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ABSTRACT
This paper deals with genetic programming-based improve-
ment of non-functional properties of programs intended for
low-cost microcontrollers. As the objective is to significantly
reduce power consumption and execution time, the approx-
imate computing scenario is considered in which occasional
errors in results are acceptable. The method is based on
Cartesian genetic programming and evaluated in the task
of approximation of 9-input and 25-input median function.
Resulting approximations show a significant improvement in
the execution time and power consumption with respect to
the accurate median function while the observed errors are
moderate.

Categories and Subject Descriptors
I.2.8 [Computing methodologies]: Artificial intelligence—
Problem Solving, Control Methods, and Search;
D.2.2 [Software]: Software Engineering—Design Tools and

Techniques

Keywords
Genetic Improvement, Genetic Programming, Cartesian Ge-
netic Programming, Approximate Computing, Embedded
Systems

1. INTRODUCTION
Genetic programming (GP) has traditionally been used

to evolve entirely new expressions or functions to solve a
particular problem which is usually specified by a training
data set [10]. With the development of search based soft-
ware engineering, GP has been applied to repair errors in
software and assist in numerous tasks of software engineer-
ing [4]. The aim of genetic improvement, conducted by ge-
netic programming, is to improve non-functional parameters
of programs [16], and even improve existing software [8].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c� 2015 ACM. ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768416

A similar research direction has been explored in the field
of approximate computing which is a promising approach
to obtain energy-e�cient computer systems. Approximate
computing exploits the fact that many applications are error
resilient and do not require a perfect output to be produced.
Hence a suitable compromise is sought between the error,
power consumption and performance. The approximations
can be introduced at the level of hardware as well as soft-
ware. The process of approximation is usually based on a
heuristic procedure. For instance, software implementing
functions such as edge detection, FFT etc. were approxi-
mated by artificial neural networks (ANN) in order to accel-
erate computations and reduced power consumption (when
the ANN is implemented on a chip) [2]. Using genetic pro-
gramming in the context of approximate computing has been
reported for digital circuits approximation [14, 15].
In this paper, we deal with GP-based improving of non-

functional properties of programs that are intended for low-
cost microcontrollers. As we seek for significant improve-
ments mainly of power consumption and execution time,
we consider the approximate computing scenario and accept
some errors in the outputs. The function to be approximated
is the median filter which is crucial in signal processing,
image processing and sensor data processing. The goal of
this paper is to find programs showing suitable compromises
between the accuracy, execution time and power consump-
tion for 9- and 25-input median functions (9-median and 25-
median for short) when implemented on a microcontroller.
The number of inputs corresponds with a typical size of pro-
cessing window (3 ⇥ 3 and 5 ⇥ 5 pixels) employed in image
processing. The approximations will be performed by Carte-
sian genetic programming and evaluated using data sets and
by physical measurements on three microcontrollers: the 8-
bit microcontroller of Microchip PIC family with code name
PIC16F628A, 16-bit microcontroller PIC24F08KA102 and
32-bit ARM-based microcontroller STM32F100RB.
Section 2 surveys relevant research. The CGP-based ap-

proximation is described in Section 3. Section 4 provides
a detailed analysis of evolved approximate implementations
of 9-median and 25-median in terms of accuracy, execution
time and energy consumption. Conclusions are given in Sec-
tion 5.

2. RELEVANT WORK
The state of the art section is decomposed into three parts

dealing with (1) the calculation of the median, (2) principles
of genetic improvement, and (3) approximate computing.



2.1 Determining the median
Given a finite sequence of data samples, median is defined

as a value separating the higher half of data samples from
the lower half. The median is of central importance in robust
statistics, as it is the statistic that is the most resistant to
outliers that could be presented in a given sequence. This
feature is widely exploited in the signal processing where the
median is usually employed to filter the measured data.

