a
bias to solutions with small depths and diameters, and a bias
towards stars. This investigation, also, shows that the muta-
tion operators are unbiased. The performance of node-depth
encoding is investigated for the bounded-diameter minimum
spanning tree problem. The results are presented for Eu-
clidean instances presented in the literature. In contrast
with the expectation, the evolutionary algorithm using the
biased initialization operator does not allow evolutionary
algorithms to find better solutions compared to an unbi-
ased initialization. In comparison to other evolutionary al-
gorithms for the bounded-diameter minimum spanning tree
evolutionary algorithms using the node-depth encoding have
a good performance.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving and Search-
Heuristics Methods

General Terms
Algorithms

Keywords
Genetic Algorithms, Representations, Performance Analysis

1. INTRODUCTION
Evolutionary Algorithms (EAs) are often a good choice

for complex optimization problems involving characteristics
that make such problems difficult for classical optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

methods [5]. In particular, EAs have often been applied
successfully to tree problems, such as the degree-constraint
minimum spanning tree problem (d-MSTP) [12, 17], the op-
timal communication spanning tree problem (OCSTP) [9,
13], or the bounded-diameter minimum spanning tree prob-
lem (BDMSTP) [11, 8].

In EAs, the proper choice of the encoding is crucial. Solu-
tions need to be encoded so that genetic search operators like
mutation and recombination can be applied. There are two
different approaches: direct and indirect representations. In
direct representations, a tree is represented by a set of edges
and the search operators are directly applied to the set of
edges. Since solutions are often constrained, it is usually
necessary to develop search operators specific for the prob-
lem that consider such constraints. Examples of direct rep-
resentations are the edge-set encoding [17] or the NetDir en-
coding [20]. On the other hand, indirect representations use
an explicit encoding process to encode a tree (phenotype)
as a list of strings (genotypes). Therefore, standard search
operators can usually be applied to the string genotypes.
Examples for indirect tree encodings are NetKeys [21], link
and node biased [13], Prüfer numbers [15], Blob code [14],
or determinant factorization [2].

The node-depth encoding [6] has elements from both, di-
rect and indirect representations. It encodes trees as a list of
strings with the depth of nodes and constructs phenotypes
by an explicit genotype-phenotype mapping which is typical
for indirect representations. Furthermore, the node-depth
encoding applies search operators specific for the problem to
the genotypes which are typical for direct representations.

For a proper use of encodings such as the node-depth en-
coding, it is important to have a proper understanding of
the properties of the encoding. Relevant properties of en-
codings are locality and bias [16, 20]. The locality measures
whether small changes in the genotype correspond to small
changes in the phenotype. For guided search, as evolution-
ary algorithms, high locality is necessary. The bias of an
encoding describes whether either the genotype-phenotype
mapping or the evolutionary search operators like mutation
or recombination prefer a specific type of solution and thus,
leads a population towards this direction.

The purpose of this paper is to thoroughly investigate the
bias of the node-depth encoding. The results show that the
initialization operator of the encoding shows a bias towards
trees with low diameter and low maximum depth. Therefore,
in a second step, the encoding is applied to the bounded-
diameter minimum spanning tree problem where the use
of the initialization operator is expected to result in high

969

Figure 1: A genotype using the node-depth encod-

ing.

EA performance. The results show that for the bounded-
diameter MST, EAs using the node-depth encoding perform
well in comparison to other EAs [11, 8, 23], but - in contrast
to our expectation - using the biased initialization operator
does not allow EAs to find better solutions in contrast to an
unbiased initialization scheme based on Prüfer numbers.

The following section reviews basic concepts of the node-
depth encoding. Section 3 analysis the bias of the encod-
ing. Then, section 4 studies and compares the performance
of EAs using the node-depth encoding for the bounded-
diameter MST problem. The paper ends with concluding
remarks.

