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Abstract—As the programming stack and tool support for GPU
have matured, GPUs have become accessible to programmers
who often lack domain-specific knowledge of the underlying
architecture and fail to fully leverage the GPU’s computation
power. This paper presents GEVO (Gpu EVOlution), a tool
for automatically tuning the performance of GPU kernels in
the LLVM representation to meet desired criteria. GEVO uses
population-based search to find edits to programs compiled to
LLVM-IR that improve performance on desired criteria and
retain required functionality. GEVO extends earlier GI work by
operating directly on the LLVM-IR without custom representa-
tions or other manual interventions. We demonstrate that GEVO
improves runtime on NVIDIA Tesla P100 for many programs
in the Rodinia benchmark suite and a supervised machine
learning code, ThunderSVM. For the Rodinia benchmark, GEVO
improves GPU kernel runtime performance by an average of
13.87% and as much as 43% over the fully compiler-optimized
baseline. If the kernel output accuracy is relaxed to tolerate
1% error, GEVO can find kernel variants that outperform the
baseline version by an average of 15.47%. For ThunderSVM,
GEVO reduces entire model training time by 50% and 24.8%,
for MNIST handwriting recognition dataset and a9a income
prediction, where the accuracy of trained model are improved
by 0.17% and 0.04% respectively.

Index Terms—Genetic Improvement; Multi-objective Evolu-
tionary Computation; GPU code optimization; LLVM Interme-
diate Representation;

I. INTRODUCTION

The fields of big data analytics, large-scale machine learning

and scientific algorithms are expanding quickly and are one of

the biggest drivers of high-performance computing. Continued

advances in these fields will not be possible without orders-

of-magnitude improvements in performance of computing

systems. GPUs help address this challenge and have become

de-facto co-processors for accelerating the performance of

general-purpose, large-scale parallel workloads. However, the

maturation of the GPU programming interface has made GPUs

accessible to programmers who may lack knowledge of GPU

architecture, and it is challenging to further optimize and

fine-tune the performance of general purpose GPU programs

without platform- and domain-specific knowledge. For example,

programmers may be excessively cautious in their use of

synchronization, which inhibits potential speedups.

There are many post-compilation optimization methods

already in use, including peephole, link-time, and profile-

guided optimization, but additional efficiencies can be found by

tailoring the binary to particular classes of inputs or particular

architectures. For example, STOKE is a stochastic program

synthesizer that uses random search to explore the high-

dimensional space of possible program transformations and is

an example of this performance tuning approach [1]. STOKE

uses Markov Chain Monte Carlo (MCMC) sampling to search

for codes that run faster but does not naturally scale up to

large code sizes, which is why we favor genetic improvement

(GI) approach However, there have been few attempts to apply

stochastic methods to the LLVM-IR, in part because the IR has

many data dependencies and requires careful implementation

of code modification operations.

We propose a post-compilation performance tuning approach,

called GPU EVOlution or GEVO, for discovering optimized

GPGPU kernel implementations using Genetic Programming

(GP). GEVO encodes desired optimization objectives as the

fitness function and implements a set of mutation and re-

combination operators for GPU kernel transformations that

can be applied to the LLVM-IR. We demonstrate GEVO

first on the single-objective problem of reducing GPGPU

kernel execution time (GEVO-default). Second, we show how

GEVO can simultaneously tune code to meet two independent

objectives, such as performance and accuracy (GEVO-mO).

To assess the general applicability of GEVO, we evaluate

on NVIDIA Tesla P100 with the Rodinia benchmark suite.

GEVO-default improves GPU kernel runtime performance by

an average of 13.87% and by as much as 43% over the fully-

compiler optimized baseline. If the output accuracy is relaxed

to tolerate 1% error, GEVO-mO can find kernel variants that

outperform the baseline version by an average of 15.47%.

We also evaluate GEVO on a supervised machine learning

code for handwriting recognition (the MNIST data [2]) and for

income prediction (a9a dataset [3]). We evaluate GEVO-mO

by encoding both machine learning model training time and

inference prediction accuracy into the fitness function. GEVO-

mO improves the overall model training speed for handwriting

recognition and income prediction datasets by 50% and 24.8%

respectively, with improved accuracies of 0.17% and 0.04%,

reflecting absolute improvements in both dimensions.

