Genetic
Improvement
of OLC and H3

with Magpie

Getting more out of Magpie
William Langdon (UCL) and Brad Alexander (Optimatics)




Motivation (1)

* Genetic Improvement (Gl) works!

* Fixing Bugs, Porting Code, Improving Speed,
Reducing memory and energy consumption....
* Real, verifiable, improvements in real software.

* But a lot of this work used bespoke tooling

* Hard to set up
* Hard to transfer results

Langdon & Alexander Gl 2023 - ICSE




Motivation (2)

* Frameworks have been produced to make Gl easier

* Examples
* GIN — flexible Gl for Java applications.
* PyGGI — Python tool for Gl in multiple languages
* Magpie — Modular, flexible Gl targetting multiple languages

* The tools are available — and they are getting better

* but we need a deeper body of practice in using and
improving them

Langdon & Alexander Gl 2023 - ICSE

"-'!".'ii"
S



This work

* First use of Magpie on industrial source code
* Google’s OLC and Uber’s H3
* Improved program performance by changing C source code.

* We changed tooling for running and measuring program
performance

* Speedup is better than prewous work targeting LLVM IR

Langdon & Alexander Gl 2023 - ICSE



Magpie

* Machine Automated General Performance
Improvement via Evolution of software

* Developed from PyGGlI 2.0

* Separates search from operations
* In our case search is local search
* proven to be effective _..'i_iil'.
* Operations can be in different domains.

* Examples: compiler optimization options, runtime
configurations, and Genetic Improvement

Langdon & Alexander Gl 2023 - ICSE



Target Applications

o
[ N )
« Google OLC =+ Plus Codes

* Uber H3
* Both do coordinate translation

SCOTLAND

Langdon & Alexander Gl 2023 - ICSE



Application Size

*OLC
* 14024 lines of code
* 207 to be optimized
* 134 with comments/blanks removed

*H3
* 15015 lines of code
* 3321 to be optimized
* 1615 with comments/blanks removed

Langdon & Alexander Gl 2023 - ICSE




Setup

* Set up to do Gl on source code
* Using Gl per-line operators

* Optimized for execution speed
* Applied tests (10 cases)

* + checks for correctness
* Runtime chosen to ensure coverage
* Used Hill Climbing for search

* keeps it simple!
Langdon & Alexander Gl 2023 - ICSE




Reducing Noise

* Noise can really slow down
evolution

* Need to adapt measurements to
take account of the noise
distribution...

Langdon & Alexander Gl 2023 - ICSE




Noise Distributions (1)

wall-clock run time for triangle
program test cases

* Wall clock time is noisy o ook
* And is heavily
dependent on the run-
order of sample ¢
g ST o 3 i
@ £
ST IR 72 T T

123456 7 8 91011121314151617 181920 21
Triangle test case

Earlier repetitions of tests for
triangle (in red) are much slower!
Langdon & Alexander Gl 2023 - ICSE



Noise Distributions (2)

wall-clock run time for OLC test cases

* Runtimes are heavily

45 . :
OLCtest 1 —
1 OLC test 2
skewed and tightly Tt AR
35 |- OLCtest 5 B
OLC test 6
bounded from below Sreis 7
25 | oG et 10— -
dlstr|b(;|t|on skewed 20 | long tail of long-running ]
towards minimum run :
. readings ]
time for each case \:r
_‘ -
5 i
0 _u_ 1l 11 1| | 1 | 1| | Il
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Nanoseconds

can’t distinguish test cases by
using run times

Langdon & Alexander Gl 2023 - ICSE



Noise Distributions (3)

using CPU instructions, it is easy
to distinguish tests just by their

* Instruction counts show _runtimer

much less noise.. Qigtest ¢

800 | OLC test 10 --------
OLC test 2
OLC test 8 X

° Used OLC test 1

OLCtest 3  x

PERF_COUNT_HW_INSTRUCTIONS 0F | QCtest 4

OLCtest 9 - --

less noise => less samples needed  *°|

* We use only 3 samples per test oor
and sample the lowest quartile of

0 ! ! ! ! A o) :\: X
10440 10450 10460 10470 10480 10%90 10500 10510
al I th e teStS Unix perf instructions

Symbols denote tests with very small
timing spreads.

