
Removing the Kitchen Sink from Software

Jason Landsborough Stephen Harding Sunny Fugate

SPAWAR Systems Center Pacific
San Diego, California, USA

ABSTRACT
We would all benefit if software were slimmer, thinner, and
generally only did what we needed and nothing more. To
this end, our research team has been exploring methods for
removing unused and undesirable features from compiled
programs. Our primary goal is to improve software security
by removing rarely used features in order to decrease a pro-
gram’s attack surface. We describe two different approaches
for“thinning”binary images of compiled programs. The first
approach removes specific program features using dynamic
tracing as a guide. This approach is safer than many alterna-
tives, but is limited to removing code which is reachable in a
trace when an undesirable feature is enabled. The second ap-
proach uses a genetic algorithm (GA) to mutate a program
until a suitable variant is found. Our GA-based approach
can potentially remove any code that is not strictly required
for proper execution, but may break program semantics in
unpredictable ways. We show results of these approaches on
a simple program and real-world software and explore some
of the implications for software security.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Tracing; H.4 [Information
Systems Applications]: Miscellaneous; I.2.2 [Artificial
Intelligence]: Automatic Programming—program modifi-
cation

Keywords
Feature removal, tracing, genetic algorithm

1. INTRODUCTION
Early in the history of software, programs were carefully

crafted to be as compact and efficient as possible. Space was
only available at a premium. Ready availability of “extra
features” has always been desirable, but constraints in early
software ecosystems made this impractical. Today, most
software is feature laden and built upon API stack upon

This paper is authored by an employee(s) of the United States Government and is in the
public domain. Non-exclusive copying or redistribution is allowed, provided that the
article citation is given and the authors and agency are clearly identified as its source.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain

ACM ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768424

API stack of prior effort, sometimes representing millions
of lines of code. Unfortunately, today’s software is often so
overladen with superfluous features and latent “functional-
ity”that even knowing what is included is a difficult question
to answer.

1.1 Why thin
There is both an aesthetic desire and a security argument

for whittling the required program to its bare minimum and
nothing more. If we were to have an option between software
which contained all possible features and“thinned”software,
there are many possible benefits. We might make the fol-
lowing suppositions:

Pros:

• Security: Thinned programs do not contain the vul-
nerabilities present in code which was removed.

• Size: Thinned programs might be smaller and have
performance gains over non-thinned code.

• Validity: Thinned programs are likely to be simpler
and easier to validate, requiring fewer test cases.

• Optimality: Thinned programs can be better opti-
mized for the specific machine, removing code for cross-
compatibility.

Cons:

• Security: Thinned programs might not contain various
security checks not normally raised in execution.

• Size: Thinned programs will fail or require additional
time to load removed code segments.

• Validity: Thinned programs might require the same
number of tests to validate that unwanted features are
indeed removed.

• Optimality: Thinned programs may not run at all on
other machines.

1.2 What to thin
We perceive two basic classes of program thinning: a)

removing undesirable features; and b) removing unused fea-
tures.

Removing undesirable features allows customization (via
removal) of both intended functionality and unintended de-
fects. By being focused on specific features, this approach
limits adverse effects of code removal such as the unintended
removal of security checks or error handling. This approach

is akin to a blacklist, where any feature on the blacklist is
removed.

Removing unused features allows for discovery of program
regions that are never executed. This can be thought of
as “cold code” (as opposed to unreachable or “dead code”).
Using this approach we can expect to remove large swaths
of the program, but risk removing functionality or features
related to security, safety, changing environments, config-
uration, or changing use-cases. This approach is akin to a
whitelist, where any code executed during tracing is allowed,
and all other code is potentially removed.

We might choose to thin a program for multifarious rea-
sons, optimizing for any combination of: program size, code
usage, feature desirability, vulnerability exposure, simplic-
ity, or performance.

If a particular instruction is executed during normal use
of a program, then we might first assume that these instruc-
tions were required. But a large portion of today’s pro-
grams are dedicated to making software work in multiple
environments. A significant portion of the program’s code
is dedicated to ensuring that regardless of which system call
variants are used, or which version of libraries are available,
that the program will still function as expected.