Our key contributions are:

• We present GEVO, a tool for automatically tuning the

performance of CUDA GPU kernels represented in LLVM

intermediate representation (LLVM-IR) to meet multiple

criteria. Our infrastructure scales to arbitrarily large

program sizes. We demonstrate GEVO on the single

objective of run-time optimization and on the multi-

objective optimization criteria of runtime and accuracy.



• For the machine learning kernel, thunderSVM on the

MNIST dataset, GEVO finds an astonishing 3.24X

speedup of the training kernel with improved inference

prediction accuracy. This translates to 50% training time

reduction with 0.17% improvement on the prediction accu-

racy, reflecting absolute improvements in both dimensions.

• Our analysis of GEVO optimizations discusses both

architectural- and domain-specific improvements. We

provide explanations for several performance optimization

features discovered by GEVO, such as eliminating con-

servative synchronization primitives, removing redundant

store instructions, reducing conditional executions, loop

perforation, and memoization (Section V-A and V-B).

II. RELATED WORK

Genetic Programming (GP) methods have been used to

improve computer programs, e.g., to automatically repair

bugs in legacy software [4]–[8]. Transitions to industrial

practice include Facebook’s SapFix tool [9] and the Janus

Manager deployment [10]. Although most work has been

conducted at the source-code level using abstract syntax trees,

similar methods have been applied to assembly programs [11]

and object code [12]. Subsequent analysis showed that the

applied mutations often have no observable effect on program

behavior [13]–[17]. These neutral mutations occur frequently

(20−40% of the time), even when the mutations are restricted to

sections of code covered by the tests. Although it is surprising

that the rate of neutral mutations is so high, equivalent

mutations are well-known in mutation testing, e.g., [18]. These

results suggested the possibility of using GP to optimize non-

functional properties of software by finding modifications that

are neutral with respect to the test suite but improve the non-

functional property in question.

White et al. proposed the idea of using GP to improve

program performance [19], and Schulte et al. achieved energy

reductions for several Parsec benchmarks [20]. Bruce et al. also

applied the similar technique for MiniSAT to reduce energy

consumption [15]. There are other works [21], [22] to constraint

the GP’s search space on improving energy consumption of

Java programs by asking users to provide the predefined

locations or equivalent function or class implementations.

These and several subsequent works [23], [24] demonstrate

the potential for stochastic search such as GP to improve a

program’s performance or energy efficiency through machine-

or architecture-specific optimizations. However, these methods

are not yet mature or carefully analyzed; they typically target

the CPU; and their general applicability is not well understood.

There is some previous work on GPU kernels, including

a graphics shader program [25]. This work began with a

basic lighting algorithm and used GP to gradually modify

the shader program into a form that resembles an advanced

algorithm proposed by domain specific experts. In the GPGPU

domain, Langdon et al. used GP to reduce runtime on a CUDA

program, reporting results on the program gzip [26] and an

RNA analysis program [27]. This prior work targets a single

program operating in a specific domain, and the methodology
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Fig. 1: GEVO in the LLVM/Clang compilation flow.

used in [26]–[29] represents the program object as a custom-

designed, line-based Backus Normal Form (BNF) grammar. We

seek a method that is generalizable across multiple programs

with minimal manual intervention and uses modern tooling,

which is Clang/LLVM.
Clang/LLVM is a widely-used, multi-language, and highly

modular compiler infrastructure. Schulte’s is the only work we

are aware of that has experimented with evolving the LLVM

intermediate representation (LLVM-IR) [30], but this was a

preliminary proof-of-concept rather than a robust implemen-

tation, and no significant experiments were conducted. Now

that Clang/LLVM supports CUDA compilation, it is feasible

to compile GPU kernels into LLVM-IR, but this has only been

available since 2016 [31]. Thus, we adopt the Clang/LLVM

infrastructure for GEVO including the LLVM-IR, as shown

in Figure 1. This avoids developing novel parsing and syntax

manipulating infrastructure, but it introduces new challenges for

implementing the basic mutation and recombination operations.
Early work on superoptimization dates back to Massalin’s