2. NODE-DEPTH ENCODING
The node-depth encoding [6] is based on storing the depth

of the nodes in an ordered list. For a tree of size n, the
nodes vi (i ∈ {1, . . . , n}) and their corresponding depths di

are listed in an array as pairs (vi, di). The order of the nodes
in the array is important since a construction algorithm tra-
verses this array from the first to the last position determin-
ing the edges that compose the phenotype. A depth-first
search (DFS) [4] can be used to construct a genotype from
a tree by starting from a root node v1 with depth d1 = 0
and iteratively inserting the pairs (vi, di) in the genotype in
the order in which the nodes vi are visited by the DFS.

The following paragraphs explain the relevant aspects of
the encoding, such as initialization, decoding process, and
mutation operators. It is important to note that only mu-
tation operators have been proposed for the node-depth en-
coding, i.e. no recombination operator is available in the
literature.

2.1 Initialization
Initialization consists of two steps. In the first step, a

permutation of n node labels is created. The elements of
the permutation correspond to the labels vi of the n nodes.
The permutation is stored in an array of length n and vi ∈
{1, . . . , n} corresponds to the label of the node at position
i in the array. Often, the first element in the array is fixed
and assigned, for example, to node v1 = 1.

In a second step, random depths are assigned to the nodes.
To the first node of the list, the depth d1 = 0 is assigned.
The second node has depth d2 = 1. The depth of the other
nodes {v2, v3, . . . , vn} is iteratively set (starting with i = 2)
to di which is randomly chosen from

{1, . . . , max
j=0,...,i−1

(dj)}.

Figure 1 presents an example of a genotype of a tree with
n = 15.

2.2 Decoding
The decoding process is tree-specific and traverses a geno-

type from left (i = 1) to right (i = n). Starting with node v2,
each node vi with the corresponding depth di is connected
to the node vj (j ∈ {1, . . . , i − 1}) with depth dj = di − 1,

Figure 2: The spanning tree encoded by the geno-

type of Figure 1

where i − j is minimal. This means, that there is an edge
between node vi with depth di and the vj-nearest preceding
node with a depth di − 1, i.e a depth that is one lower than
the depth of di. The decoding process is linear in the number
of nodes (O(n)) and can be implemented using Algorithm
1.

Algorithm 1 Decoding process for node-depth encoding

//Let N be a genotype and Ni be a pair (vi, di) at position
i ∈ {1, n}
//Let T be the phenotype; let V (T) and E(T) be the
nodes and edge sets of T , respectively
//Let r be an array of size n to store node labels
E(T) = ∅
V (T) = v0

r0 = v0

i = 1
while i < |N | do

V (T) = V (T) ∪ vj

rdi
= vi

E(T) = E(T) ∪ (rdi−1, vi)
i = i + 1

end while

We want to give a brief example. Assuming the genotype
shown in Figure 1, Algorithm 1 starts by adding nodes v1 =
1 and v2 = 2 as well as edge (1, 2) to the tree. Node v3 = 8
has depth d3 = 2 and it is thus connected to node v2 = 2
with d2 = d3 − 1. Node v4 = 3 has depth d4 = 1 and
thus edge (3, 1) is added. Repeating this process for the
subsequent nodes, we obtain the tree shown in Figure 2.

2.3 Mutation Operators
This section presents two mutation operators used by the

node-depth encoding: PAO (Preserve Ancestor1 Operator)
and CAO (Change Ancestor Operator), presented in the
next subsection. PAO and CAO generate new solutions by
changing a pruned subtree from one node to another node
in the tree.

PAO requires a set with two nodes previously determined:
the pruned node p, which indicates the root of the subtree
to be transferred and the adjacent node a. CAO requires a
set with three nodes: the pruned node p, adjacent node a,
and a randomly chosen node r of the subtree. We briefly il-
lustrate the functionality of both operators and assume that
the required set of nodes has been previously determined [6].

1The root of a tree (or subtree) can be seen as an ancestor
of other nodes in the tree (or subtree).

970

Figure 3: The node-depth encoding obtained after

the application of PAO.

Figure 4: The spanning tree encoded by the geno-

type of Figure 3.

2.3.1 Preserve Ancestor Operator
The application of PAO to a tree is equivalent to trans-

ferring a subtree rooted at node p to another node a. PAO
causes small changes in the tree. The following steps de-
scribe the application of PAO, where ip and ia are the posi-
tions of nodes p and a in the genotype.

