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Motivation

Daniel Shiffman - TheCodingTrain



Background - Generative Art

Visualization of algorithms and/or mathematical functions [1-5]
- Creative coding [11-15]
- Real-world displays [16]

y = 75.0 ∗sin(x) Pixel sorted

https://p5js.org/examples/math-sine-wave.html

https://p5js.org/examples/math-sine-wave.html


Background - Generative Art

Visualization of mathematical functions in aesthetically-pleasing ways

y = 75.0 ∗sin(x) Pixel sorted

https://p5js.org/examples/math-sine-wave.html

https://p5js.org/examples/math-sine-wave.html


Included techniques
Stippling
Cellular automata
Circle packing
Flow fields (two implementations)
Drunkard's walk
Dithering
Pixel sorting
– any technique is viable!

https://editor.p5js.org/frederer/sketches/DbWjEErKy

https://editor.p5js.org/frederer/sketches/DbWjEErKy


Background - Grammatical Evolution

Subset of evolutionary computation (generally genetic programming-based) [24]
- Grammar-based genome [6-7]
- Uses very similar genetic operators (e.g., mutation, crossover, etc.)

Effective at constraining the solution space
- Target for genetic improvement! [7]

rules = {
  'ordered_pattern': ['#techniques#'],
  'techniques': ['#technique#','#techniques#,#technique#'],
  'technique': ['stippledBG','flowField'],
  ...
}

Tracery [9] grammar



Background - Grammars

Top-level rule is "flattened" and production rules expanded
- Tracery enables randomness (among other things)

rules = {
  'ordered_pattern': ['#techniques#'],
  'techniques': ['#technique#','#techniques#,#technique#'],
  'technique': ['stippledBG','flowField'],
  ...
}

Tracery [9] grammar
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Expanded output



Tracery [9]

http://www.crystalcode
palace.com/traceryTut.
html

http://www.crystalcodepalace.com/traceryTut.html
http://www.crystalcodepalace.com/traceryTut.html
http://www.crystalcodepalace.com/traceryTut.html


Background - Lexicase Selection [10]

Many-objective selection operator
- Not pareto-based!

Evaluates individuals on an objective-by-objective basis

Each selection:
- Sample of population taken
- Comparison on first objective

- If one individual better, selected
- Else, advance to next objective

- If all objectives exhausted
- Random selection

ϵ-Lexicase selection [30]
- Individuals tied if within ϵ
- Important for real-valued 

fitness objectives 
(observable output may not 
change)

ϵ = 0.85



Project Goal
Apply GI techniques to optimize the grammar defining the order and parameters of 
a set of generative art techniques

- I like glitch art, which makes for a lovely (and naive) proof of concept
- (Pixel sorting below → https://github.com/satyarth/pixelsort) 

Original Pixel sorted Color shifted

https://github.com/satyarth/pixelsort


Approach



(1) Convert Techniques to Grammar

Suite of generative art techniques required as input

'flow-field' : '#flow-field-type#:#palette#:#flow-field-zoom#',
'flow-field-type' : ['edgy', 'curves'],
'flow-field-zoom': [str(x) for x in np.arange(0.001, 0.5, 0.001)],
…

def flowField(type, palette, zoom):
  # type: ['edgy', 'curves']
  # palette: list of colors
  # zoom: float between 0.001 and 0.500



Each generative art technique must also be translated to framework requirements

E.g., flow field must (minimally) accept a Pillow Image object

(2) Translate Technique

def flowField(image, type, palette, zoom)
  # image: PIL image object
  # type: ['edgy', 'curves']
  # palette: list of colors
  # zoom: float between 0.001 and 0.500



(3) Configure Search

Selection operator:
● Many-objective (Lexicase selection)
● Single-objective (Tournament selection)
● Random (No selection)

Standard configurable parameters
● E.g., population size, mutation rate, etc.



(3) Configure Search

Fitness functions

ffmin(genome) : minimize duplicate genes
ffmax(techniques) : maximizing diversity of included techniques
ffmax(RMS|Chebyshev) : maximize pixel differences between images

Many-objective search uses all four fitness functions

Single-objective search only uses ffmax(RMS) 



(4) Execute Search

Search executed according to (3)
- Each genome evaluated on flattened grammar

- For this work, image object not cleared
- Subject of future work

Depending on configuration
- Many-objective: Lexicase
- Single-objective: Tournament selection
- Random: No selection



(5) Output Best Images

Final population of image objects stored to disk upon 
completion



Experiment Configuration



Results - Novelty

Wilcoxon rank-sum test with Bonferroni 
correction

Lexicase vs. random (p < 0.01)
Single-objective vs. random (p < 0.03)
Lexicase vs. single-objective (p > 0.03)



Results - Gene Uniqueness

Wilcoxon rank-sum test with Bonferroni 
correction

Lexicase vs. random (p < 0.001)
Single-objective vs. random (p < 0.001)
Lexicase vs. single-objective (p > 0.001)



Discussion / Sample Outputs

Single- and many-objective both tended to 
converge towards both multiple and common 
suites of techniques

- On a 'per run' basis
- Resulting from maximizing pixel differences 

and maximizing the number of techniques

Random search tended towards 'blank space'
- Fewer techniques in genome

Lexicase tended to converge to a smaller set of 
techniques with common outputs



Related Work

Generative art via artificial intelligence
- Extremely popular right now thanks to large 

language models!
- DALL-E, Midjourney, Stable Diffusion, VQGAN+CLIP, etc 

[15,35,36].
- All require a massive dataset and massive amount of 

computing power

- GenerativeGI only requires a suite of techniques and 
computing necessary for evolutionary search

https://www.reddit.com/r/StableDiffusion/comments/yxtdrh



Related Work

Generative art via search heuristics
- Often used in visualization and creative coding domains

- Visualize 3D models of mathematical formulae [4]
- Creating environments within game worlds [5]

- GenerativeGI focuses on fine-tuned control over artistic techniques

- Taxonomy of fitness metrics for evolutionary art/music [8]
- Metrics can be non-trivial to evaluate (e.g., human preference)
- Target for future work of this paper



Future Work

Additional fitness functions
- Guide towards specific outputs

Human in the loop
- What constitutes a "good" output?
- How do you measure aesthetic preference?

Merging artistic techniques
- How can distinct techniques provide a seamless output?

- E.g., a flow field into an automata



Thanks to..

Award 80NSSC20M0124



Q&A
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