Langdon & Alexander Gl 2023 - ICSE



Other tricks

* More warmup evaluations on null patches

* Wrote harness for measuring instruction ‘
counts in C.

* Called harness directly using Python’s c-types
interface

* Output directed from harness to a buffer
provided by python.

Langdon & Alexander Gl 2023 - ICSE 13



Results (1)

* Tested both evolved OLC and H3 variants
* with and without GNU compiler -O3 flag

* Good speedups for both
* Passed all holdout tests

C files LOC Mutant Magpie

no comments size  minified speed up duration

OLC 4 207 (134) 4-17 4-17 3.6% 82 secs
-03 4 207  (134) 8—13 6-11 2% 95 secs
H3 23 3321 (1615) | 31-45 22-28 15% 1.1 hours
-O3 23 3321 (1615) | 31-49 23-29 7% 1.5 hours

Langdon & Alexander

Gl 2023 - ICSE




Results (2)

* Pass rates — most variants generated during search passed

oLC H3

AW

W Failed Compile mFailed a Test m Passed All Tests W Failed Compile mFailed a Test m Passed All Tests

Langdon & Alexander Gl 2023 - ICSE



Results (3)

* Large inter-run variation — due to local search?

1.04 —— T T

I H3 -3 run i

no
1024

098

0.96 -

0.94

0.92

09 |

0.88

Patch 1st quartile (120 H3 runs) relative to Warmup Q1

1 1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Magpie patches generated

Langdon & Alexander Gl 2023 - ICSE



int OLC_Encode(const OLC_LatLonx location,
int maxlen) {
// Limit the maximum number of digits in
if (length > kMaximumDigitCount) {

Code produced v = agitcon

// Adjust latitude and longitude so they
double latitude = adjust_latitude(locati

double longitude = normalize_longitude(l

([ J Examples inCIUde: // Build up the code here, then copy it

char fullcode[] = "12345678901234567";

* Removing redundant normalization 9 G 4

// This approach converts each value to

and CheCkS // the final precision. This allows us t

. // avoiding any accumulation of floating

* RemOVIng COde that Supports COde // Multiply values by their precision an
paths that aren’t executed // floating point operations.

long long int lat_val = kLatMaxDegrees *
long long int lng_val = kLonMaxDegrees *

° Overlap Wlth Code lat_val += latitude * 2.5e7;

lng_val += longitude * 8.192e6;

SpeCIaI Isatlon? size_t pos = kMaximumDigitCount;
// Compute the grid part of the code if
if (length > kPairCodelLength) {
for (size_t i = @; i < kGridCodelLength
int lat_digit = lat_val % kGridRows;
int lng_digit = lng_val % kGridCols;
int ndx = lat_digit * kGridCols + 1n

Langdon & Alexander Gl 2023 - ICSE



Conclusions

* Magpie is easy to use and modify
* We were able to get useful and robust improveme
* Measures to reduce noise are key

* Future work
* Richer set of mutations + crossover
* Move beyond hill climbing
* Co-evolution of training data
* Use profiling to focus search

Langdon & Alexander Gl 2023 - ICSE




Credits

* Thanks to
* Aymeric Blot (Magpie)
* H.Wierstorf (gnuplot)

* Funded by the Meta Oops
project.

Langdon & Alexander Gl 2023 - ICSE 19



Contacts

* Bill Langdon - W.Langdon@cs.ucl.ac.uk
* Brad Alexander — bradley.alexander@optimatics.com

Questions?

Langdon & Alexander Gl 2023 - ICSE

20


mailto:W.Langdon@cs.ucl.ac.uk
mailto:W.Langdon@cs.ucl.ac.uk
mailto:bradley.alexander@optimatics.com