1. Choose a random node p and find the subtree that
should be moved.

2. Create a new tree T ′ by inserting the subtree rooted
at p after node a. In the genotype the positions of the
corresponding nodes are moved to the new positions
and their depths are set according to the new position.

We want to give a brief example of the functionality of
PAO using the tree presented in Figure 2, whose node-depth
encoding is in Figure 1. We randomly choose node p = 5
and node a = 10. The range of nodes 5, 14, 6, 7, 15
corresponds to the subtree that should be moved. Then,
PAO inserts it after node a generating a new genotype (see
Figure 3) representing the tree presented in Figure 4.

2.3.2 Change Ancestor Operator
In CAO, the transferred subtree will have a new root (any

node of the subtree rooted at p different from the origi-
nal root p) and this node will be named r. CAO causes
larger modifications in the tree. The differences between
PAO and CAO are in the composition of pruned subtrees.
CAO changes the order of the subtrees rooted in the nodes
that are in the path between p and r. We assume three
nodes p, r, and a previously determined [6].

1. Choose a random node p and find the subtree that
should be moved. Determine a node r in this subtree
to be the new root.

2. Copy the subtree of r to a temporary array. Consider
the nodes in the path from r to p as roots of subtrees.
Copy the subtree rooted at it node in the path without
the subtree rooted in the previous node. Store the
resultant subtrees in the temporary array.

Figure 5: The node-depth encoding of the tempo-

rary array.

Figure 6: The node-depth encoding obtained after

the application of CAO.

3. Create a new tree T ′ inserting the nodes of the tem-
porary array to position ia + 1 updating the depths
according the position.

We also present a short example of a CAO application.
Considering, the tree of Figure 2 and its node-depth encod-
ing in Figure 1. The triple of nodes is chosen as node p = 5,
a = 8, and r = 7. The resulting offspring is shown in Fig-
ure 6 and Figure 7 shows the corresponding genotype.

3. ANALYZING THE BIAS OF THE
NODE-DEPTH ENCODING

In an unbiased encoding, all possible phenotypes are en-
coded uniformly. Analogously, unbiased search operators do
not over-represent specific solutions, and the application of
the search operator without selection does not modify the
statistical properties of the population. Biased encodings
and search operators can be used if it is known a priori
that optimal solutions are similar to the over-represented
solutions [22]. In contrast, unbiased encodings and search
operators should be used if no problem-specific knowledge
is available.

The following sections analyze the bias of the node-depth
encoding for tree problems with n = 15, 20, 25, 50 and 100
nodes. We randomly create 10 problem instances of each
size, where wi,j are uniformly distributed between [0 . . . 1].
We investigate the bias of the initialization and mutation
operators.

In order to analyze the bias, the following measures are
used: distance from the MST, distance from stars, diameter
and depth. The distance between two spanning trees Ti

Figure 7: The spanning tree encoded by the geno-

type of Figure 6.

971

Table 1: Properties of solutions generated using either, the initialization of the node-depth encoding, or the

unbiased Prüfer numbers. We show average depth, diameter, distance from MST and minimum distance

from stars.
depth diameter distance from MST min distance from stars

node-depth Prüfer node-depth Prüfer node-depth Prüfer node-depth Prüfer
mean σ mean σ mean σ mean σ mean σ mean σ mean σ mean σ

n = 15 4.4 0.9 7.7 1.6 5.7 1.1 8.1 1.6 12.1 1.1 12.1 1.2 7.4 1.6 9.9 0.6
n = 20 4.6 0.9 9.2 1.9 6.3 1.2 9.8 1.9 17.1 1.2 17.1 1.2 10.7 2.1 14.6 0.7
n = 25 4.9 0.9 10.5 2.2 6.8 1.2 11.2 2.3 22.1 1.2 22.1 1.2 14.0 2.6 19.4 0.7
n = 30 5.0 0.9 11.6 2.4 7.2 1.2 11.5 2.6 27.1 1.2 27.1 1.3 17.2 3.0 24.2 0.7
n = 50 5.4 0.9 15.6 3.4 8.1 1.2 16.9 3.5 47.0 1.3 47.0 1.3 29.9 4.2 43.8 0.7