Similarly, programs with good exception handling will in-
clude a large quantity of code dedicated to handling er-
ror conditions and protecting against undefined behavior.
Ad hoc removal of this code would be problematic at best,
and catastrophic in some scenarios. When code is removed,
it shouldn’t be done arbitrarily and it should probably be
done with utmost care. Currently this means that auto-
mated code removal must employ sophisticated knowledge
of program semantics. An alternative approach could make
error handling independent of the main program regions,
ensuring that these regions could be ignored by automated
code removal algorithms. Error handling code could also be
marked or placed in reserved sections of the binary, making
automated removal of other code sections trivial. We con-
tend that for any particular computer system (to include
the hardware, operating system, and configuration), there
is a significant amount of redundant and unimportant code
which could be removed without effect.

The English language is robust to the removal of unim-
portant words in sentences. Very recently, others in the field
have begun exploring whether software shares a similar ro-
bustness [7, 5]. The robustness in human language appears
to be primarily due to redundancy. We think the reason
software is robust to code removal is due to safety. Software
applications often include a large quantity of code ensuring
safety and security properties which do not affect software
functionality.

1.3 When To Thin
Different portions of a program can be most safely dis-

carded at different times in the software life-cycle. The in-
formation available from source code is significantly different
than information available when one only has a static binary,
or when a binary resides on a target platform.

1.3.1 Source-code Thinning
Source-code thinning is, in essence, what any program-

mer might do when refactoring code to remove unused or
unwanted features. A common manual method for thinning
source code is to develop, maintain, and release from multi-

ple independent branches of source code, each customized to
specific use-cases. Source-based thinning is very similar to
compile-time thinning through the use of compile-time di-
rectives. Automated removal of source code is complicated
by the lack of information on how the software will be used
in-practice. For this reason, software tends to be heavily
laden with features that are used by only a subset of the
user community. Adaptive forms of source code thinning
are rarely used today, but could be easily employed by re-
moving unused sections of source code based on debugging
symbols and dynamic tracing. Other methods might use
knowledge of programming language semantics to replace
code sequences with more compact variants. These types of
transforms are similar to those performed during optimiza-
tion passes by the compiler.

1.3.2 Compile-time Thinning
Our work on feature removal is partially influenced by

the infamous HEARTBLEED vulnerability. This vulnera-
bility consisted of a logic error that leaked memory contents
of servers using OpenSSL with the Heartbeat option en-
abled. It turned out that this feature was easily removed
through the use of a compilation flag supplied during the
build process, which was a recommended quick fix. Other
forms of compile-time thinning occur when compiler direc-
tives (e.g. DEFINE and IFDEF) are used for “conditional
compilation”, selectively enabling or disabling features based
on developer decisions, architecture, or availability of various
libraries. This approach is commonly employed (and mostly
safely used) by the developers of a program to enable useful
variations in resulting binaries.

1.3.3 Binary Thinning
Customizing compile-time options for a program during

compilation helps for the cases when source code is available.
In many cases, particularly for those who use commercial
software, the source code for programs is often not available.
In these cases, modification through binary transformations
may be required.

We focus on one method of binary transformations: bi-
nary thinning. Rather than run the default distribution of
a program, we first perform dynamic analysis and then re-
move unwanted or unused features. This approach has been
explored in some detail by others. Notably, Sethumadhavan
et. al., Wagner et.al., and others have tested methods for
removing cold code, dubbed “cold code removal” or “Binary
Autotomy” [6, 8]

2. APPROACH

2.1 Manual Binary Thinning
First we examined the possibility of removing features

from a program binary through static analysis and manu-
ally changing the bytes in the binary. The test program
used was a small program written in C, that used a switch
statement to control which function was called. Since this is
an example that we want to keep simple and small, we omit
good programming practices such as sanitizing inputs and
bounds checking.

In our simple example, the feature that we want to re-
move from the compiled program in Figure 1 is contained
within function 3, which is just a printf call. Many different
approaches are possible, but here we only discuss two: func-

fun1(): print "This is function 1"
fun2(): print "This is function 2"
fun3(): print "This is function 3"
fundef(): print "Unsupported function"

main(arguments):
if(arguments): option = get_argument()
else: option = user_input("Enter option: ")

switch(option):
case 1: fun1(); break;
case 2: fun2(); break;
case 3: fun3(); break;
default: fundef(); break;

Figure 1: Simple Program Pseudocode

tion overwriting and function redirection. The first method
attempts to find the function (in machine code) which we
want to remove, and overwrites all bytes except for the re-
turn statement in that function with NOP (x90) instruc-
tions, which do nothing. In this way, the function call can
still be made but the function no longer performs the orig-
inal operation. One advantage of a NOP overwrite method
is that an exploit which relies on that function or a sub-
set of instructions (code re-use attacks) would no longer be
available for an attacker to use, providing some additional
immunity to potential attacks.