There exists two basic approaches to determine the me-
dian of a given sequence. The straightforward approach is
to employ a generic sorting algorithm, for example the most
popular and e�cient quicksort algorithm. This algorithm
is very compact and robust, however, the number of steps
needed to determine the median value depends on the val-
ues of the elements in a particular input sequence. This kind
of nondeterminism may be problematic in real-time applica-
tions intended for microcontrollers having limited computing
power.

The alternative way of calculating the median value is to
use a median network. The median network is a kind of
sorting networks whose concept is deeply elaborated in [6].
Sorting network is defined as a network of elementary oper-
ations denoted as compare&swap (CS) elements that sorts
all input sequences. The sorting network can be constructed
using a sorting algorithm which must be data independent.
Bitonic-sorting and Batcher’s odd-even merge sorting are
examples of such algorithms. A compare&swap of two ele-
ments (a, b) compares a and b and exchanges (if it is neces-
sary) the elements in order to obtain sorted sequence. The
CS can be implemented using two operations – minimum
and maximum. The advantage of median network is that
the sequence of CS operations depends only on the number
of input elements, not on the values of the elements. In ad-
dition to that, the total number of operations is in practice
lower compared to the number of operations that have to be
executed when a common sorting algorithm is used.

2.2 Genetic improvement
Genetic programming is a method allowing automated de-

sign and optimization of programs and other entities that
can be represented and simulated in a computer [7]. In the
context of this work, one can observe that evolutionary de-
sign and/or optimization of a (accurate) median outputting
program was carried out by GP only rarely [12]. However,
considerable amount of research papers were devoted to the
design and optimization of sorting algorithms (e.g., [1, 16])
and sorting networks (e.g. [5, 13]), which are useful struc-
tures when the median value has to be obtained. As checking
whether a specification (or an original code) and a candidate
solution are semantically equivalent is time consuming, the
exact equivalence checking is not performed in the fitness
function. The fitness is usually based on evaluating candi-
date solutions using a training data set and subsequent test-
ing using other data sets. A genetic improvement of sorting
algorithms was demonstrated in [16], where GP enabled to
discover code optimization tricks probably unreachable by
current compilers. Evolved code was evaluated using the M5
Simulator targeted for an Alpha processor. While the pre-
vious example has dealt with non-functional improvements,
Langdon and Harman showed that GP can, in addition to
non-functional parameters, improve functionality of exist-
ing code [8]. Such improvements can be expected in soft-

ware which is processing large volumes of data using various
heuristic procedures and trying to minimize an error metric.

2.3 Approximate computing
In approximate computing, software and hardware is ap-

proximated, i.e. simplified with respect to fully accurate
implementations, in order to reduce power consumption or
increase performance. As a consequence, errors emerge dur-
ing computations. In many cases the errors can be toler-
ated because human perception capabilities are limited, no
golden solution is available for validation of results, or users
are willing to accept some inaccuracies. Therefore, the error
(accuracy of computations) can be used as a design metric
and traded for area on a chip, delay, throughput, or power
consumption. One way to reduce energy consumption is by
allowing timing errors by voltage over scaling or frequency
over clocking. Another approximation technique, which is
relevant for this paper, is functional approximation. The
idea of functional approximation is to implement a slightly
di↵erent function to the original one provided that the er-
ror is acceptable and the non-functional parameters are im-
proved adequately.
There are many examples of manual approximations in the

literature [3]. As manual approximation is not an e�cient
design method, systematic methods have been developed,
e.g. [9]. In our previous work, we used CGP to approxi-
mate digital circuits such as adders, multipliers and median-
outputting circuits [14, 15]. Artificial neural networks were
proposed in [2] to learn to behave like general-purpose code
written in an imperative language. The trained network
then replaced the original code. A more general approach
is EnerJ [11], an extension to Java that adds approximate
data types. Using these types, the system automatically
maps approximate variables to low-power storage, uses low-
power operations, and even applies more energy-e�cient al-
gorithms provided by the programmer. In addition, the sys-
tem can statically guarantee isolation of the precise program
component from the approximate component. Axilog is a set
of language annotations that provide the necessary syntax
and semantics for approximate hardware design and reuse
in Verilog [17]. Axilog enables the designer to relax the
accuracy requirements in certain parts of the design, while
keeping the critical parts strictly precise.