superoptimizer [32] in 1987, which exhaustively searched a

subset of the Motorola 68020 assembly instruction set, and

synthesized the shortest instruction sequence, for a target

function. More recently, Schkufza et al. extended this work by

proposing STOKE [1], [33]–[35] using Markov Chain Monte

Carlo (MCMC) to focus the search effort on a hot area of

the program, so the unrealistically large search space can

be reduced for practical applications. STOKE has the same

overarching goal as our work, searching for program optimiza-

tions without forcibly preserving program semantics. However,

STOKE focuses on synthesizing instruction sequences from

scratch using the entire instruction set, while we modify existing

programs using existing instructions and scale to program sizes

at a similar order. Thus, regardless of the language targets

and system platforms, the test programs in STOKE are in the

range of a dozen up to a few hundred instructions, while our

approach has been tested on programs consisting of thousands

of LLVM-IR instructions.

III. THE PROPOSED DESIGN: GEVO

We propose GEVO—a tool for automatically improving

kernel implementations for GPUs. GEVO takes as input a

GPGPU program, user-defined test cases that specify required

functionality, and a fitness function to be optimized. GEVO

attempts to maximize the fitness function by evolving and



Algorithm 1 The main loop of GEVO.

Parameter: PopSize, CrossRate, MutateRate

Input: GPU kernel Program, P

1: pop← Initialize(PopSize, P)

2: for all individual in pop do

3: Mutate(individual)*3

4: rank← NonDominatedSort(pop)

5: while not interrupt do

6: offspring← SelTournament(pop, rank, PopSize)

7: elites← SelBest(pop, rank, PopSize /4)

8:

9: for every 2 individual (ind1, ind2) in offspring do

10: if random() < CrossRate then

11: Crossover(ind1, ind2)

12: for all individual in offspring do

13: if random() < MutateRate then

14: Mutate(individual)

15:

16: rank← NonDominatedSort(elites + offspring)

17: pop← SelBest(elites + offspring, rank, PopSize)

evaluating mutated kernel variants in an iterative population-

based search. Figure 1 presents GEVO in the context of the

LLVM/Clang compilation flow. Kernels in a GPGPU program

that will run on GPU are first separated and compiled into

LLVM intermediate representation (LLVM-IR) with the clang

compiler. GEVO then takes kernels in LLVM-IR format as

inputs, modifies them to produce different kernel variants, and

translates the variants into PTX files. The host code running

on CPU is modified to load the generated PTX file into the

GPU. GEVO then evaluates how the kernel variant performs

as defined by the fitness function.

As shown in Algorithm 1, the search begins with an initial

population of PopSize individuals (LLVM-IR kernel variants)

that is formed by taking the original program, making PopSize

copies and applying three random mutations to each (Line

3), giving the initial population some diversity. GEVO then

forms the next generation of individuals by ranking individuals

according to the objectives, recombining instructions between

kernel variants (Crossover), and randomly adding, deleting or

moving instructions in each variant (Mutation). Finally, GEVO

forms the next generation by comparing the new variants to a

set of elites retained from the previous generation (Selection),

eliminating low-fitness individuals and retaining those with

higher fitness for the next generation. The next few subsections

give details of how we implemented these operations for

GPGPU optimization.

A. Individual Representation

GI methods typically use either a program-based (each

variant consists of the entire program) or a patch-based

(each variant is a list of mutations applied to the original

program) representation. For large programs, the patch-based

representation is convenient because it is more space efficient.

GEVO uses both representations. That is, each individual kernel
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Fig. 2: Non-dominated sorting with a crowding method to

enforce diversity.

variant consists of the LLVM-IR code and a set of the mutations

that produced it from the original.