Another straightforward method which can be equally ef-
fective is function redirection. This can be accomplished by
modifying the operand of the call instruction to point to
another function. Either method is easy to implement for
trivial programs. The primary advantage of this approach
is that it could ultimately be used to redirect a function
call to some other function, such as one that notifies the
user that the feature has been removed. Both of these ap-
proaches require disassembling a binary and understanding
what feature needs to be removed, which gets increasingly
difficult with larger and more complex programs. The pro-
gram in Figure 1 is admittedly simplistic, but effectively
demonstrates the basic principle of code removal.

2.2 Trace-based Binary Thinning
Decreasing the time and knowledge requirements of man-

ual binary thinning requires some form of automated pro-
gram analysis. A trace utility (such as distorm[1]) allows one
to easily perform dynamic tracing of executed instructions,
learning both the instruction offsets of unused (or undesired)
features and instructions which need to be retained.

2.2.1 Prototype 1: Overwrite Unused
We created a prototype consisting of a set of scripts that

disassemble a program and recorded all executable offsets
and instructions to use as a baseline. The script then com-
pares the output of the execution traces and marks recorded
instructions as having been executed if they were executed
at least once during the trace. This gives us the knowledge
of which instructions were and were not executed, which we
refer to as unused instructions. We are then able to over-
write instructions that were not executed by replacing them
with no-operation instruction (NOPs).

Using this on our program from section 2.1, including
traces of execution which collectively included fun1(), fun2(),
and fundef(), we can easily remove the unused function fun3()

by automating the process of overwriting with NOPs. This
also removes instructions for the corresponding case in the
switch statement. The resulting program uses the default
case if someone attempts to use the removed feature. The
original program contained 183 non-NOP instructions, and
the thinned program using this method contained 133 non-
NOP instructions.

In many cases a naive NOP overwriting approach will re-
sult in serious problems when users attempt to use a removed
function, often resulting in a segmentation fault. Our sim-
ple program doesn’t have any dependencies between func-
tion calls, so allowing the program to progress to the default
function call has no deleterious effects. This naive approach
may also remove both error handling code and any unused
security checks.

One approach to making the approach more robust would
be to use an exhaustive set of test cases, covering all pos-
sible error conditions and program inputs. However, it is
often very difficult to guarantee that tests cover all possible
edge cases or cover instructions that are executed in specific
circumstances, such as during error conditions or those with
possible timing dependencies.

2.2.2 Prototype 2: Overwrite Unwanted
To mitigate these issues, we decided to extend this ap-

proach, but be more selective in the instructions removed.
This extended approach assumes the existence of a test case
for the feature to be removed. Again, we want to remove
the feature in fun3(). We now include a trace of execution
including fun3(), and compare this trace with all the traces
of functions we want to keep in order to find instructions
unique to the function we want to remove, which we refer to
as unwanted instructions. We tested this approach using the
same binary we used in the previous method, which started
with 183 non-NOP instructions, and the thinned program
using this method, which contained 174 non-NOP instruc-
tions, with the same functionality we saw in section 2.2.1.

2.2.3 Echo Trace-thinned
We attempted this approach on a common program used

by nearly every Linux user: echo. We selected an arbitrary
feature to remove based on a cursory glance at the manpage.
The -n option prevents echo from printing the trailing new-
line character, which it will print by default. We traced the
execution of echo with a few options we wanted to keep,
and traced the option we wanted to remove. Again, we took
the difference of the traces with desired and unwanted fea-
tures using the prototype script to overwrite these instruc-
tions unique to the unwanted feature. The original 32-bit
echo binary contained 2960 non-NOP instructions, and the
thinned binary contained 2958 non-NOP instructions. The
instructions removed were a compare and a jump. As ex-
pected, attempting to use the program with the removed
feature results in a segmentation fault. If the goal is just to
remove a feature which will not be used, this result may be
sufficient. In other instances, more robust approaches may
be desired which guarantee program validity, performance,
and security.

