
Vojtech Mrazek, Zdenek Vasicek, Lukas Sekanina

Faculty of Information Technology

Brno University of Technology,

Czech Republic

Evolutionary Approximation of
Software for Embedded

Systems: Median Function

Outline

• Approximate computing

• Median function

• properties, implementation, application in image processing

• Evolutionary approximation of median function

• the proposed method

• analysis of the results for real microcontrollers

Evolutionary Approximation of Software for Embedded Systems: Median function 2

Approximate computing

• Motivation: many real-world applications are error-resilient

• Principle: relaxation in accuracy can be used to simplify the complexity of
computations and reduce the power consumption

• Applicability: 83% of runtime spent in computations can be approximated

V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, Analysis and characterization of
inherent application resilience for approximate computing, DAC 2013.

Evolutionary Approximation of Software for Embedded Systems: Median function 3

Approximate computing

• Motivation: many real-world applications are error-resilient

• Principle: relaxation in accuracy can be used to simplify the complexity of
computations and reduce the power consumption

• Applicability: 83% of runtime spent in computations can be approximated

V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, Analysis and characterization of
inherent application resilience for approximate computing, DAC 2013.

Evolutionary Approximation of Software for Embedded Systems: Median function 4

power
consumption

initial solution

Approximate computing

• Motivation: many real-world applications are error-resilient

• Principle: relaxation in accuracy can be used to simplify the complexity of
computations and reduce the power consumption

• Applicability: 83% of runtime spent in computations can be approximated

V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, Analysis and characterization of
inherent application resilience for approximate computing, DAC 2013.

Evolutionary Approximation of Software for Embedded Systems: Median function 5

power
consumption

initial solution

genetic improvement

acceptable
error

Approximate computing

• Motivation: many real-world applications are error-resilient

• Principle: relaxation in accuracy can be used to simplify the complexity of
computations and reduce the power consumption

• Applicability: 83% of runtime spent in computations can be approximated

V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, Analysis and characterization of
inherent application resilience for approximate computing, DAC 2013.

Evolutionary Approximation of Software for Embedded Systems: Median function 6

e
rr

o
r

power
consumption

initial solution

genetic improvement

acceptable
error

Approximate computing

• Motivation: many real-world applications are error-resilient

• Principle: relaxation in accuracy can be used to simplify the complexity of
computations and reduce the power consumption

• Applicability: 83% of runtime spent in computations can be approximated

V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, Analysis and characterization of
inherent application resilience for approximate computing, DAC 2013.

Evolutionary Approximation of Software for Embedded Systems: Median function 7

approximate computing

e
rr

o
r

power
consumption

initial solution

genetic improvement

Median function

• Median: a value separating a finite sequence of data samples to two
halves

• Typical application: smoothing of acquired (measured) data

• Example: noise removal in an image using a concept of sliding window

Evolutionary Approximation of Software for Embedded Systems: Median function 8

Median function

• Median: a value separating a finite sequence of data samples to two
halves

• Typical application: smoothing of acquired (measured) data

• Example: noise removal in an image using a concept of sliding window

Evolutionary Approximation of Software for Embedded Systems: Median function 9

Input (corrupted) image Output (filtered) image

Median function

• Median: a value separating a finite sequence of data samples to two
halves

• Typical application: smoothing of acquired (measured) data

• Example: noise removal in an image using a concept of sliding window

Evolutionary Approximation of Software for Embedded Systems: Median function 10

Input (corrupted) image Output (filtered) image

median

Median in image processing

Evolutionary Approximation of Software for Embedded Systems: Median function 11

corrupted image
(10% pixels, impulse noise)

Median in image processing

Evolutionary Approximation of Software for Embedded Systems: Median function 12

filtered image
(9-input median filter)

corrupted image
(10% pixels, impulse noise)

Median in image processing

Evolutionary Approximation of Software for Embedded Systems: Median function 13

filtered image
(9-input median filter)

corrupted image
(10% pixels, impulse noise)

Median in image processing

Evolutionary Approximation of Software for Embedded Systems: Median function 14

filtered image
(9-input median filter)

corrupted image
(10% pixels, impulse noise)

original

Implementation of median filter

• To determine the median, we can employ:

• a sorting algorithm

• a selection algorithm

• a median network

• Median network

• a structure consisting of compare & swap operations

• an optimal network is known for some sizes

Evolutionary Approximation of Software for Embedded Systems: Median function 15

pixelvalue opt_med9 (pixelvalue * p)

{

PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;

PIX_SORT(p[0], p[1]) ; PIX_SORT(p[3], p[4]) ; PIX_SORT(p[6], p[7]) ;

PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;

PIX_SORT(p[0], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], p[7]) ;

PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1], p[4]) ; PIX_SORT(p[2], p[5]) ;

PIX_SORT(p[4], p[7]) ; PIX_SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4]) ;

PIX_SORT(p[4], p[2]) ; return(p[4]) ;

} Source: http://ndevilla.free.fr/median/median.pdf

#define PIX_SORT(a,b) {
if ((a)>(b))