3. EVOLUTIONARY APPROXIMATION
In order to approximate 9-median and 25-median, we used

a standard CGP according to [15]. In CGP, candidate pro-
grams are represented in an array of n

r

⇥n

c

functional nodes.
In our case, only two functions (minimum and maximum)
are allowed in the function set. As a sequential code (and
without loops) has to be evolved, the functional nodes will
be arranged in a one-dimensional array, i.e. n

r

= 1, whose
size will be limited by n

c

. No feedbacks are allowed. The
l-back parameter, determining where the addresses of nodes’
operands can be located, will be unrestricted, i.e. l = n

c

.
The number of program inputs is n

i

= 9 (for 9-median) or
n

i

= 25 (for 25-median). The number of program outputs is
n

o

= 1 (the median value). Each candidate program is thus
encoded using 3n

c

+ 1 integers.
The search is performed using a (1+�) strategy, in which

� o↵spring programs are generated form the parent using
the mutation operator. In our case, � = 4 and 5% of the
chromosome undergoes the mutation. The number of gen-



erations is limited by g

max

= 3 ⇥ 106 for the 9-median and
g

max

= 300 ⇥ 103 for the 25-median which corresponds to
3 hour CGP runs. All the parameter values were set up ac-
cording to [15]. In order to evaluate a candidate program,
we randomly generated 104 training vectors for the 9-median
and 105 vectors for the 25-median and calculated the mean
absolute error as the fitness.

The evolutionary approximation exploits the idea that
CGP is capable of minimizing the error even if resources
(the number of available functional nodes) are not su�cient
for obtaining a fully functional solution [14]. The accurate
9-median (25-median, respectively) requires 38 nodes (220
nodes, respectively). Hence the aforementioned CGP-based
process was repeated with constrained resources, n

c

=6, 10,
14, 18, 22, 26, 30 and 34 nodes for 9-median, and n

c

=10,
40, 70, 100, 130, 160, 170 and 200 nodes for 25-median.
The best-obtained approximations taken from 50 indepen-
dent CGP runs are reported in Table 3 and 4.

4. ANALYSIS OF EVOLVED CODE

4.1 Microcontrollers used for testing
Three microcontrollers were chosen to evaluate the pa-

rameters of evolved approximate median functions: The 8-
bit microcontroller of Microchip PIC family with code name
PIC16F628A, 16-bit microcontroller PIC24F08KA102 and
32-bit ARM-based microcontroller STM32F100RB.

The 8-bit PIC equipped with 3.5 kB of FLASH and 224 B
of RAM is optimized for low-cost applications. Hence, a
simple accumulator architecture without a stack is imple-
mented. The instruction set consists of 35 instructions en-
coded using a 14-bit wide instruction word. The two-stage
instruction pipeline allows all instructions to be executed in
a single cycle, except for program branches. The chosen chip
has an internal oscillator running at 4 MHz and consuming
about 10 nA in the sleep mode and about 565 µA in the run
mode. Note that these values were measured when all the
peripherals were deactivated.
The 16-bit PIC represents a class of microcontrollers with

a register architecture consisting of 16 general-purpose 16-
bit registers and 7 special registers. The instructions are en-
coded using a 24-bit instruction word with a variable length
of the opcode field. The chosen chip contains 8 kB of FLASH
memory, 1.5 kB of RAM memory and employs an inter-
nal oscillator running at 8 MHz. This chip consumes about
4 mA in the active mode and 25 nA in the sleep mode.
The STM32F100RB incorporates a high-performance RISC

ARM Cortex M-3 core o↵ering twelve 32-bit general-purpose
registers. This core builds on the ARMv7-M architecture
and shows higher computational power compared to the
aforementioned chips. For example, a single-cycle multi-
plication and a hardware division are supported. STM32 is
equipped with 128 kB of FLASH memory, 8 kB of RAM and
operates at 24 MHz. The maximum current consumption in
the sleep mode is approx. 3.8 mA. When the peripherals are
enabled, the current increases to 9.6 mA. The current in the
run mode ranges from 10 mA to 150 mA depending on the
state of peripherals.