PROG_SIZE = length(program_variant)
PROG_NOPS = count_nops(program_variant)
FN = PROG_SIZE - PROG_NOPS
FITNESS = FN + RETVAL * 5

Figure 2: Fitness Calculation Pseudocode

2.3 Genetic Programming-based Thinning
Our next approach uses a genetic algorithm (GA) to mod-

ify a binary program in order to remove an undesired feature.
Researchers have used genetic algorithms to modify pro-
grams in order to perform automatic program repair [2, 3]
and optimization [4]. We extend this approach to automated
feature removal (thinning) using the“Software Evolution” li-
brary used in [4]. The algorithm modifies programs through
crossover, using tournament selection, and three available
mutation operations on existing instructions: copy, delete,
and swap. Genes are represented as the instructions within
the binary. Crossover is two-point, where two offsets are se-
lected such that the smaller program contains instructions
at both offsets. The result of crossover contains the program
from the start of the first program to the first offset, then
the second program to the second offset, and then the rest
of the first program. Our goal is to use the algorithm to
mutate program binaries and reduce the number of instruc-
tions, either through removal of unnecessary instructions or
transforming larger sets of instructions into fewer equivalent
instructions.

The genetic programming process can terminate on either
of two conditions: 1) the candidate solution has reached
the desired fitness; 2) the number of evaluations has been
reached or exceeded. We selected the second condition as
our terminating condition. We also limit the population
size to a maximum of of 512. To ensure we had sufficient
resources for the genetic algorithm we used a 64-bit machine
with 128 CPUs and 512 GB of RAM.

2.3.1 Fitness
Program variants’ fitness is determined by a fitness script

customized for the program to be thinned. This script con-
sists of numerous test cases for features we want the program
to retain, while the feature to be removed is simply excluded
from these test cases. These test cases depend on compar-
ing the output of the variant with what is expected. If a
given variant in the population does not pass these tests,
it is given a poor fitness value, which in this case is a very
large value because we consider variants with lower fitness
values to be better.

If all test cases pass, then, as shown in figure 2, we cal-
culate a fitness value based on our goal. To prevent the
file size from increasing, while also maximizing the number
of removed instructions, our calculation is: file size - num-
ber of NOP instructions. Additionally, some solutions may
still pass the test cases but return with a different value or
produce abnormal behavior, such as executing normally but
also resulting in a segmentation fault. To handle these cases,
we adjust the previous calculation by multiplying the return
value by 5, an arbitrary number we selected, and adding that
to the initial fitness calculation. This allows candidate bi-
naries in the population to remain competitive, but with a
penalty.

2.3.2 Simple program - GA Thinned
Initially, we tested this approach on our simple program

from section 2.1. Again, we retain the same goal of removing
the functionality of fun3(). To accomplish this, we created
a fitness script containing test cases, a total of 3, for the
features we wanted to retain, where we check the program
output against what we expect. If these test cases pass,
we use the same fitness calculation shown in figure 2. The
program started with a fitness of 7,433 with 180 non-NOP
instructions. Here we examine the thinning results of the
program after 300,000 evaluations. After the thinning pro-
cess, the thinned binary had a fitness of 6,927 with 49 non-
NOP instructions. All features we wanted still remained,
and the removed feature resulted in “unsupported function”
being displayed.

2.3.3 echo - GA Thinned
As with the trace-based thinning approach in section 2.2.3,

we next attempted to thin echo by removing the -n option.
We chose this program as a natural progression in complex-
ity from our simple program. This time we started with the
echo version available on our 64-bit machine. Since echo has
more command line options than our simple program we de-
cided to automate the test case generation. Within our fit-
ness script, we randomly generated command line arguments
for echo that randomly selected zero or more command line
options, and randomly generated a string. We removed any
bash-specific special characters, such as the semicolon, and
generated a new test case for any that contain the option we
are trying to remove: -n. To ensure good coverage in test
cases for each fitness evaluation, we randomly generate 1000
of these test cases every time the script is run (each fitness
evaluation).

Before thinning, echo had 2,609 non-NOP instructions.
Using the same fitness calculation discussed earlier, echo

started with a fitness of 28,056. After 300,000 fitness evalu-
ations by the GA, the resulting thinned echo had 2,173 non-
NOP instructions and a fitness of 25,714. This new version
of echo supports all the features we wanted, and instead of a
segmentation fault, which we expected, echo ignores the -n

option and prints the rest of the parameters as it normally
would, including the trailing newline. This result is better
than what we achieved with trace-based thinning on echo.