This design decision relates to the LLVM-IR. Because of the

repair process that is required after most mutations, it would be

expensive to reapply all the mutations for a variant each time

it is evaluated. Similarly, crossover exchanges subsections of

the kernel code. Doing this naively can break a large number

of data dependencies, so it is more efficient to implement

crossover using the patch representation. Because the number

of mutations applied to any kernel variant tends to be relatively

low, and because kernels are relatively small-sized programs,

the cost of storing both representations is reasonable.

B. Fitness Evaluation

Although GEVO can optimize any desired fitness function,

we focus first on the problem of reducing kernel execution

time (GEVO-default). In this case, the fitness function is

simply the runtime of the kernel variant. When we consider

the tradeoff between execution time and output accuracy

(GEVO-approximate), the fitness function is multi-objective,

i.e., argmin(time, error).
Using the fitness criteria, as above, each kernel variant is

evaluated by running it against all available test cases. To test

for overfitting, we also evaluate at the end of the search against

a set of held-out test cases, generated randomly. The fitness

value is reported as a vector corresponding to the number of

objectives. Each element in the vector is a single scalar value,

i.e., the mean performance on that objective across the test

cases (see Section IV-C).

C. Selection

GEVO uses the Non-dominated Sorting Genetic Algorithm

(NSGA-II) [36] to select individuals according to multi-

objective fitness criteria. Figure 2 illustrates a set of kernel

variants, plotted according to two dimensions of the fitness

function, say error and run-time, where the goal is to minimize

both objectives, retaining individuals that represent the best

tradeoffs between the two objectives (shown in blue in the

Figure). NSGA-II uses Pareto dominance, where individual i

is said to dominate individual j if i is better than j on at least

one objective and no worse on the others.

NSGA-II calculates the Pareto fronts, and ranks individuals

according to which front they belong. Then a crowding factor

is calculated for each individual based on the density of



Function(int %0)

%1 = load int, %0

%4i = mul float, %3, 1.0

%2 = add int, %1, %1

%3 = conv float int %2

%4 = mul float, %3, 1.0

Function(int %0)

%1 = load int, %0

%4i = mul float, 1.0, 1.0

%2 = add int, %1, %1

%3 = conv float int, %2

%4 = mul float, %4i, 1.0

Copy Rebuild

Fig. 3: Mutate-Copy: Operand dependency is rebuilt to preserve

the LLVM-IR program validity. Since LLVM-IR is strongly

typed, the constant value 1.0 is used if no other value in the

requested type is available.

other individuals in its Pareto front, and these two values

are combined to produce a single fitness value for each kernel

variant. See [36] for details. Finally, NSGA-II uses tournament

selection based on this single fitness value for selecting kernel

variants for the next generation (Line 6 of Algorithm 1).
GEVO uses elitism, retaining the top quarter of the popula-

tion in the next population generation (Lines 7, 16, and 17 of

Algorithm 1).

D. Mutation Operators

Mutation modifies the linear array of instructions stored for

each variant using one of the following operations:

• Mutate-Copy: Duplicate an instruction and insert it in

another location.

• Mutate-Delete: Remove an instruction.

• Mutate-Move: Move an instruction to a different location.

• Mutate-Replace: Replace an instruction with another

instruction. This can occur either at the instruction or

the operand level. In the second case, a single operand is

replaced with another operand.

• Mutate-Swap: Swap the location of two instructions.

Since the LLVM-IR is based on Static Single Assignment

(SSA) where each variable (like %0, %1 in Figure 3) can

be only assigned once at creation, our mutations are likely to

create invalid programs by breaking the SSA constraint. Thus,

we introduce an extra repair step. As shown in Figure 3, the

instruction mul is copied, and we see that the first operand

relies on %3 which is invalid in the new location. GEVO repairs

it with the constant 1.0 as the two existing values (%0, %1)

are not of the proper type.
The operators Mutate-Copy and Mutate-Move insert new

instructions, which has no effect unless a subsequent instruction

can use the result of the inserted instruction. Figure 3 illustrates

how GEVO enforces this by changing the first operand of

the fifth instruction to use the value from second instruction.

