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ABSTRACT
We discuss the useful role that can be played by a subtype of
improvement programming, which we term ‘Embedded Dy-
namic Improvement’. In this approach, developer-specified
variation points define the scope of improvement. A search
framework is embedded at these variation points, facilitating
the creation of adaptive software that can respond online to
changes in its execution environment.

1. INTRODUCTION
A recent keynote by Harman [2] asks “whether ‘online’

genetic improvement may now lie within our grasp?” and
gives an illustrative example of ‘dreaming devices’ that op-
erate in ‘normal’ and ‘learning’ modes, with usage distribu-
tions being gathered during the former in order that func-
tionality can be optimized by the latter during periods of
device inactivity. In this article, we answer this question
in the affirmative and describe several implementations of
online improvement programming, together with a unifying
description of the commonalities that make them effective.

Since there is no requirement for a Genetic Improvement
(GI) tool to be written in the same language as the code
(source or binary) to be improved, we can make a clear dis-
tinction between variation and execution environments: the
variation environment is defined by the language in which
the variation tool is written, together with its input (namely,
the source or binary which is to be improved). Variants are
evaluated within an execution environment which is poten-
tially separate from the variation environment. In the Em-
bedded Dynamic Improvement’ (EDI) approach, the devel-
oper restricts the scope of improvement to variation points
which denote key functionality within a larger system. A
search framework is then embedded at these variation points.
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We argue that there are two main advantages to using em-
bedded variant generators to improve software: 1) it enables
software to be improved dynamically, and 2) by virtue of
the embedding, the variation and execution environments
are the same, hence the variant generator can access and
exploit information about the running program and its en-
vironment that would be unavailable to an offline tool.

2. A COMPARISON OF GP, GI, AND EDI
The EDI approach seeks to gain some of the advantages

offered by Genetic Programming (GP) and offline GI while
avoiding some of the weakness of these techniques. Table 1
summarizes some of the key differences between GP, GI, and
EDI. One of the most profound differences between GP and
GI is the nature of the output. GP traditionally produces
a program representation (e.g. a Koza tree), which is exe-
cuted via an interpreter, whereas GI has traditionally oper-
ated on a complete system (which may be source- or object-
code) and produces a variant copy of its input, typically
represented as a patch to the source code. EDI also oper-
ates on complete systems, but as the variation occurs online
rather than offline, the result is that the original system is
modified, rather than replaced. As exemplified by state-of-
the-art in offline GI [5, 6], determination of which subsys-
tems to improve is itself part of the search process. While
this approach is in principle general, it does not enjoy the
full expressiveness of GP: both of these approaches employ
‘plastic surgery’, i.e. swapping program expressions (mod-
ulo variable renaming) rather than generating new expres-
sions. Although recent investigation into the expressiveness
of plastic surgery [1] concluded that over 40% of commits
to a large codebase could be constructed by plastic surgery
from within the codebase itself, this approach cannot take
advantage of developer-specific knowledge about variation
points (‘expressions involving square root are likely to be
useful here’) and it seems reasonable to conclude that the
plastic surgery approach would be less successful for smaller
or younger codebases. In addition, the embedded nature
of the variant generator facilitates programmatic access to
information about variable scope and the type hierarchy:
under certain circumstances [3] such detailed knowledge of
the type system means that it is possible to replace random
mutations with deterministic, semantics-preserving ones.

However, what separates this proposed approach from
both GP and GI is its online nature. To best optimise soft-
ware, it is essential to have a detailed understanding of the
problem domain that the software is operating on, the ca-
pabilities and limitations of the language used to produce
the software, and also the realities of the operating environ-
ment. Non-functional properties such as time required to



Table 1: Characteristics of GP, Offline GI and EDI

Characteristic GP Offline GI EDI

Output Expression tree Patch for existing system Updated system state
Target Language Expression tree Source or executable Source or executable
Expressiveness Arbitrary expressions Defined by patterns Arbitrary expressions possible
In situ No No Yes
Scale Single expression Entire system Developer-specified
Processing Offline Offline Online
Execution Frequency Once Once Once or periodically
Demarcation Researcher-defined Tool-defined Developer-defined

execute, size of the executable, and power consumption have
been popular targets for the GI community. It is self-evident
that measuring non-functional characteristics requires some
execution of the variant in order to evaluate the effective-
ness of the transformation. We argue that in order to re-
alistically gauge the effectiveness of a transformation, it is
important to run the software in-situ, that is within the en-
vironment that the improved software should be run. By
having an embedded variant generator within the applica-
tion to be improved, we can get a very realistic idea of the
true performance of an application. For example, power con-
sumption is dependent on which opcodes are executed on the
hardware, on the parameters passed to those opcodes, the
order in which they run, and how many instructions are ex-
ecuted. Performance can be heavily impacted by the degree
to which variable sizes are aligned to cache lines, as well
as general contention around computational resources. By
having an online optimisation process using an embedded
variant generator, we can gain access to ‘real’ performance
characteristic data rather than the simulations to which we
are currently limited.

3. EXAMPLES OF THE EDI APPROACH
Gen-O-Fix [9] acts as an embedded monitor system for

improving programs hosted on the JavaTM Virtual Machine.
As a prototypical exemplar of online GI, it can improve sub-
systems while the host system is running and output source
and binary snapshots of the current state of the variant sub-
system. The inputs provided to Gen-O-Fix by the devel-
oper are a callback to the subsystem functionality to be im-
proved and a fitness function that can determine the quality
of the variant.

Templar [8] is a generic framework for template method
hyper-heuristics: the developer provides an algorithm skele-
ton, together with a list of the variation points. The frame-
work then uses a hyper-heuristic training phase which op-
erates above traditional GP to generate optimized imple-
mentations for these variation points. A Templar invoca-
tion can be embedded directly into the code of any Java-
compatible language. As specified by a single parameter
when the embedding is constructed, the developer can elect
to have the hyper-heuristic layer re-train on an online dis-
tribution in one of several ways: when the embedding is
performed; when the algorithm itself is first invoked; syn-
chronously, every user-specified number of invocations; asyn-
chronously, every user-specified period of time.

AntBox [4] is a framework for the search-based construc-
tion of Java objects within an existing program. Part of the
motivation for AntBox is to help developers make an easier
transition to Search Based Software Engineering techniques,
so the API for the search process is presented in terms of
the popular dependency injection framework Google Guice
(https://github.com/google/guice). By this means, the

mechanics of the search process (which uses Ant Program-
ming [7] to build the object construction graph) are hidden
from developers, necessitating them only to specify the prop-
erties of the object to be constructed as a constraint DSL.

4. CONCLUSION
We have outlined an approach for online improvement of

existing programs which attempts to reconcile some of the
benefits of Genetic Programming (e.g. creation of arbitrary
expressions ex nihilo) with the ability to achieve modifica-
tion of a sizeable body of program code. This is achieved by
two main mechanisms: firstly contiguous subsets of program
code to be varied are explicitly denoted by the developer and
secondly the variant generator is embedded within the run-
ning application. This tight integration between variation
and execution environments allows adaptive learning to take
place with developer-specified periodicity. We believe that
there are interesting historical parallels with the automated
background activity of garbage collection: while this doubt-
less appeared exotic to first-generation ‘C’ programmers, it
is now a standard part of all modern languages. In the same
manner (and irrespective of the specific learning or variation
mechanisms employed), one might envisage that explicit an-
notation of subsystems for automated online improvement
could easily become an established part of the development
toolchain.
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