n = 100 5.9 0.9 22.8 5.4 9.14 1.2 24.7 5.4 97.0 1.3 97.0 1.3 61.6 6.1 93.3 0.7

and Tj is measured using the Hamming distance that is the
number of different edges in the two trees, i.e. the number of
edges that the trees do not share. This distance is calculated
by

di,j =
1

2

∑

u,v∈V,u<v

|liu,v − l
j
u,v|,

where liuv is 1 if an edge from u to v exists in Ti, and 0 if it
does not exist. The minimum distance to a star is calculated
as

di,STAR = min(di,starj
),

where j = 1 . . . n. The diameter (diam(i)) is the maximum
path in the tree and the depth (de(i)) measures the maxi-
mum depth of the tree, considering node 0 as the root of the
tree.

3.1 Initialization
To investigate the bias in the initialization proposed in

Section 2.1, we generated 10.000 random solutions, for each
problem instance, using the initialization described in Sec-
tion 2.1 and then, we compared their properties to 10.000
solutions that were generated by using an unbiased encoding
(Prüfer Numbers).

Table 1 shows the mean and the standard deviation of
depth, diameter, minimum distance towards stars, and dis-
tance towards MST. We compared results for the node-depth
initialization with an unbiased tree initialization routine us-
ing Prüfer numbers. The results for the depth and diameter
show that the proposed initialization has a bias to solutions
with small depths and diameters. Analyzing the results
about the distances to the MST and to stars we can con-
clude that the proposed initialization does not have a bias
towards MSTs, but a bias towards stars.

3.2 Mutation Operators
To investigate whether the mutation operators of node-

depth encoding have a bias and over-represent some tree
structure we randomly generated an unbiased population of
300 individuals (using Prüfer numbers) and subsequently ap-
plied mutation operators to each individual. As no selection
operator was used, no selection pressure pushed the popula-
tion to high-quality solutions. The mutation operators are
unbiased if the statistical properties of the population did
not change by applying mutation alone.

To analyze a potential bias of the mutation operators, we
measured the average depth depop = 1

N

∑N

i=1
de(i), aver-

age diameter diampop = 1

N

∑N

i=1
diam(i), average distance

to the MST dmst−pop = 1

N

∑N

i=1
di,MST , and average mini-

mum distance to stars dstar−pop = 1

N

∑N

i=1
min(di,STAR) of

all 300 individuals in the population. If depop increases or
decreases the mutation operators are biased to high (low)
depths. If diampop increases or decreases the mutation op-
erators are biased to high (low) diameters. If dmst−pop de-
creases, the mutation operators are biased towards the MST
and if dstar−pop decreases, the mutation operators are biased
towards stars. If all the measures remain constant, the mu-
tation operators are unbiased.

Figure 8 presents results for the bias in PAO mutation op-
erator and shows the mean and standard deviation of depop

(Fig. 8(a)), diampop (Fig. 8(b)), dmst−pop (Fig. 8(c)), and
dstar−pop (Fig. 8(d)). Results for CAO are analogously to
the results presented here and are omitted due to space re-
strictions. Both mutation operators are unbiased and do not
modify the statistical properties of the population (depop,
diampop, dmst−pop and dstar−pop remain constant).

4. NODE-DEPTH ENCODING FOR THE
BDMSTP

In a graph, the distance from a vertex v to a vertex t is
the number of edges of the shortest path between v and t.
The longest distance from a vertex v to any other vertex is
called the eccentricity of the vertex v. The diameter of a
graph is the maximum eccentricity of its vertices, i.e. the
number of edges in the longest path of the graph.