4.2 Evolved code on different microcontrollers
Obtaining a program code from evolved genotype is straight-

forward. Every active node, starting from one with the low-
est index, is represented by an operation (min or max) whose

Listing 1: Approximation of 9-median using 18 op-
erations
dtype median9(dtype* din)

{

dtype s0=min(din[2],din [3]);

dtype s1=max(din[5],din [4]);

dtype s2=max(din[2],din [3]);

dtype s3=min(din[4],din [5]);

dtype s4=min(din[0],din [1]);

dtype s5=max(din[7],din [6]);

dtype s6=min(din[8],s5);

dtype s7=max(din[0],din [1]);

dtype s8=max(s4,s0);

dtype s9=max(s8,s3);

dtype s10=min(din[6],din [7]);

dtype s12=min(s1,s7);

dtype s13=min(s12 ,s2);

dtype s14=max(s6,s9);

dtype s15=min(s6,s9);

dtype s16=max(s13 ,s15);

dtype s17=max(s10 ,s16);

dtype s18=min(s14 ,s17);

return s18;

}

operands are taken from the input sequence or the outputs
of preceding operations. In order to implement evolved func-
tions in a microcontroller, we used the C language. Example
of a function which approximates 9-median using 18 opera-
tions is shown in Listing 1.
The min and max functions are defined as two macros

outputting the minimal and maximal value for two operands.
The compiler is then able to unroll the code and optimize
it in terms of register assignment and overall performance.
Note that dtype is chosen to fit the data word width of the
target processor, i.e. 8-bit, 16-bit and 32-bit.
To illustrate the relation of the generated machine code

complexity and a target platform, we will show fragments of
code that are responsible for calculating minimal and max-
imal value. The code which was used for PIC12 microcon-
trollers is given in Listing 2. It is expected that the first
operand is stored at memory location denoted as VAR A
and the second operand at location VAR B. The calculated
value is stored at memory location VAR C. To determine the
relation between the input operands, subtraction operation
is used. This instruction performs the operation d = f �W ,
where f is a location within the RAM memory, W is the
accumulator and d can be accumulator or memory location.
The given fragment consisting of 6 instructions is optimized
to be executed in 6 clock cycles even if the number of cycles
required by a branching instruction btfss (skip next instruc-
tion if a bit of a register is set) varies between one and two

Listing 2: MIN and MAX using PIC16 assembly
MAX: movf VAR_B , w ; w = VAR_B

subwf VAR_A , w ; w = VAR_A - w

movf VAR_B , w ; W = VAR_B

btfss status , 0x0 ; skip next if carry set

movf VAR_A , w ; W = VAR_A

movf w, VAR_C ; VAR_C = MAX(VAR_A ,VAR_B)

MIN: movf VAR_B , W ; w = VAR_B

subwf VAR_A , W ; W = VAR_A - w

movf VAR_A , w ; W = VAR_A

btfss status , 0x0 ; skip next if carry set

movf VAR_B , w ; W = VAR_B

movf w, VAR_C ; VAR_C = MIN(VAR_A ,VAR_B)



cycles depending on the result of the test. If the conditional
test is true, the instruction requires two cycles. Otherwise,
one clock cycle is needed. The C code was compiled by the
XC8 compiler which is integrated in PIC IDE.

The code generated by the XC16 compiler targeting 16-
bit microcontrollers is given in Listing 3. Both fragments
expect that the input operands are loaded in registers w4
and w5. The output is stored in register w0 and determined
using a subtraction instruction. The instructions of PIC24
are designed in such a way, that each instruction is executed
within a single clock cycle. However, if there is a condi-
tional branch and the condition is met, one cycle penalty is
introduced. Taking into account this rule, 4 clock cycles are
required to determine the minimum (maximum) value using
the code shown in Listing 3.