This instruction was selected because its types agree with the

mutated instruction.
As depicted in Line 14 of Algorithm 1, when mutation

is called, one of the aforementioned mutation operations is

selected randomly (with equal probability) and applied as an

edit to generate a new kernel variant. Since GEVO does not

use domain-specific knowledge to select a mutation or rely

on program semantics, we immediately evaluate the individual
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Fig. 4: One-point messy crossover.

to weed out invalid modifications (sanity check). Mutation is

iteratively applied to the same individual until a valid kernel

variant is identified. Depending on the kernels, the acceptance

rate of any single mutation is typically 5% - 30%.

E. Crossover

GEVO uses the patch-based representation for crossover,

because combining two random program slices would require

more extensive repair. GEVO implements one-point messy

crossover, which combines shuffle [37] and variable-length [38]

crossover operations. Figure 4 illustrates the process. Beginning

with a list of mutations (edits) associated with each individual,

GEVO combines them into a single sequence, shuffles the

sequence, and randomly separates it back into two distinct

patch sequences. Finally, GEVO reapplies each patch sequence

to the original GPU kernel and generates two new individuals.

This form of crossover was selected because it generates a

wide diversity of recombinations.

Similar to mutation, after crossover, each new individual

is evaluated to test if the combinations are valid. Otherwise,

GEVO repeats the process until it finds a successful recom-

bination. the acceptance rate of crossover is as high as 80%

because each individual mutation has already been validated.

IV. EXPERIMENTAL SETUP

This section describes our experimental setup for the

empirical evaluation on real GPUs.

A. Infrastructure and Configurations

We developed GEVO on top of an existing python framework

for evolutionary algorithms, called DEAP [39], by imple-

menting the genetic operators described in Section III 1. We

instrument the LLVM compiler (LLVM 8.0) to implement

the mutation operations in C++ as a LLVM pass. For each

optimization, GEVO was given a 48-hour budget. We evaluate

GEVO using NVIDIA Tesla p100 GPUs, under CUDA 9.2

and NVIDIA GPU driver 410. The Nvidia profiler (nvprof)

was used to collect kernel execution time, which became the

runtime metric used by the fitness function. In our experiments

nvprof introduces no overhead to kernel execution time, and

the measurement varies less than 1%.

All GEVO experiments were conducted with population size

of 256, crossover rate of 80% (i.e., 80% of individuals in

1Code is available at https://github.com/lioujheyu/cuda_evolve



TABLE I: Benchmarks used for evaluation.

GPU Kernel
Application Abbr. Line of LLVM-IR

Breadth first Search bfs 72
B+Tree b+t 168
CFD Euler3D cfd 1079
Gaussian Elimination gau 186
Heart Wall hw 3806
Hotspot hot 189
LU decomposition lud 2491
Nearest Neighbor nn 32
Needleman-Wunsch nw 715
Particlefilter pf 1442
Pathfinder path 109
SRAD_v2 sv2 446
Stream Cluster sc 231
Handwriting recognition mnist 256
(C=5, g=0.05)
Income prediction a9a 256
(C=32, g=0.0078125)

population are selected for crossover), and a mutation rate of

30% (i.e., every individual has 30% chance to get one mutation).

The 48-hour budget for each GEVO run translates into a

variable number of generations, depending on the program, the

test cases, and the success rate of the mutation operation. For

our experiments, the number of generations ranged from a low

of 20 to over 100. For example, for the NN benchmark, GEVO

spent the majority of its time searching for valid mutations

and was able to complete only 20 generations within 48 hours.

B. Benchmarks

To assess the general applicability of GEVO, we first

evaluate GEVO with the Rodinia benchmark suite [40]. Rodinia

covers a wide range of general-purpose deterministic workloads

for heterogeneous computing, representing diverse parallel

communication patterns, synchronization techniques and power

consumption. Table I summarizes the Rodinia applications.