Given an undirected connected weighted graph and a pos-
itive integer k, the bounded-diameter minimum spanning
tree problem (BDMSTP) searches a spanning tree of the
graph with smallest weight among all spanning trees of the
graph, whose diameter is at most k edges. Formally, let
G = (V, E) be an undirected, connected graph, where V

denotes the set of vertices and E denotes the set of edges.
Given non-negative edge weights (we) and a positive inte-
ger k, the BDMSTP searches a spanning tree T ⊆ E that
minimizes wT =

∑
e∈T

we, subject to the constraint that
the diameter of T is at most k edges (diam(T) ≤ k). This
problem is also known as the diameter-constrained minimum
spanning tree problem or shallow light spanning tree prob-
lem.

As described by [23], the BDMSTP has been shown to be
NP-hard when k ≥ 4 [7] and it has many practical applica-
tions in such areas as telecommunication networks and linear
light wave network design, distributed mutual exclusion and
bit compression for information retrieval.

972

0 500 1000 1500 2000 2500 3000

19

20

21

22

23

24

Generations

de
po

p

Mean de
pop

 (22.4545)

Mean de
pop

 + Standard Deviation (22.7312)
Mean de

pop
 − Standard Deviation (22.1778)

(a) average depth depop

0 500 1000 1500 2000 2500 3000

21

22

23

24

25

26

Generations

di
am

po
p

Mean diam
pop

 (24.5372)

Mean diam
pop

 + Standard Deviation (24.8433)
Mean diam

pop
 − Standard Deviation (24.231)

(b) average diameter diampop

0 500 1000 1500 2000 2500 3000
94

94.5

95

95.5

96

96.5

97

97.5

98

98.5

99

Generations

d m
st

−p
op

Mean d
mst−pop

 (97.0072)

Mean d
mst−pop

 + Standard Deviation (97.0853)
Mean d

mst−pop
 − Standard Deviation (96.929)

(c) average distance to MST dmst−pop

0 500 1000 1500 2000 2500 3000

90.5

91

91.5

92

92.5

93

93.5

94

94.5

95

Generations

d st
ar

−p
op

Mean d
star−pop

 (93.3092)

Mean d
star−pop

 + Standard Deviation (93.3537)

Mean d
star−pop

 − Standard Deviation (93.2647)

(d) average minimum distance to stars dstar−pop

Figure 8: Statistical properties of the mutation operators of the node-depth encoding. We show results for

a population size N = 300, 3.000 iterations, and problems with n = 100.

For the BDMSTP instances with k = 2, k = 3, k = n − 1
and all edge weights the same, polynomial time algorithms
are known. In the 1990s, some exact and heuristic algo-
rithms were proposed to the BDMSTP, however, due to
the exponential time complexity of these algorithms, just
small instances can be solved [3]. Abdala et al. [1] pro-
posed two new heuristics for the BDMSTP, the first heuris-
tic calculates the MST and then transforms the MST in the
BDMST, however, this heuristic is computationally expen-
sive to small k. The second heuristic, called one-time tree
construction (OTTC), imitates Prim’s algorithm and subse-
quently chooses edges of low weight so that the insertion of
an edge does not violate the constraint. The problem with
OTTC is related to Euclidean instances, where it can find
solutions that differs from the optimal solution because it
chooses only the lowest-weight edge available when it con-
structs the backbone of the tree so, it is misled. A good
heuristic for the BDMSTP will not prefer lower-weight edges
as it builds the backbone.

Raidl and Julstrom, in 2003, proposed new technique named
a randomized greedy heuristic (RGH) [18] used in a steady
state evolutionary algorithm whith edge-sets (RJ-ESEA) as
well as a steady state evolutionary algorithm using a per-

mutation encoding (RJ-PEA) [11] for the BDMSTP. Both
algorithms can find good solutions to the BDMSTP for large
problem instances. RJ-PEA obtains better results than the
RJ-ESEA. However, RJ-PEA was several times slower. Later,
Julstrom [10] proposed two generational EAs. One uses
random keys to represent solutions and employs two-point
crossover and uniform mutation, whereas the other uses per-
mutation coded and employs the C1 crossover proposed by
Reeves [19] and swap mutation. However, these two gen-
erational evolutionary algorithms perform worse than the
others for large instances.