Listing 3: MIN and MAX using PIC24 assembly
MAX: sub w4, w5, [w15] ; tmp = w4 -w5

mov w5, w0

bra le, max_w5

max_w4: mov w4, w0

max_w5:

MIN: sub w4, w5, [w15] ; tmp = w4 -w5

mov w5, w0

bra ge, min_w5

min_w4: mov w4, w0

min_w5:

The code generated using Atollic ARM compiler is given in
Listing 4. The input operands are loaded in registers r2 and
r3 and the output is stored in register r0. In contrast with
the instruction set of PIC microcontrollers, ARM contains
an instruction for comparing two registers. All the instruc-
tions are executed within a single clock cycle apart from
the conditional branch. This instruction can cause pipeline
flush. The number of cycles required for a pipeline refill,
however, ranges from 1 to 3 depending on the alignment and
width of the target instruction, and whether the processor
manages to speculate the address early.

Listing 4: MIN and MAX using ARM assembly
MAX: cmp r2, r3

ble.n max_r3

mov r0 , r2

b.n max_r2

max_r3: mov r0 , r3

max_r2:

MIN: cmp r2, r3

bge.n min_r3

mov r0 , r2

b.n min_r2

min_r3: mov r0 , r3

min_r2:

The size of routines implementing approximate 9-median
functions are given in Table 1, where x-ops denotes an im-
plementation utilizing x operations. The size is expressed in
the number of bytes as well as the percentage of the total
memory capacity available on a given chip.

In the case of PIC16, a stack which could be used to store
the temporary values is not available. As a consequence of
that, the recursive quicksort algorithm can not be imple-
mented as its implementation relies on the recursion. The

size of median routines increases with the increasing number
of utilized operations.
If we compare the size of a bytecode for PIC24 and STM32,

it can be seen that the ARM compiler produces a more com-
pact code. This is caused by the fact that the instructions
are encoded more e�ciently.
The quicksort-based implementation is more compact com-

pared to the accurate median filter implemented using a
median network. The median network consisting of 28 op-
erations occupies approximately two times higher number of
bytes. The size of the quicksort routine is equal to the size
of an approximate median consisting of 18 operations.

Table 1: Size of machine code for approximate 9-
input median functions

Target platform

Impl. STM32 PIC24 PIC16

6-ops 52 B (0.04%) 144 B (2%) 146 B (7%)
10-ops 80 B (0.06%) 234 B (3%) 234 B (11%)
14-ops 108 B (0.08%) 321 B (4%) 322 B (16%)
18-ops 148 B (0.11%) 417 B (5%) 416 B (20%)
22-ops 176 B (0.13%) 489 B (6%) 484 B (24%)
26-ops 212 B (0.16%) 567 B (7%) 560 B (27%)
30-ops 232 B (0.18%) 639 B (8%) 638 B (31%)
34-ops 252 B (0.19%) 711 B (9%) 872 B (43%)
38-ops 280 B (0.21%) 783 B (10%) 961 B (47%)

qsort 144 B (0.11%) 387 B (5%) —

The number of bytes required to implement approximate
25-median functions is given in Table 2. Note that PIC24
is not included in this table due to the small amount of
RAM memory. Similarly to the previous case, the code size
increases linearly with the increasing number of operations.
The accurate median network occupies ten times more bytes
than the quicksort algorithm. This is the price that must be
sacrificed for great speed of the algorithm based on a median
network.