2.3.4 sha1sum - GA Thinned
Next we wanted to try this approach on a more complex

program. For this we chose sha1sum, which uses a sophisti-
cated cryptographic algorithm, and chose the version avail-
able on our 64-bit machine. In this case we chose to only
keep the sha1 checksums on individual files and standard in-
put as our desired features. While we only have two features
we care about, we went with a randomized approach again.
The first set of test cases consists of a random string piped
to sha1sum as standard input, repeated with a different ran-
dom string 50 times. The next set of test cases consisted of
running sha1sum on a random file containing random bytes,
repeated with a different random file 50 times.

Before thinning, sha1sum had 5,049 non-NOP instruc-
tions. Using the same fitness calculation used with other
thinning runs, sha1sum started with a fitness of 39,790. Af-
ter 300,000 fitness evaluations by the GA, the resulting thinned
sha1sum has 4,764 non-NOP instructions and a fitness of

Figure 3: SimpleProg Fitness Plot

Figure 4: Echo Fitness Plot

37,787. The new version retains support for the two fea-
tures we wanted.

2.3.5 How Low Can We Go?
We arbitrarily selected 300,000 evaluations for thinning

our selected programs in the sections above. Here we explore
the fitness of thinned programs evolved for a much longer
period of time. There will eventually reach a point when
no more instructions can be removed from the binary and
have it still pass our test cases. What we did not know is
whether this occurs abruptly or gradually by approaching
some asymptote.

The simple program started out with the fewest instruc-
tions, and as a result we expect it to reach its limit the
quickest. As seen in figure 3, the fitness roughly follows an
exponential decay curve and has leveled off around 125,000
fitness evaluations.

As of this writing, the thinning of echo is still running
and has not quite reached 2 million fitness evaluations. Us-
ing the results we already have, as shown by the solid line
in figure 4, we can see that the fitness is not decreasing
linearly anymore. If we fit a curve to the data we already
have and keep plotting, we get the estimate curve as shown
by the dashed line. Here we can see that echo may level
off somewhere after 7 million fitness evaluations (3 million
evaluations after our hard-coded limit of 4 million) with a
fitness around 15,000.

2.3.6 Minimized Changes
Removing as many instructions as we can is arguably

risky. The instructions that remain are entirely dependent
on the robustness of the test cases used in the fitness script.
If the test cases don’t cover some edge case or error case,
the instructions that handle these cases will eventually be
removed. If it is only desired to remove the target feature
and nothing else, there are some additional methods that
can be used.

The first is the simplest case. If the target feature can be
identified, it can be used to trigger the fitness termination
condition of the GA. If we set the GA to terminate when
a fitness of zero has been reached, we can then modify our
fitness script to return zero when we identify that the feature
has been removed. When we tried this approach with echo

to remove the -n option, the GA has produced a binary with
the feature removed in as few as 706 fitness evaluations. This
resulting binary contained 2,607 non-NOP instructions, two
fewer instructions than when we started.

Additionally, we can reverse changes to the binary using
delta-debugging [9], to get the minimal set of changes neces-
sary to remove the feature. If we supply the delta-debugging
tool with the original binary, the thinned binary, a target fit-
ness (zero in this case, where the feature has been removed),
and the fitness script, it will undo changes to the binary in-
structions. The resulting binary will contain the minimum
number of changed instructions, without the -n option in
our case. After this process the resulting binary contained
2,608 non-NOP instructions, one fewer instruction than the
original echo.

2.3.7 Current Issues and Limitations
Machine-Dependent: We have observed that given enough

time spent thinning, the GA will strip out extra code that
will allow the elf binary to run on many Linux systems, and
therefore become machine-dependent. There may be cases
where this is a desired result. In cases where this is not,
it may be necessary to consider this when constructing test
cases, or penalize variants that remove such code.

No GUIs: Our approach and fitness script does not cur-
rently support GUI-only based programs, as we are com-
paring standard output for the test cases. Additionally, it
may be difficult to run multiple large GUI-based programs
in parallel, and some may specifically prevent it.

Large Programs: Using a GA with significantly larger
programs may suffer a proportional increase in the number
of evaluations needed to obtain desired fitness. We believe
this is unlikely for common applications as these programs
also contain a proportionally larger number of undesirable or
unnecessary features. The fitness goal may also be designed
to remove only a fixed number of instructions.

Test-Suite Dependence: Our approach is entirely de-
pendent on the quality of the test-suite used to verify a pro-
gram’s correctness, performance, and security. For many
programs, test suites only test a small portion of the un-
derlying code. When code-coverage is poor, these untested
features are likely to be removed. The consequences may
be programs which are robust only when run with identical
data inputs, configuration, environment, and user interac-
tions. We believe this limitation suggests that programs
should have broader-scoped and more complete test suites.