PIX_SWAP((a),(b));
}

Implementation of median filter

• Alternatively, max and min operations can be used

• the sequence of operations is invariant w.r.t. the input data

• suitable for HW architectures equipped with MIN/MAX instruction

• easier evaluation of the correctess (zero-one theorem, AND/OR)

Evolutionary Approximation of Software for Embedded Systems: Median function 16

pixelvalue approx_med9 (pixelvalue * p)

{

pixelvalue s00=MIN(p[2],p[3]), s01=MAX(p[5],p[4]), s02=MAX(p[2],p[3]);

pixelvalue s03=MIN(p[4],p[5]), s04=MIN(p[0],p[1]), s05=MAX(p[7],p[6]);

pixelvalue s06=MIN(p[8],s05) , s07=MAX(p[0],p[1]), s08=MAX(s04,s00) ;

pixelvalue s09=MAX(s08,s03) , s10=MIN(p[6],p[7]), s12=MIN(s01,s07) ;

pixelvalue s13=MIN(s12,s02) , s14=MAX(s06,s09) , s15=MIN(s06,s09) ;

pixelvalue s16=MAX(s13,s15) , s17=MAX(s10,s16) , s18=MIN(s14,s17) ;

return s18;

} Approximate median – 18 operations

Approximate median filter

Evolutionary Approximation of Software for Embedded Systems: Median function 17

38 instructions

Approximate median filter

Evolutionary Approximation of Software for Embedded Systems: Median function 18

filtered image
(9-input median filter – 18 instructions)

18 instructions

38 instructions

Approximate median filter

Evolutionary Approximation of Software for Embedded Systems: Median function 19

filtered image
(9-input median filter – 18 instructions)

filtered image
(9-input median filter – 6 instructions)

18 instructions

6 instructions

38 instructions

Approximate circuit design by means of CGP

• Median network (consisting of up to N operations) is represented by
means of an one-dimensional array of N nodes.

• Each node can act as: identity (0), minimum (1), maximum (2)

• Each node can be connected to a node situated in the previous columns
(no feedbacks are allowed).

• The configuration of nodes (the function and connection) is encoded
using 3N + 1 integers.

Evolutionary Approximation of Software for Embedded Systems: Median function 20

Chromosome: 0, 2, 3; 3, 2, 0; 0, 2, 2; 5, 3, 1; 6, 1, 2; 7, 0, 0; 6, 8, 2; 8

Approximate circuit design by means of CGP

• Median network (consisting of up to N operations) is represented by
means of an one-dimensional array of N nodes.

• Each node can act as: identity (0), minimum (1), maximum (2)

• Each node can be connected to a node situated in the previous columns
(no feedbacks are allowed).

• The configuration of nodes (the function and connection) is encoded
using 3N + 1 integers.

Evolutionary Approximation of Software for Embedded Systems: Median function 21

Chromosome: 0, 2, 3; 3, 2, 0; 0, 2, 2; 5, 3, 1; 6, 1, 2; 7, 0, 0; 6, 8, 2; 8

Approximate circuit design by means of CGP

• Median network (consisting of up to N operations) is represented by
means of an one-dimensional array of N nodes.

• Each node can act as: identity (0), minimum (1), maximum (2)

• Each node can be connected to a node situated in the previous columns
(no feedbacks are allowed).

• The configuration of nodes (the function and connection) is encoded
using 3N + 1 integers.

Evolutionary Approximation of Software for Embedded Systems: Median function 22

Chromosome: 0, 2, 3; 3, 2, 0; 0, 2, 2; 5, 3, 1; 6, 1, 2; 7, 0, 0; 6, 8, 2; 8

Approximate circuit design by means of CGP

• Median network (consisting of up to N operations) is represented by
means of an one-dimensional array of N nodes.

• Each node can act as: identity (0), minimum (1), maximum (2)

• Each node can be connected to a node situated in the previous columns
(no feedbacks are allowed).

• The configuration of nodes (the function and connection) is encoded
using 3N + 1 integers.

Evolutionary Approximation of Software for Embedded Systems: Median function 23

Chromosome: 0, 2, 3; 3, 2, 0; 0, 2, 2; 5, 3, 1; 6, 1, 2; 7, 0, 0; 6, 8, 2; 8

Approximate circuit design by means of CGP

• Median network (consisting of up to N operations) is represented by
means of an one-dimensional array of N nodes.

• Each node can act as: identity (0), minimum (1), maximum (2)

• Each node can be connected to a node situated in the previous columns
(no feedbacks are allowed).

• The configuration of nodes (the function and connection) is encoded
using 3N + 1 integers.

Evolutionary Approximation of Software for Embedded Systems: Median function 24

Chromosome: 0, 2, 3; 3, 2, 0; 0, 2, 2; 5, 3, 1; 6, 1, 2; 7, 0, 0; 6, 8, 2; 8

The fitness function

• The quality of approximation is measured as the sum of absolute
differences between the output value of a candidate solution and
reference

e𝑟𝑟𝑜𝑟 =

𝑖∈𝑆

𝑂𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑖 − 𝑂𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖)

• Scalability issue

• |S| could be reduced from 28
𝑛

to 2𝑛 using the zero-one principle.