We validate of optimized kernel variants using the default

inputs provided with the Rodinia benchmarks. For each

benchmark, we then generate additional tests by randomly

generating three sets of input values using Rodinia built-in

input generator. Depend on benchmark, each input set contains

from tens of thousands to millions of input values. Each test

is running under the original, unmodified kernel and using

its output as an oracle to validate the output of the candidate

kernel variants. GEVO rejects variants that fail to produce

outputs that are identical to the oracle (GEVO-default) or that

exceed the 1% error tolerance (GEVO-mO). After evolution,

we validate the best kernel variant found by GEVO with an

unused test having input data generated through the above

process, to make sure the GEVO does not overfit the kernel to

the existed test cases during the evolution.

In addition to the general-purpose GPU workloads, we con-

sider a machine learning program. Because machine learning

(ML) algorithms are intrinsically error-tolerant and there is

significant time overhead for training (e.g., the training time of

state-of-the-art language translation models is on the order of

days [41]), ML models are a natural application for exploring

accuracy/efficiency tradeoffs. Because GEVO searches the opti-

mization space at the granularity of instructions, it requires full
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Fig. 5: Normalized performance improvement over the default

baseline with full compilation optimization for GEVO-default

and GEVO-mo (1%) in the Rodinia Benchmark. (For example,

the 1.38X improvement in hot reduces runtime from 1.07

seconds to 1.07/1.38 = 0.77 seconds.)

access to the intermediate representation and the corresponding

optimized library implementations. This consideration ruled out

using the NVIDIA cuDNN-based ML framework and led us to a

supervised ML framework (ThunderSVM) [42]. ThunderSVM

is a support vector machine (SVM) library with an open-source,

optimized implementation for GPUs.
We evaluate GEVO on ThunderSVM using two datasets:

handwriting recognition using MNIST [2] and income pre-

diction using a9a[3]. We downloaded the datasets from lib-

svm [43]’s data repository, which consists of 60,000 training

and 10,000 testing data samples for MNIST, and 32,561 training

and 16,281 testing samples for a9a. Additionally, MNIST large

dataset, which contains 8,000,000 image samples, is solely used

as a post-evolution evaluation. Specifically, we asked GEVO to

optimize the c_smo_solve kernel for both training time and

inference prediction accuracy of the trained model. We present

the results in Section V-B. Earlier work used evolutionary

computation to evolve neural network architectures [44], [45],

but this is the first work we know of to evolve the code that

implements the neural network itself.

C. Error Metric

For the Rodinia benchmarks, error represents the maximum

difference between outputs produced by the unmodified, origi-

nal kernel implementation and that of GEVO-mO, across all

tested inputs. Kernel variants are eliminated if the error rate

of any test case exceeds the prespecified threshold, i.e. 1%.

For the SVM, we consider the runtime to train the model and

the accuracy of the trained model’s performance on its testing

data. We use two-fold cross validation on the training dataset

to report the error for GEVO to optimize. The testing dataset is

used only for reporting the testing error. Similar to the Rodinia

benchmark suite, kernel variants are rejected if training error

rates exceed the training error from original kernel plus 1%.

V. EVALUATION RESULTS AND ANALYSIS

We first present the empirical results across all workloads

in the first 2 subsections, for the Rodinia benchmark and



Machine learning workloads. To understand the types of kernel

optimization techniques discovered by GEVO, Section V-A

takes a closer look at some recurring optimizations found by

GEVO, for the Rodinia applications, and Section V-B considers

the machine learning workloads. Section V-C, uses Hotspot

as an example to show how GEVO explores the optimization

space and converges to an optimized kernel variant that satisfies

the fitness function.

A. Rodinia Benchmark

Figure 5 reports the overall performance improvement for

GEVO-default, GEVO-mO (1%), by comparing to the default

baseline with full compilation optimization for the Rodinia

benchmarks. GEVO-default improves the performance of the

Rodinia benchmark suite by an average of 13.87% and by

as much as 43.41% for sc. When relaxing the accuracy

constraint on kernel outputs, GEVO-mO scavenges additional

improvements, reducing run-time by an average of 15.47% over

the baseline. As figure 5 shows, there is significant variability

in the achieved improvements among programs, including three,

cfd ,gau and nn, for which we found no improvements. There

are several possible explanations for this variability, e.g., it

could be a feature of the program itself or perhaps the program

was perfectly optimized by the original programmer, but this

variability is consistent with results reported using similar

methods on assembly programs to reduce energy, e.g., [20].