Latterly, Singh and Gupta [23] proposed improved ver-
sions of RGH (called RGH-I), the center based tree con-
struction (CBTC-I) which in its original form was proposed
by Julstrom as a modification of RGH and the permutation
coded steady state evolutionary algorithm (PEA-I). They
showed that these improved versions can find better solu-
tions for the BDMST and need less time than the first ver-
sions.

In this work an EA with the node-depth encoding (EAN)
is applied to the BDMSTP in order to examine the effects
of the bias in the initialization process to this problem.

973

4.1 Results
The EA using the node-depth encoding was implemented

in C. All experiments have been performed under Linux on
a Dual Intel Xeon processor with 4GB of memory. For all
experiments, we used a population size of N = 20. The
EA terminates if the best solution in the population has not
been improved in the last 100.000 search steps as in the tests
proposed in the literature. We study two variants of the
EA using either the initialization proposed in Section 2.1
(EANR) or generating the initial solutions unbiased using
Prüfer numbers (EANP).

We use the same BDMST test instances as Julstrom and
Raidl [11, 18, 10]. The test problems are originally designed
for the Euclidean Steiner Tree problem and are available
in Beasley’s OR-library2. For each instance, the diameter
bound k is set to 5, 7, 10, 15, 25, 35, 50, 70 and 100. For
n = 50, the maximum diameter bound is 49 and for n =
100, it is 99. To compare the obtained results with results
presented in the literature for n = 500, we also use the bound
k = 20. Results are presented for all 25 Euclidean instances
with five instances for each value of n = 50, 100, 250, 500,
and 1, 000 nodes.

Table 2 compares the performance of ENAR, JR-PEA,
PEA-I, and JR-ESEA for the different test instances. We
reported the best result found by each algorithm and the
average number of search steps. Data for JR-PEA, PEA-I,
and JR-ESEA are taken from Singh and Gupta [23]. The
results show that EANR performs slightly worse than JR-
PEA, PEA-I, and JR-ESEA in all instances but the number
of search steps is much lower in comparison to the other
approaches.

Figure 9 compares the performance of EANR and EANP
over the bound k for one particular test instance (instance 3)
for different problem sizes (n = 50, 100, 250, 500, 1000). The
results for the other test instances are analogous. The plots
show that only for very low bounds (k < 15), EANP shows
higher performance than EANR. However, with increasing
k, the biased initialization approach of the node-depth en-
coding allows EAs to find slightly better solutions.

In general, the bias of the initialization scheme of the
node-depth encoding towards small diameters does not sys-
tematically increases the performance of evolutionary algo-
rithm for the BDMSTP. This is due to the fact that the
population is very small and a large number of search steps
per individual is performed. Therefore, the structure of the
initial solution has low impact only on the performance of
the search, and the EA can not make proper use of the fact
that initial solutions are biased towards low depths.

5. CONCLUSIONS
This work investigates the bias of the node-depth encod-

ing and examines its performance for the bounded-diameter
minimum spanning tree problem (BDMSTP). The node-
depth encoding can be classified as a combination of di-
rect and indirect representations for trees. It uses an ex-
plicite genotype-phenotype mapping as well as problem spe-
cific mutation operators.

The analysis of the bias shows that the initialization method
of the node-depth encoding is biased towards trees with low
diameters and low depths. Furthermore, it over-represents
star-like structures. In contrast, the mutation operators are

2http://people.brunel.ac.uk/~mastjjb/jeb/info.html

unbiased. When applying EAs using the node-depth en-
coding to BDMSTPs, the bias of the initialization method
towards trees with low diameters does not lead to better re-
sults in comparison to using an unbiased initialization method.

6. ACKNOWLEDGMENTS
The authors acknowledgments are to FAPESP by the re-

search scholarship and the Department of Information Sys-
tem and Business Administration in the University of Mainz,
where part of this work was developed.

7. REFERENCES
[1] A. Abdalla and N. Deo. Random-tree diameter and

the diameter-constrained mst. Int. J. Comput. Math.,
79(6):651–663, 2002.

[2] F. N. Abuali, D. A. Schoenefeld, and R. L.
Wainwright. Designing telecommunications networks
using genetic algorithms and probabilistic minimum
spanning trees. In SAC ’94: Proceedings of the 1994

ACM symposium on Applied computing, pages
242–246, New York, NY, USA, 1994. ACM Press.