Table 2: Size of machine code for approximate 25-
input median functions

Target platform

Implementation STM32 PIC24

10-ops 84 B (0.1%) 237 B (3%)
40-ops 328 B (0.3%) 888 B (11%)
70-ops 640 B (0.5%) 1527 B (19%)
100-ops 904 B (0.7%) 2103 B (26%)
130-ops 1208 B (0.9%) 2643 B (32%)
160-ops 1512 B (1.2%) 3186 B (39%)
170-ops 1532 B (1.2%) 3360 B (41%)
200-ops 1868 B (1.4%) 3897 B (48%)
220-ops 2052 B (1.6%) 4251 B (52%)

qsort 144 B (0.1%) 387 B (5%)

4.3 Accuracy
The quality of approximate software can be evaluated us-

ing various metrics, for example, using the error probability



(error rate) which is defined as the percentage of inputs vec-
tors for which the approximate output di↵ers from the orig-
inal one. However, this commonly applied metric does not
reflect the quality of selecting the median value. For exam-
ple, there can exist an algorithm slightly modifying one half
of the output values and still providing good performance
if used, for example, in image filtering. Other commonly
used metrics such as error magnitude or relative error are,
unfortunately, sensitive to the input values.

To investigate the impact of the approximations on the
quality of obtained results regardless of the values of the in-
put items, we introduce another metric. Let us recall that
the median of a finite list of numbers can be found by arrang-
ing all the numbers from the lowest value to the highest value
and picking the middle one. In other words, the median of a
finite list of numbers consisting of (2n+1) items is equal to
the (n+ 1)th lowest value. The most important property of
the optimized median algorithms is that the output always
equals one of the input values. Let the output value equal to
the j

th lowest value. To describe the quality of an approxi-
mate median function, we can introduce a new error distance

defined as the distance of the item chosen as the output value
(i.e. jth lowest value) from the median (i.e. (n+1)th lowest
value) calculated as |j � n+ 1|. Two additional metrics can
be inferred from the error distance: mean error distance de-
fined as the sum of error distances averaged over all input
combinations producing an invalid output value and worst

case error distance defined as the maximal error distance
calculated over all input combinations. Note that it is not
necessary to investigate all possible input combinations in
practice. It is su�cient to calculate these metrics using the
permutations of a set S = {�n,�n+1, . . . , 0, . . . , n� 1, n}.
In addition to that, the mean error distance can be calcu-
lated as the mean absolute error providing that we use the
permutations of S. This simplification can be introduced
because the median of S is zero and the distance between
j

th lowest item (i.e. the value j � (n + 1)) and (n + 1)th

lowest item (i.e. median value) is equal to j � (n+ 1).

Table 3: Parameters of approximate 9-medians

Oper. Error Distance error

Impl. Reduct. prob. mean worst

6-ops 84% 75.4 % 1.131± 0.847 3
10-ops 73% 63.5 % 0.778± 0.677 2
14-ops 63% 52.4 % 0.571± 0.583 2
18-ops 52% 34.9 % 0.361± 0.504 2
22-ops 42% 22.2 % 0.222± 0.416 1
26-ops 31% 11.1 % 0.111± 0.314 1
30-ops 21% 4.8 % 0.048± 0.213 1
34-ops 10% 5.6 % 0.056± 0.229 1
38-ops 0% 0.0 % 0.000± 0.000 0

Parameters of various implementations of approximate 9-
median functions are shown in Table 3. After the identifier
placed in the first column, the second column shows the
improvement to the accurate median calculated as the rel-
ative reduction of the number of utilized operations. The
third column contains the error probability. Mean distance
error accompanied with the standard deviation is given in
the fourth column. The last column contains the worst case

distance error. The errors were calculated using all 9! =
362 880 permutations of S = {�4,�3,�2,�1, 0, 1, 2, 3, 4}.
The maximal possible worst case error is 4.
It can be seen that as the number of operations decreases,

the error probability as well as distance error are increasing.
Interestingly, the worst case distance error is not higher than
3. Because the equation to calculate the mean error dis-
tance does not include the correct output values, the mean
error distance and the standard deviation suggest that the
majority of the errors are caused by confusing the median
value with such values of the sorted input sequence that are
near to the median value. To illustrate this fact, we calcu-
lated histograms of error distribution. The histograms for
three chosen implementations are depicted in Figure 1. If
we reduce the number of operations by 21% (i.e. to 30 oper-
ations), the output value is determined correctly in 94.4%.
In the rest of the cases (i.e. 5.6%), the output value is de-
termined incorrectly as the 6th lowest item of a sorted list
of numbers. Because the median value corresponds with 5th

