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ABSTRACT
Genetic improvement (GI) has been successfully used to op-
timise non-functional properties of software, such as execu-
tion time, by automatically manipulating program’s source
code. Measurement of non-functional properties, however,
is a non-trivial task; energy consumption, for instance, is
highly dependant on the hardware used. Therefore, we pro-
pose the GI4GI framework (and two illustrative applica-
tions). GI4GI first applies GI to improve the fitness function
for the particular environment within which software is sub-
sequently optimised using traditional GI.
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1. GI4GI FOR ENERGY OPTIMISATION
Recent work on Search Based Software Engineering (SBSE)

has targeted energy optimisation; finding optimisations of
software systems to reduce energy consumed, while retaining
functionality [8, 9]. This work has used simulated anneal-
ing for tuning colour contrast parameters [8], and exhaus-
tive search for tuning design patterns that minimise energy
consumption [9], which might be thought of as a form of
‘exhaustive search genetic improvement’.

The factors affecting energy consumption are many and
varied, including screen behaviour, memory access, device
communications and, of course, CPU utilisation. Since CPU
utilisation is known to be correlated with energy consump-
tion for GI [1, 12], existing approaches to genetic improve-
ment that seek to reduce computational time [7, 11, 10, 13],
will tend to also reduce energy consumption due to CPU
utilisation.
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However, in many situations, CPU utilisation is not the
primary driver of energy consumption [8]. It is a challenge
to determine which of the many other factors affect energy
consumption, and their relative contribution. This is a chal-
lenge that could be addressed using genetic programming
(GP): find an ‘energy consumption equation’ the free vari-
ables of which are the parameters that determine the ways in
which devices, memory and screen are used. However, why
evolve such an equation from scratch? For any given de-
vice, there is likely to be a wealth of information that would
suggest candidate equations. Nevertheless, these candidates
would not necessarily be particularly accurate. For a given
device, application and user, they may need considerable
tuning in order to provide reliable energy consumption pre-
dictions. Improving a given candidate could be viewed as a
problem for genetic improvement.

Suppose we have used genetic improvement to find an im-
proved equation, f , from a candidate equation, such that f
predicts energy consumption in terms of a suitable space of
input parameters, ~x. We could use f as a fitness function to
guide a second genetic improvement that targets the code
itself, seeking to find an improved application that reduces
energy consumed for a given set of test cases that determine
the parameters, ~x. In this way we use genetic improvement
to find a fitness function to guide a subsequent genetic im-
provement that finds an energy efficient version of the given
program or application. This is what we mean by Genetic
Improvement for Genetic Improvement (GI4GI).
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Figure 1: Phase 1 of GI4GI framework. The evolved
fitness is used for genetic improvement of the tar-
get program (Phase 2). If fitness is evolved from
scratch, the process can be viewed as GP for GI.

The idea of adapting the fitness function of an evolution-
ary algorithm has been proposed previously [2]. The nov-
elty of our approach lies in using GI to achieve this task.
A hardware-dependent linear energy model for GI has also
been proposed [12]. However, the fitness function was not
evolved, but obtained empirically for each piece of hardware.



2. GI4GI FOR SOFTWARE ARCHITECTURE
OPTIMISATION

GI could also be applied to software architecture optimi-
sation, targeting objectives such as throughput maximisa-
tion, response time minimisation, and another system per-
formance characteristics which can be affected by architec-
tural and design choices. Previous work on SBSE has tar-
geted performance optimisation with considerable success
[6]. Reformulating architectural performance optimisation
as a GI problem may further increase the scope, and conse-
quently performance improvements. While traditional SBSE
approaches have the character of ‘architectural parameter
tuning’, GI offers the opportunity to transform the architec-
ture itself, not merely its parameters.

Computing fitness may require a simulation of the ar-
chitecture and platform on which the software will be de-
ployed. Such simulations can be computationally intensive.
For example, Monte Carlo simulation may model usage sce-
nario samples, but requires many individual simulation ex-
ecutions. It will be unrealistic to use such simulations as a
direct component of the fitness function, invoked every time
the fitness function is invoked.

Furthermore, one of the often claimed advantages of Search
Based Software Engineering (compared to general engineer-
ing optimisation) is the way SBSE cuts out potential inac-
curacies and miss-abstractions that occur through multiple
layers of modelling and simulation [4]. In order to realise
this SBSE advantage for software architecture optimisation,
we would need to implement and execute the software archi-
tectures as the input fitness computation, rather than using
simulations. However, this is unlikely to be computationally
feasible, since it would likely consume even greater resources
than any available simulation alternative.

GI4GI offers an alternative to using either simulation or
actual architectures as the input of fitness computation. We
propose a two phase process. In Phase 1, before starting any
genetic improvement for architecture optimisation, we can
first execute multiple instances of either simulation or actual
architecture, in order to precompute a fitness function. We
seek to find a formula for the fitness function that models the
non-functional properties of interest sufficiently faithfully to
be used in a subsequent guide to architectural performance
GI, which would be performed in Phase 2.

If we have no pre-existing candidate formula for the fit-
ness function, then Phase 1 is simply an application of GP.
However, it seems reasonable to assume that there may be a
candidate performance modelling equation that would form
an initial suggestion. Running real instances in order to
collect actual performance values could then be used to im-
prove this generic fitness formula in Phase 1, improving its
characterisation of the particular performance optimisation
challenge to be attacked in Phase 2.

The pre-computation of the fitness function equation in
Phase 1 does not avoid the problems associated with more
general engineering optimisation (with their layers of mod-
elling and simulation [4]). However, finding a good fitness
equation may have value in its own right: it may yield in-
sight into the performance drivers of the particular problem
in hand and their relationships. Such insight is also one of
the claimed advantages of SBSE [3], and GI could potentially
start with previously reverse-engineered results [5]. Finding
good fitness equation in Phase 1 may be just as valuable as

finding a good architectural improvement in Phase 2. The
architectural improvement achieved using GI with a fitness
function found using GI could be seen as a way of evaluating
the fitness function found in Phase 1, rather than the fitness
function evaluating the architecture found in Phase 2.
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