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Approximate computing

• Motivation: many real-world applications are error-resilient

• Principle: relaxation in accuracy can be used to simplify the complexity of 
computations and reduce the power consumption

• Applicability: 83% of runtime spent in computations can be approximated 

V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, Analysis and characterization of 
inherent application resilience for approximate computing, DAC 2013.
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Median function

• Median: a value separating a finite sequence of data samples to two 
halves

• Typical application: smoothing of acquired (measured) data 

• Example: noise removal in an image using a concept of sliding window
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Median in image processing
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Median in image processing
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Median in image processing
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Implementation of median filter

• To determine the median, we can employ: 

• a sorting algorithm

• a selection algorithm

• a median network

• Median network

• a structure consisting of compare & swap operations

• an optimal network is known for some sizes
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pixelvalue opt_med9 (pixelvalue * p)

{

PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;

PIX_SORT(p[0], p[1]) ; PIX_SORT(p[3], p[4]) ; PIX_SORT(p[6], p[7]) ;

PIX_SORT(p[1], p[2]) ; PIX_SORT(p[4], p[5]) ; PIX_SORT(p[7], p[8]) ;

PIX_SORT(p[0], p[3]) ; PIX_SORT(p[5], p[8]) ; PIX_SORT(p[4], p[7]) ;

PIX_SORT(p[3], p[6]) ; PIX_SORT(p[1], p[4]) ; PIX_SORT(p[2], p[5]) ;

PIX_SORT(p[4], p[7]) ; PIX_SORT(p[4], p[2]) ; PIX_SORT(p[6], p[4]) ;

PIX_SORT(p[4], p[2]) ; return(p[4]) ;

} Source: http://ndevilla.free.fr/median/median.pdf

#define PIX_SORT(a,b) { 
if ((a)>(b)) 

PIX_SWAP((a),(b)); 
}



Implementation of median filter

• Alternatively, max and min operations can be used 

• the sequence of operations is invariant w.r.t. the input data

• suitable for HW architectures equipped with MIN/MAX instruction

• easier evaluation of the correctess (zero-one theorem, AND/OR)
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pixelvalue approx_med9 (pixelvalue * p) 

{

pixelvalue s00=MIN(p[2],p[3]), s01=MAX(p[5],p[4]), s02=MAX(p[2],p[3]);

pixelvalue s03=MIN(p[4],p[5]), s04=MIN(p[0],p[1]), s05=MAX(p[7],p[6]);

pixelvalue s06=MIN(p[8],s05) , s07=MAX(p[0],p[1]), s08=MAX(s04,s00) ;

pixelvalue s09=MAX(s08,s03) , s10=MIN(p[6],p[7]), s12=MIN(s01,s07) ;

pixelvalue s13=MIN(s12,s02) , s14=MAX(s06,s09) , s15=MIN(s06,s09) ;

pixelvalue s16=MAX(s13,s15) , s17=MAX(s10,s16) , s18=MIN(s14,s17) ;

return s18;

} Approximate median – 18 operations



Approximate median filter
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Approximate median filter
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Approximate median filter
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Approximate circuit design by means of CGP

• Median network (consisting of up to N operations) is represented by 
means of an one-dimensional array of N nodes.

• Each node can act as:  identity (0), minimum (1), maximum (2)

• Each node can be connected to a node situated in the previous columns 
(no feedbacks are allowed).

• The configuration of nodes (the function and connection) is encoded 
using 3N + 1 integers.
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The fitness function

• The quality of approximation is measured as the sum of absolute 
differences between the output value of a candidate solution and 
reference

e𝑟𝑟𝑜𝑟 = 

𝑖∈𝑆

𝑂𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑖 − 𝑂𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑖)

• Scalability issue

• |S| could be reduced from 28
𝑛

to 2𝑛 using the zero-one principle.

• However, it would be impossible to reasonably quantify the error (It 
is not important, how many invalid responses are produced).

• Solution

• Use a randomly generated subset of S of a “reasonable” size
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Z. Vasicek and L. Sekanina. Evolutionary approach to approximate digital circuits design. IEEE trans. on Evolutionary
Computation, Vol. 19 ,  No. 3, 2015



Evolutionary design of approximate medians

• Resource-oriented design approach is employed.

• The evolutionary approximation exploits the idea that CGP is capable of 
minimizing the error even if the number of available functional nodes is not 
sufficient for obtaining a fully functional solution.

• Experimental setup: 

• (1+4)-ES, no crossover, 5 % of the chromosome mutated
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Median-9 Median-25

Inputs 9 25

Outputs 1 1

Generations 3 × 106 (3 hours) 3 × 105 (3 hours)

Training vectors 1 × 104 1 × 105

Reference solution 38 operations 220 operations

Number of nodes 6 – 34 operations 10 – 200 operations



Quality of the evolved approximations
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• The principle of construction of a median network guarantees that the 
output value is always one of the input values.

• Consequence: 

• If a sequence of 2𝑛 + 1 successive numbers R = −𝑛,… , 𝑛 is used 

as the input, the absolute value of the highest obtained number 
equals to the worst-case distance from (𝑛 + 1)th lowest element

median(2n+1) −𝑛,−𝑛 + 1,… , 0, . . , 𝑛 − 1, 𝑛 = 0

• Permutations of R can be used instead of all possible input 
combinations

• 9-median: 3.62 × 105 permutations (vs. 6.27 × 1021

combinations)

• 25-median: 1.25 × 1025 permutations (vs. 4.20 × 1060

combinations)



Quality of some evolved approximations
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Quality of some evolved approximations
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9-input median
fully-working: 38 operations

25-input median
fully-working: 220 operations

21% reduction

52% reduction

84% reduction

4.8%

95.2%

65.1%

24.6%

20.2%13.4%

1.2%

23.8% 19.4%
12.3%

5.5%
14.3%

27% reduction

54% reduction

81% reduction

94.4%

45.9%

19.0%



Evaluation of power consumption

Target platforms:

• Microchip PIC16F628 

• 8 bit microprocessor

• accumulator architecture

• Microchip PIC24F08

• 16 bit microprocessor

• register architecture

• ST STM32F100RB

• 32 bit microprocessor

• ARM Cortex M3 core

Power consumption measured on real chips.
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Execution time and power consumption  9-median
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Execution time and power consumption  9-median
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fully-working median

• Quick-sort based implementation is slower and consumes significantly more 
energy compared to the median network.

• Due to the limited resources, quick-sort can’t be even implemented on PIC16.



Execution time and power consumption  9-median
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• Quick-sort based implementation is slower and consumes significantly more 
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• Due to the limited resources, quick-sort can’t be even implemented on PIC16.

• 21% reduction in power consumption was achieved in the case of 30-ops 
median providing a negligible error
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34.9% error prob., 
max. error dist. 2

52% power reduction

• Quick-sort based implementation is slower and consumes significantly more 
energy compared to the median network.

• Due to the limited resources, quick-sort can’t be even implemented on PIC16.

• 21% reduction in power consumption was achieved in the case of 30-ops 
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Execution time and power consumption 25-median
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• 25-input median consisting of up to 220 operations offers a higher potential 
for power savings.

• There is nearly linear dependency between the number of operations and 
consumed energy (approx. 5 nW per operation for STM32).

• PIC24 requires five times more energy to accomplish the same operation.



Conclusions

• A new approach to the approximation of software routines for MCUs 
was presented.

• We confirmed that CGP is able to find a good trade off between error 
and code size even if the code size is intentionally constrained.

• A significant improvement in power consumption, code size and time of 
execution was achieved.

• A new method for analysis of quality of the proposed approximations 
was proposed.
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