• However, it would be impossible to reasonably quantify the error (It
is not important, how many invalid responses are produced).

• Solution

• Use a randomly generated subset of S of a “reasonable” size

Evolutionary Approximation of Software for Embedded Systems: Median function 25

Z. Vasicek and L. Sekanina. Evolutionary approach to approximate digital circuits design. IEEE trans. on Evolutionary
Computation, Vol. 19 , No. 3, 2015

Evolutionary design of approximate medians

• Resource-oriented design approach is employed.

• The evolutionary approximation exploits the idea that CGP is capable of
minimizing the error even if the number of available functional nodes is not
sufficient for obtaining a fully functional solution.

• Experimental setup:

• (1+4)-ES, no crossover, 5 % of the chromosome mutated

Evolutionary Approximation of Software for Embedded Systems: Median function 26

Median-9 Median-25

Inputs 9 25

Outputs 1 1

Generations 3 × 106 (3 hours) 3 × 105 (3 hours)

Training vectors 1 × 104 1 × 105

Reference solution 38 operations 220 operations

Number of nodes 6 – 34 operations 10 – 200 operations

Quality of the evolved approximations

Evolutionary Approximation of Software for Embedded Systems: Median function 27

• The principle of construction of a median network guarantees that the
output value is always one of the input values.

• Consequence:

• If a sequence of 2𝑛 + 1 successive numbers R = −𝑛,… , 𝑛 is used

as the input, the absolute value of the highest obtained number
equals to the worst-case distance from (𝑛 + 1)th lowest element

median(2n+1) −𝑛,−𝑛 + 1,… , 0, . . , 𝑛 − 1, 𝑛 = 0

• Permutations of R can be used instead of all possible input
combinations

• 9-median: 3.62 × 105 permutations (vs. 6.27 × 1021

combinations)

• 25-median: 1.25 × 1025 permutations (vs. 4.20 × 1060

combinations)

Quality of some evolved approximations

Evolutionary Approximation of Software for Embedded Systems: Median function 28

9-input median
fully-working: 38 operations

21% reduction

52% reduction

84% reduction

4.8%

95.2%

65.1%

24.6%

20.2%13.4%

1.2%

23.8% 19.4%
12.3%

5.5%
14.3%

Quality of some evolved approximations

Evolutionary Approximation of Software for Embedded Systems: Median function 29

9-input median
fully-working: 38 operations

25-input median
fully-working: 220 operations

21% reduction

52% reduction

84% reduction

4.8%

95.2%

65.1%

24.6%

20.2%13.4%

1.2%

23.8% 19.4%
12.3%

5.5%
14.3%

27% reduction

54% reduction

81% reduction

94.4%

45.9%

19.0%

Evaluation of power consumption

Target platforms:

• Microchip PIC16F628

• 8 bit microprocessor

• accumulator architecture

• Microchip PIC24F08

• 16 bit microprocessor

• register architecture

• ST STM32F100RB

• 32 bit microprocessor

• ARM Cortex M3 core

Power consumption measured on real chips.

Evolutionary Approximation of Software for Embedded Systems: Median function 30

Execution time and power consumption 9-median

Evolutionary Approximation of Software for Embedded Systems: Median function 31

Execution time and power consumption 9-median

Evolutionary Approximation of Software for Embedded Systems: Median function 32

fully-working median

• Quick-sort based implementation is slower and consumes significantly more
energy compared to the median network.

• Due to the limited resources, quick-sort can’t be even implemented on PIC16.

Execution time and power consumption 9-median

Evolutionary Approximation of Software for Embedded Systems: Median function 33

fully-working median

4.8% error prob.,
max. error dist. 1
21% power reduction

• Quick-sort based implementation is slower and consumes significantly more
energy compared to the median network.

• Due to the limited resources, quick-sort can’t be even implemented on PIC16.

• 21% reduction in power consumption was achieved in the case of 30-ops
median providing a negligible error

Execution time and power consumption 9-median

Evolutionary Approximation of Software for Embedded Systems: Median function 34

fully-working median

4.8% error prob.,
max. error dist. 1
21% power reduction

34.9% error prob.,
max. error dist. 2

52% power reduction

• Quick-sort based implementation is slower and consumes significantly more
energy compared to the median network.

• Due to the limited resources, quick-sort can’t be even implemented on PIC16.

• 21% reduction in power consumption was achieved in the case of 30-ops
median providing a negligible error

Execution time and power consumption 25-median

Evolutionary Approximation of Software for Embedded Systems: Median function 35

• 25-input median consisting of up to 220 operations offers a higher potential
for power savings.

• There is nearly linear dependency between the number of operations and
consumed energy (approx. 5 nW per operation for STM32).

• PIC24 requires five times more energy to accomplish the same operation.

Conclusions

• A new approach to the approximation of software routines for MCUs
was presented.

• We confirmed that CGP is able to find a good trade off between error
and code size even if the code size is intentionally constrained.

• A significant improvement in power consumption, code size and time of
execution was achieved.

• A new method for analysis of quality of the proposed approximations
was proposed.

Evolutionary Approximation of Software for Embedded Systems: Median function 36