lowest item, the distance between median and output value
is equal to 1. If the number of operations is reduced to 18,
the worst case error increases to 2. According to the his-
togram, this error, which is caused by outputting 7th lowest
item, occurs in 1.19% of all input cases only. The remaining
33.7% erroneous outputs are caused by selecting 4th or 6th

lowest item. Interestingly, distribution of the errors is asym-
metric. This is more evident if we look at the distribution
of errors for the implementation employing 6 operations.

Figure 1: Error distribution for three di↵erent ap-
proximate 9-median implementations

The parameters of various approximate 25-median func-
tions are shown in Table 4. As it is impractical to eval-
uate all possible input permutations for 25 inputs (there
exist about 1.55 · 1025 permutations), we randomly gener-
ated a subset of all the input permutations. We identi-
fied that it is necessary to generate at least 109 permuta-
tions to obtain results exhibiting error in the order of 10�3.
Hence, to calculate the errors, we used 1010 permutations
of S = {�12,�11, . . . ,�1, 0, 1, . . . , 11, 12}. The maximal
worst case error is 12.
Again, there is a direct relation between the number of

operations employed to the estimate median value and the
error probability. Interestingly, the 22% reduction in the



Table 4: Parameters of approximate 25-medians

Oper. Error Distance error

Impl. Reduct. prob. mean worst

10-ops 95% 91.1 % 3.321± 2.333 10
40-ops 81% 81.0 % 1.630± 1.281 7
70-ops 68% 67.9 % 0.986± 0.889 7
100-ops 54% 54.0 % 0.689± 0.753 6
130-ops 40% 26.6 % 0.299± 0.531 5
160-ops 27% 5.6 % 0.066± 0.292 5
170-ops 22% 2.8 % 0.032± 0.197 4
200-ops 9% 0.1 % 0.001± 0.037 2
220-ops 0% 0.0 % 0.000± 0.000 0

number of utilized operations leads to the lower number of
invalid output values compared to the results obtained for
9-median. However, the worst case error increased to 4.
The mean error distance indicates that the introduced errors
have only a neglible impact on quality if the approximate
median functions are utilized, for example, in image filtering.
The mean error distance is less than 1 even if the number
of operations is reduced by 68%. The histograms for three
chosen implementations are shown in Figure 2.

Figure 2: Error distribution for three di↵erent ap-
proximate 25-median implementations

4.4 Execution time and energy
The microcontrollers were programmed using the imple-

mentations discussed in the previous sections. Two non-
functional parameters were measured: (a) the time that a
microcontroller spends in a routine which computes the (ap-
proximate) median value, and (b) energy consumed by the
microcontroller to execute this routine.

In order to perform these measurements, a specific pro-
gram has to be implemented by the microcontrollers. It
works as follows. Firstly, an input vector consisting of N

words (N = 9 or N = 25) is randomly initialized and fed to
the routines calculating the (approximate) median. Then,
an infinite loop is executed, which contains calling of the
routine calculating the (approximate) median value followed
by a code modifying a randomly chosen value of the input

vector to another value. Passing one iteration of the loop is
indicated by inverting the logic value on a given pin. The ex-
ecution time is then obtained using an oscilloscope by mon-
itoring the period of the signal on the pin.
In order to correctly determine an average energy needed

to calculate the median value, all unused peripheral devices
are switched o↵. Only those external components remain
used which are necessary for program execution. Energy
consumption was measured using Agilent N6705B DC Power
Analyzer displaying the error lower than 0.025% for voltage
as well as current measurements.
During the measurements, it turned out that energy con-

sumption pattern remains almost invariable because all ap-
proximations use identical sequences of instructions. Con-
sumed energy thus mainly depends on the execution time
which is shorter when more aggressive approximations are
applied. The average power consumption, when an accurate
median is calculated, is 2 mW for PIC16, 6.9 mW for PIC24
and 30.5 mW for ARM.