GEVO discovered many different optimizations in the

evolved Rodinia Benchmarks. We categorize them into 2 types,

which are architecture-, and application-specific optimization.

1) Architecture-specific optimization:

• Removing synchronization primitives: This was the most

common optimization found by GEVO. Although in general

it is risky to remove synchronizations, some syncthread()

calls in CUDA can be removed because of the thread

scheduler in the GPU hardware provides redundant syn-

chronizations under particular memory access patterns. We

find this optimization in hot, lud, and nw.

• Removing redundant stores: In lud, GEVO removed a

store instruction which updates a value in shared memory

that is later read by other threads. This change doesn’t

alter the program behavior, because in this case the store

instruction is not protected by a synchronization primitive.

We speculate that the GPU implicitly changes the load-store

order by issuing the load instruction without waiting for the

outstanding store instruction to complete, rendering the store

instruction redundant.

2) Application-specific optimizations:

• Removing conditional execution: GEVO could eliminate

code blocks in the conditional path entirely if the input

space does not touch that portion of the kernel, which it

found for hot, lud and pf.

• Loop perforation: Loop perforation is a technique from

approximate computing that skips iterations of a loop

based on the skip factor [46]. GEVO discovers similar

optimizations, for example, when loops have been unrolled

heavily post-compilation. GEVO then removes some part(s)
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ments for the handwriting recognition (ThunderSVM with

MNIST).

of the unrolled loop while optimizing the fitness function.

We observed this behavior in sc, lud, and hot.

• Memoization: Memoization stores results of expensive func-

tion calls and returns the stored value without re-computation

when the same inputs reappear. GEVO sometimes identifies

similar memoization opportunities by eliminating unneeded

instructions and using stored results directly, e.g., in the

HotSpot temperature modeling tool (hot). HotSpot performs

some pre-processing based on the physical dimension of the

processor chip. Since the shape of simulated chips is the

same across all loop iterations, GEVO discovers memoization

opportunities to reuse the pre-processing results of the x-

dimension for the y-dimension.

In summary, we have identified several categories of perfor-

mance improvements found by GEVO, but we have not studied

all such optimizations, and in some cases, we require additional

domain-specific knowledge to complete a full analysis. Because

GEVO is stochastic, it is not guaranteed to find every possible

optimization on every run.

B. ThunderSVM

Machine learning (ML) is a popular class of intrinsically

error-tolerant applications, which can consume large compu-

tational resources, and is particularly suitable for the GEVO

approach. We consider one ML example and use it to illustrate

how performance and accuracy can be co-optimized. Although

earlier work examined accuracy/energy tradeoffs, we are not

aware of any earlier work targeting genetic improvement of

ML LLVM-IR kernels.
Figure 6 shows the Pareto frontier for MNIST. The x-axis

represents the measured training time and the y-axis represents

the testing inference prediction error in %. We report results

for each kernel variant in GEVO’s final generation, relative

to the original unmodified kernel. Figure 6 also shows how

GEVO-mO navigates away from the original, sub-optimal,

kernel implementation and explores the better performing part

of the search space.
Through manually selecting the kernel variant in the Pareto

frontier representing the best combined improvement, we

find that GEVO-mO achieves 3.24X and 2.93X performance

improvement for handwriting recognition (MNIST) and income
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Fig. 7: Temporal evolution of a hot kernel variant.

prediction(a9a)’s kernel performance, which increases overall

model training speed by 50% and 24.8% respectively, with

accuracy on the training set improving from 97.86% to 98.03%

(MNIST) and from 84.61% to 84.65% (a9a). Next, we test the

trained GEVO-optimized model on the official testing dataset,

where we find accuracy is improved slightly, from 98.37% to

98.5% (MNIST) and from 84.59% to 84.64% (a9a).