[3] N. Achuthan, L. Caccetta, P. Caccetta, and G. J.F.
Algorithms for the minimum weight spanning tree
with bounded diameter problem. Optimization:

techniques and applications.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, 2nd edition. MIT
Press, McGraw-Hill Book Company, 2000.

[5] K. Deb. Multi-Objective Optimization Using

Evolutionary Algorithms. John Wiley & Sons, Inc.,
New York, NY, USA, 2001.

[6] A. Delbem, A. de Carvalho, C. A. Policastro, A. K.
Pinto, K. Honda, and A. C. Garcia. Node-depth
encoding for evolutionary algorithms applied to
network design. In K. Deb and et al., editors, Genetic

and Evolutionary Computation – GECCO-2004, Part

I, Lecture Notes in Computer Science, pages 678–687,
Seattle, WA, USA, 26-30 June 2004. Springer-Verlag.

[7] M. R. Garey and D. S. Johnson. Computers and

Intractability; A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[8] M. Gruber, J. van Hemert, and G. Raidl.
Neighborhood searches for the bounded diameter
minimum spanning tree problem embedded in a vns,
ea, and aco. volume 2, pages 1187–1194, Seattle, USA,
2006. ACM.

[9] T. C. Hu. Optimum communication spanning trees.
SIAM Journal on Computing, 3(3):188–195, 1974.

[10] B. A. Julstrom. Encoding bounded-diameter spanning
trees with permutations and with random keys. In
K. Deb and et al., editors, Genetic and Evolutionary

Computation – GECCO-2004, Part I, volume 3102,
pages 1272–1281, Seattle, WA, USA, 26-30 June 2004.
Springer-Verlag.

[11] B. A. Julstrom and G. R. Raidl. A permutation-coded
evolutionary algorithm for the bounded-diameter
minimum spanning tree problem. In A. M. Barry,
editor, GECCO 2003: Proceedings of the Bird of a

Feather Workshops, Genetic and Evolutionary

Computation Conference, pages 2–7, Chigaco, 11 July
2003. AAAI.

974

0 10 20 30 40 50
4

5

6

7

8

9

10

W
ei

gh
t

Bound

EANR
EANP
MST

(a) n = 50

0 20 40 60 80 100
6

8

10

12

14

16

18

W
ei

gh
t

Bound

EANR
EANP
MST

(b) n = 100

0 20 40 60 80 100
10

15

20

25

30

W
ei

gh
t

Bound

EANR
EANP
MST

(c) n = 200

0 20 40 60 80 100
10

15

20

25

30

35

40

45

50

55
W

ei
gh

t

Bound

EANR
EANP
MST

(d) n = 500

0 20 40 60 80 100
20

25

30

35

40

45

50

55

W
ei

gh
t

Bound

EANR
EANP
MST

(e) n = 1000

Figure 9: Performance of EANR and EANP for Euclidean instance 3 and different problem sizes.

975

Table 2: Results of EANR, JR-PEA, PEA-I, JR-ESEA, and Average number of evaluations required by the

algorithms.

Instance EANR JR-PEA PEA-I JR-ESEA
n k Number Best Evaluations Best Evaluations Best Evaluations Best Evaluations

50 5 1 8.81 108,678 7.60 8,862,240 7.60 7,503,360 7.60 8,147,280
50 5 2 8.62 110,208 7.75 6,709,207 7.75 3,201,280 7.68 8,736,720
50 5 3 7.98 110,125 7.25 7,614,000 7.25 7,821,760 7.24 6,700,560
50 5 4 8.52 107,717 6.62 9,768,720 6.62 3,784,000 6.59 7,531,680
50 5 5 8.72 107,790 7.39 8,248,560 7.39 7,976,640 7.32 8,381,760