Table 5: Execution time and consumed energy of
approximate 9-medians

Impl.
Time [µs] Energy [nWs]

STM32 PIC24 PIC16 STM32 PIC24 PIC16

6-ops 2.8 54.5 170.5 86 377 342
10-ops 3.3 70.8 251.5 102 490 504
14-ops 3.9 86.8 336.5 118 600 674
18-ops 4.5 104.5 424.1 138 723 850
22-ops 5.0 116.7 487.8 151 808 978
26-ops 5.9 130.0 558.0 179 900 1118
30-ops 6.0 142.0 627.4 181 983 1257
34-ops 6.4 154.0 819.7 196 1066 1643
38-ops 6.9 165.5 885.0 210 1145 1774

qsort 28.5 1106.2 — 869 7655 —

Table 5 and Table 6 give the average execution time and
energy consumption of various implementations of 9-median
and 25-median functions. To demonstrate benefits of the
median network, let us discuss the parameters of the accu-
rate implementations at first. In the case of the accurate
9-median calculation at PIC24, the median network is 6.74
times faster than the quicksort algorithm and the consumed
energy was reduced from 7655 nWs to 1145 nWs, i.e. by
85%. The median network is 4.13 times faster than quick-
sort on the STM32 and the energy was reduced by 76%.
Similar results were obtained for the 25-median. The me-
dian network implemented on PIC24 is 4.06 times faster
than the quicksort algorithm and the consumed energy was
reduced by 75%. At STM32, quicksort algorithm exhibits
2.58 times worse execution time and by 158% higher energy
consumption compared to the median calculated using 220
operations.
According to the results, there is nearly linear dependency

between the number of operations used to estimate the me-
dian value and the execution time. As the execution time
increases, the consumed energy also increases. Considering
the parameters of the evolved median functions given in Ta-
ble 3 and Table 4, we can easily determine that the proposed
method has a great potential. For example, the 9-median
implemented using 22 operations exhibits an error which is



Table 6: Execution time and consumed energy of
approximate 25-medians

Impl.
Time [µs] Energy [nWs]

STM32 PIC24 STM32 PIC24

10-ops 3.4 71.5 104 495
40-ops 8.1 188.5 246 1304
70-ops 13.3 303.0 406 2097
100-ops 17.3 401.6 528 2779
130-ops 22.1 491.2 673 3399
160-ops 27.4 581.4 836 4023
170-ops 29.1 609.8 888 4220
200-ops 34.8 698.3 1063 4832
220-ops 39.3 755.3 1200 5227

qsort 101.6 3067.5 3099 21227

negligible in the domain of signal processing, however, it en-
ables to reduce the energy consumption by more than 25%.
The 25-median implemented using 160 operations enables to
reduce the energy by more than 23%. According to the dis-
tribution of errors shown in Figure 2, this implementation
provides the output of high quality with very low percentage
of erroneous outputs that are close to the median value.

Despite the fact that STM32 exhibits the largest current
consumption in the run mode, it achieved the best results
from the perspective of power savings. This is caused mainly
by the fact that the STM32 incorporates a modern ARM-
based RISC core having optimized instruction set and o↵er-
ing high computational power.

5. CONCLUSIONS
We presented a new approach to the approximation of

software which is intended for microcontrollers. The method
is based on CGP and exploits the fact that CGP can find
a good trade o↵ between the error and code size even if
the code size is intentionally constrained. The method was
evaluated in the task of 9-median and 25-median approx-
imation intended for three di↵erent microcontrollers. Re-
sulting approximations show a significant improvement in
the execution time while the observed errors are moderate.
Power consumption of approximate median functions lin-
early depend on the execution time. We also introduced a
new method for error calculation which can be used in the
future to evaluate approximate sorting networks and other
routines.
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