Time: While the fitness evaluations can be highly par-
allelized, because the transformations are random and fre-
quently lead to failures, GA-based thinning can take a lot
of time.

3. FUTURE WORK
Binary Diversity: In addition to any additional security

we might get through a reduction in attack surface, we sus-
pect that there may be additional benefits using the GA ap-
proach with binary diversity when instructions are swapped
or sets of instructions are reduced to a smaller set. Also, if
we examine the types of valid instruction transformations,
we may be able to discover useful binary transformations
that can be used independently of the GA approach, such
as after trace-based thinning.

Performance: There may be utility in factoring in per-
formance with the fitness value. We suspect this could bias
solutions where executed instructions are grouped in lower
memory addresses, whereas removed instructions replaced
with NOPs are pushed to higher memory addresses and may
not be executed at all if placed after a return or jump. Sim-
ilar work has been done for energy usage by Shulte, et. al.
[4].

Failing Gracefully: In most cases, when the removed
feature is used, it results in a segmentation fault. It would
be desirable to either exit without errors, or redirect to some
other code such as a message that notifies the user that the
feature is unknown or has been removed.

Simplifying Reverse Engineering: We suspect the
GA-approach could be used to help simplify reverse engi-
neering. For example, by mutating a piece of software such
as malware, we may be able to unpack that malware, or re-
move any anti-reverse engineering mechanisms. This, how-
ever, assumes a sophisticated set of tests can be generated
for the malware ahead of time.

4. CONCLUSION
We have described two different approaches for feature

removal in program binaries. The first approach uses a trace
of program execution as a guide, which was further refined
by explicitly removing unique instructions found in a trace
of the program using the feature to remove. The second
uses a genetic algorithm to mutate a program, eventually
removing the undesired feature. The changes made by the
genetic algorithm are random and likely risky, but can be
reduced by undoing changes to the minimal set needed to
remove the feature. We showed that instructions can be
removed post-compilation in binaries to remove unwanted
features, while maintaining the functionality of features we
want to retain. In both cases, if an exploit required the
existence of the removed feature, it would not likely work.
These approaches are promising, and if they continue to
improve, one day we may have the software we want, rather
than the software we get.

5. ACKNOWLEDGEMENTS
The authors are grateful to Jeff Knockel and Antonio Es-

pinoza at the University of New Mexico for supplying us with
the trace tool we used in the trace-based thinning approach.
We would also like to thank Mark Bilinski, Daniel Gebhardt,
and Geancarlo Palavicini for reviewing this paper.

6. REFERENCES
[1] G. Dabah. distorm - powerful disassembler library for

x86/amd64. URL:
https://code.google.com/p/distorm/, January 2015.

[2] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer.
Genprog: A generic method for automatic software
repair. IEEE Trans. Softw. Eng., 38(1):54–72, Jan.
2012.

[3] E. Schulte, J. DiLorenzo, W. Weimer, and S. Forrest.
Automated repair of binary and assembly programs for
cooperating embedded devices. In Proceedings of the
Eighteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’13, pages 317–328, New York, NY,
USA, 2013. ACM.

[4] E. Schulte, J. Dorn, S. Harding, S. Forrest, and
W. Weimer. Post-compiler software optimization for
reducing energy. SIGARCH Comput. Archit. News,
42(1):639–652, Feb. 2014.

[5] E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and
S. Forrest. Software mutational robustness. Genetic
Programming and Evolvable Machines, 15(3):281–312,
Sept. 2014.

[6] S. Sethumadhavan, S. J. Stolfo, A. Keromytis, J. Yang,
and D. August. The sparchs project: Hardware support
for software security. In Proceedings of the 2011 First
SysSec Workshop, SYSSEC ’11, pages 119–122,
Washington, DC, USA, 2011. IEEE Computer Society.

[7] M. Velez, D. Qiu, Y. Zhou, E. T. Barr, and Z. Su. A
study of ”wheat” and ”chaff” in source code. CoRR,
abs/1502.01410, 2015.

[8] G. Wagner, A. Gal, and M. Franz. “Slimming” a Java
virtual machine by way of cold code removal and
optimistic partial program loading. Science of
Computer Programming, 76(11):1037–1053, Nov. 2011.

[9] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. IEEE Trans. Softw. Eng.,
28(2):183–200, Feb. 2002.