100 10 1 8.66 215,816 7.77 21,319,440 7.76 33,043,840 8.00 45,366,240
100 10 2 9.50 198,888 7.88 19,814,400 7.85 26,686,080 8.10 49,413,840
100 10 3 9.43 195,152 7.93 21,232,080 7.90 43,832,000 8.22 42,250,320
100 10 4 9.36 209,813 8.00 22,318,320 7.98 36,442,560 8.27 39,154,080
100 10 5 9.41 202,294 8.16 21,536,400 8.16 36,610,240 8.48 39,516,240
250 15 1 13.74 947,338 12.41 66,956,160 12.24 123,583,040 12.93 113,232,720
250 15 2 13.72 943,624 12.20 74,723,760 12.04 117,557,120 12.86 111,851,280
250 15 3 13.40 986,246 12.12 74,327,760 12.03 130,052,480 12.69 111,508,320
250 15 4 13.96 941,691 12.64 73,230,000 12.42 136,202,560 13.22 106,187,040
250 15 5 13.74 1,002,782 12.37 75,841,440 12.28 112,577,280 13.02 119,388,000
500 20 1 18.58 3,278,443 17.10 170,882,640 16.96 261,824,640 18.33 126,635,760
500 20 2 18.83 3,065,966 16.97 176,861,040 16.81 266,788,800 18.17 156,482,160
500 20 3 18.93 3,145,114 17.13 179,102,160 16.89 285,520,640 18.33 121,035,600
500 20 4 18.57 3,221,440 17.09 178,135,440 16.96 279,102,400 18.32 157,169,040
500 20 5 18.70 3,086,630 16.79 169,275,120 16.58 271,399,680 17.80 155,555,520

1,000 25 1 26.81 8,462,703 - - 23.97 565,930,240 26.13 120,251,280
1,000 25 2 26.44 9,062,438 - - 23.70 488,745,920 26.14 111,455,280
1,000 25 3 26.09 8,592,669 - - 23.61 570,712,640 25.47 133,104,240
1,000 25 4 26.12 8,354,454 - - 24.04 553,896,000 26.13 121,929,120
1,000 25 5 26.15 8,970,823 - - 23.75 537,930,880 25.91 155,476,320

[12] J. D. Knowles and D. Corne. A new evolutionary
approach to the degree-constrained minimum
spanning tree problem. IEEE Trans. Evolutionary

Computation, 4(2):125–134, 2000.

[13] C. C. Palmer. An approach to a problem in network

design using genetic algorithms. PhD thesis, Brooklyn,
NY, USA, 1994.

[14] S. Picciotto. How to Encode a Tree. PhD thesis,
University of California, 1999.

[15] H. Prüfer. Neuer beweis eines satzes uber
permutationen. Arch. Math. Phys., 1918.

[16] G. R. Raidl and J. Gottlieb. Empirical analysis of
locality, heritability and heuristic bias in evolutionary
algorithms: A case study for the multidimensional
knapsack problem. Evolutionary Computation,
13(4):441–475, 2005.

[17] G. R. Raidl and B. A. Julstrom. Edge sets: an
effective evolutionary coding of spanning trees. IEEE

Trans. Evolutionary Computation, 7(3):225–239, 2003.

[18] G. R. Raidl and B. A. Julstrom. Greedy heuristics and
an evolutionary algorithm for the bounded-diameter
minimum spanning tree problem. In SAC ’03:

Proceedings of the 2003 ACM symposium on Applied

computing, pages 747–752, New York, NY, USA, 2003.
ACM.

[19] C. R. Reeves. A genetic algorithm for flowshop
sequencing. Comput. Oper. Res., 22(1):5–13, 1995.

[20] F. Rothlauf. Representations for Genetic and

Evolutionary Algorithms. Springer-Verlag, 2006.

[21] F. Rothlauf, D. E. Goldberg, and A. Heinzl. Network
random keys: A tree representation scheme for genetic
and evolutionary algorithms. Evolutionary

Computation, 10(1):75–97, 2002.

[22] F. Rothlauf and C. Tzschoppe. On the bias and
performance of the edge-set encoding, 2005.

[23] A. Singh and A. K. Gupta. Improved heuristics for the
bounded-diameter minimum spanning tree problem.
Soft Comput., 11(10):911–921, 2007.

976

