
Removing the Kitchen
Sink from Software

Jason Landsborough
Stephen Harding

Sunny Fugate

Motivation

• Large feature-rich
programs

• Kitchen sink

Used with permission from Rich Diesslin, www.the-cartoonist.com

http://www.the-cartoonist.com/

Why Thin
Pros:

• Security: Thinned programs do not contain the vulnerabilities present in code which was
removed.

• Size: Thinned programs might be smaller and have performance gains over non-thinned code.

• Validity: Thinned programs are likely to be simpler and easier to validate, requiring fewer test
cases.

• Optimality: Thinned programs can be better optimized for the specific machine, removing code
for cross- compatibility.

Cons:

• Security: Thinned programs might not contain various security checks not normally
raised in execution.

• Size: Thinned programs will fail or require additional time to load removed code segments.

• Validity: Thinned programs might require the same number of tests to validate that unwanted
features are indeed removed.

• Optimality: Thinned programs may not run at all on other machines.

What to Remove

Two basic classes:

1. Undesirable features

• Ex: Heartbeat in OpenSSL

2. Unused features

• Cold code

Image source: http://heartbleed.com/heartbleed.png

http://heartbleed.com/heartbleed.png

Manually Remove Features
• Identify feature

1. Overwrite
with NOPs

2. Redirect
function call

• Issue: Very time
consuming

Trace-based Thinning

• Dynamic trace of program execution

• diStorm - Trace tool

• DIFT by Jeff Knockel and Antonio Espinoza at
University of New Mexico

Prototype Overview

• Only keeps used instructions
• May remove too much - Riskier

Trace and remove
unused

Prototype Overview

• Only keeps used instructions
• May remove too much - Riskier

• Only removes unwanted instructions
• May not remove enough - “Safer”

Trace and remove
unused

Trace and remove
unwanted

Unused

Unwanted

GA-based Thinning

• Genetic Algorithm feature
removal

• Software Evolution

• Developed by Eric
Schulte from University
of New Mexico

Mutate program for feature removal

Genetic Algorithm Overview

Binary Mutation

Source: modified from Post-compiler software optimization for reducing energy by Schulte, Dorn, Harding, Forrest, and Weimer

Fitness Script
• Script with test cases run by GA

• Basic overview:

1. Variant passed in as script argument

2. Generate many test cases for feature(s) to keep

3. Run each test case on original and variant binaries

4. If output differs, exit with bad fitness, otherwise continue until
test cases finish

5. Calculate fitness value

Fitness Calculation
Program size - number of nops, adjusted with largest
return value

• PROG_SIZE = length(program_variant)

• PROG_NOPS = count_nops(program_variant)

• FN = PROG_SIZE - PROG_NOPS

• FITNESS = FN + RETVAL * 5

Fitness Script For echo
• Choose 0-5 options from: {-e, -E}

• Choose 0-1000 random characters for string

• Remove special characters

• Test variant and compare with original

• Same -> continue

• Diff -> fail, print bad fitness and terminate

• Repeat 1000 times

• Calculate fitness and terminate

Results For echo
Goal: remove -n feature

• Before:

• Non-NOP instructions: 2,609

• After:

• Non-NOP instructions: 2,173

• 436 fewer instructions — ~17%

Fitness Script For sha1sum
Test case 1:

• Choose random number of
random characters for string

• Test string hash of variant
and compare with original

• Same -> continue

• Diff -> fail, print bad
fitness and terminate

• Repeat 50 times

Test case 2:

• Make random file filled with
random number of random
bytes

• Test file hash of variant and
compare with original

• Same -> continue

• Diff -> fail, print bad fitness
and terminate

• Repeat 50 times

• Calculate fitness and terminate

Results For sha1sum
Goal: Remove unused features — keep string/file
hashing

• Before:

• Non-NOP instructions: 5,049

• After:

• Non-NOP instructions: 4,764

• 285 fewer instructions — ~6%

Minimized Changes
• Terminate as soon as feature is removed

• fitness script gives perfect fitness (zero)

• -n removed from echo — 706 fitness evaluations

• Delta debugging

• Undo changes that do not contribute to fitness

Delta Debugging
• Feature removed: Fitness == 0

• Echo result: 1 instruction

Current Issues and
Limitations

• Machine-dependent

• No GUI programs

• Large programs

• Remove error handling

• Unintentional program failure

Future Work

“Future of Technology and Impact on HR and Management” by Gerd Leonhard is licensed under CC BY-SA 2.0

Larger Open Source
Software

• Try thinning approaches on [slightly] larger open
source software

• Will need to develop better ways of randomly
generating test cases for much larger programs

• Currently requires knowledge of program usage
and arguments (manpage learnin’)

GA-Based Diversification
• Why diversification?

• Change program structure

• Code-reuse exploits rely on specific program
structure

GA-Based Diversification

Program A

Program B

Program A’ Program A’’ Program A’’’

Mutate Program A “look” like Program B

Program A

Program B

Program A’’’Program A’’Program A’

Mutate Program A to “look” different from Program B

Program A

Program B

Program A’ Program A’’ Program A’’’

Mutate Program A “look” like Program B

Program A

Program B

Program A’ Program A’’ Program A’’’

Mutate Program A to “look” like Program B

GA-Based Diversification
Mutate program for broadest diversity

Semantic Preserving Binary
Transformations

• Learn transformations based on GA results

• Transformations to minimize instructions

• Transformations to increase diversity

Time

C
ha

ng
e

in
 M

ac
hi

ne
-S

ta
te

Steady-state behavior

Startup/Loading

Settling/Data Ingest

GA-Assisted Malware
Reversing

• Use GA to
mutate malware

• Can mutations
unpack or
remove anti-RE?

Other Ideas

• Use tracing to influence GA

• Performance

• Failing gracefully

Questions?

“Question Box” by Raymond Bryson is licensed under CC BY 2.0

Backup slides

Manual Binary Modification

Showing removal of function from simple program

GA-Thinning

Echo thinned

Sha1sum thinned

Simple program and echo
plots