Finally, we consider whether the ThunderSVM evolved for

training a specific dataset can achieve similar improvements

on a different dataset in the same class (after all, that would

be the main advantage of optimizing the training procedure

for a particular type of application). We tested thunderSVM

optimized for the MNIST common dataset (60,000 samples)

by using it to train the large MNIST dataset (8,000,000

handwriting samples). Since the large MNIST dataset does

not have a separate testing dataset, we report the 10-fold

cross validation accuracy for the model from unmodified and

optimized ThunderSVM, which are 100% and 99.997% with

the respective training time in 1182 and 121 minutes.

When we applied GEVO to SVM for MNIST, it found some

epistatic (interacting) mutations. Our preliminary analysis of

these mutations suggests that GEVO’s optimization changed the

termination condition of a while loop, causing it to exit sooner.

This loop implements a SVM solver using sequential minimal

optimization, which iteratively approaches the optimal solution,

terminating when progress has slowed. Thus, GEVO relaxes

the convergence condition, which would normally reduce the

solution correctness. However, for MINST, this change actually

improves model accuracy. We leave further analysis of this

result for future work.

C. Temporal Evolution of hot

Figure 7 show the evolution of a GEVO optimization for

hot. On each generation, the figure plots runtime (primary

y-axis) and error rate (minor y-axis) for the most fit kernel

variant in that generation. As expected, runtime decreases

over the run, but the corresponding error rate increases at

Generations 5 and 34. This illustrates the design space tradeoff

between performance and accuracy. In both cases, GEVO-mO

then "repairs" the error rate by introducing other mutations

(compensatory evolution). There are three key mutations in

the last generation. When combined, they reduce the error rate

to less than 0.1%, whereas if individually applied, the error

rate is much higher at 0.3%. This highlights the strength of

a population-based search method like GEVO—sub-optimal

individuals in one generation can serve as a stepping stone to

the discovery of successful combinations of mutations. Further,

the best kernel variant would not be found if a tighter error

bound had been enforced from the beginning.

VI. DISCUSSION AND CONCLUSION

This paper presents a Genetic Programming approach using

population-based search to find optimizations of GPGPU ker-

nels that fulfill required specifications of program behavior. The

proposed approach trades off absolute program semantics for

other important non-functional design aspects. We demonstrate

that by relaxing program semantics, GEVO can find novel

and substantial improvements, both for runtime alone, and for

the case of multiple optimization objectives, e.g., accuracy

and runtime. The proposed approach, while not intended

for applications with absolute correctness requirements (e.g.,

avionics software or some systems programs), is suitable for

many other applications, including the important class of

machine learning codes. Our results show that GEVO explores

the optimization search space for the handwriting recognition

and the income prediction machine learning workloads, finding

multiple points along the Pareto frontier that typically trades

off performance and accuracy. In some cases, however, GEVO

finds a significant 3.28x speedup of the handwriting recognition

kernel (ThunderSVM with MNIST with modest improved

prediction accuracy. This translates to 50% training time

reduction with 0.17% improvement on the prediction accuracy,

reflecting absolute improvements in both dimensions.

The results reported here are specific to the programs, inputs,

and the particular GEVO runs we studied. There were some

programs for which GEVO was unable to find improvement.

Thus, further experimentation is required to understand the

generality of these results. GEVO found both application-

specific architecture-specific optimizations. In future work, we

plan to test GEVO on other applications and analyze more

carefully why some programs admit significant improvements

and others do not. As we learn more about when and how

GEVO succeeds and fails, we foresee new methods for post-

hoc validation of evolved codes, e.g., by synthesizing new test

cases on the fly to test synchronization, or ultimately, using

program analysis methods to highlight semantic differences

between original and evolved kernels. Since GEVO’s approach

is agnostic about optimization criteria, it is easy to imagine

other compelling optimizations. For example, GEVO could

customize the LLVM-IR for particular classes of inputs, or

even generate diverse versions of the kernel, each of which uses

a different power budget, to defeat some power side channel

attack. We hope the idea and insights presented in this paper

inspire other applications and optimizations of software and

systems in the years to come.
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