Generative Art via
Grammatical Evolution

Erik Fredericks, Abigail Diller, and Jared Moore
Gl2023 » May 20, 2023

GRANDMLLEY
STATE UNIVERSITY,
.gvsu.edu

Motivation

Danil Shiffman - TheCodingTrain

Background - Generative Art

Visualization of algorithms and/or mathematical functions [1-5]
- Creative coding [11-15]
- Real-world displays [16]

R
MWMM ‘ -MJ.»MW&M

AN B | gy

y = 75.0 *sin(x) Pixel sorted

https://p5js.org/examples/math-sine-wave.html

Background - Generative Art

reset | copy

https://p5js.org/examples/math-sine-wave.html

https://editor.p5js.ora/frederer/sketches/DbWEErKy

Included techniques

Stippling

Cellular automata

Circle packing

Flow fields (two implementations)
Drunkard's walk

Dithering

Pixel sorting

— any technique is viable!

3L O B S=__
(a) Stippled (b) Cellular Automata (c) Circle Packing (d) Flow Field (e) Drunkard’s Walk

https://editor.p5js.org/frederer/sketches/DbWjEErKy

Background - Grammatical Evolution

Subset of evolutionary computation (generally genetic programming-based) [24]
- Grammar-based genome [6-7]
- Uses very similar genetic operators (e.g., mutation, crossover, etc.)

Effective at constraining the solution space
- Target for genetic improvement! [7]

Tracery [9] grammar
B

Background - Grammars

Top-level rule is "flattened" and production rules expanded
- Tracery enables randomness (among other things)

Tracery [9] grammar

Expanded output

Tracery

http://www.crystalcode

palace.com/traceryTut.
html

talcodepalac

Tuforials - @galaxykate

more from galaxykafe

Tuforial: Tracery

Tracery is a JavaScript library, by GalaxyKate, that uses grammars to generate surprising new text.
It's already been used to generate text in several released games and projects, but we're still discovering what it's for!

Tracery is still a work in progress, and we hope to soon have a code-free, hosted online version, but this tutorial will help you get Tracery working with an existing Javascript project.

This is an interactive tutorial that will teach you the basics of Tracery syntax. For a real project, you'd import the library, create a grammar, and then create new text with mygrammar.flatten('someRule’),
with detailed instructions at the GitHub repo.

this tutorial is also a work in progress! send feeback to kate {{galaxykate at gmailj}

1: Generating text!
Tracery uses grammars to generate text. 5
Areplacement grammar takes a starting “animal’: ["unicorn’, "raven”, sparrow’, “scorpion”, "coyote”, "eagle”,"owl", lizard", |
symbol, and replaces it with one of several
rules

On the right (or below, depending on your
screen size), you can see the json object that
represents this very simple grammar. Farther
right is the current start symbol (animal’) and
a list of possible texts that it can generate.

Press the reroll button a few times to generate
more. Not very interesting, yet, so lets get 2

more complicated! -
« I »
2: Rules within rules
Rules can call rules! s -
Take a look at the rule for ‘sentence’: The sentenors [iThe foolork danimalf of the dnaturNovd & called dhaneli] The grey scorpion of the cloud s called Azra)
#color #animali of the #natureNound' s called ‘color”: ["orange”, "blue”,"white”,"black’, "grey”, "purple”,"indigo”, "turquoise”]
R o s "animal”: ["unicorn”,"raven”, sparrow","scorpion’, "coyote”, "eagle”,"owl", lizard"," The black duck of the ocean is called Azra J
#name#'. Each of the words between two " . [. n P " - i e nl A e e
; ‘natureNoun": ["ocean’,'mountain’, forest”, cloud”, "river”, "tree”, "sky’,"sea”, "des The turquoise eagle of the sea is called Azra
baiinge=evinal lofe =Hacel) “name’s [Arjun’, "Yuuma’, Darcy’,"Mia’,"Chiaki’, Izzi", Azra”, "Lina’] 4
i TR0 el The turquoise zebra of the forest is called Chiaki)
Try adding your name to the list of names, = :
surrounded by quotation marks like all the The orange eagle of the tree is called Lina)
other options. It will now appear in some of The black zebra of the sky is called Azra)
=t The white owl of the sea is called Darcy)
Note: JSON is very very fussy. There must be a
comma between every option, but none after
the last option v &
« I ia R »
Try adding a new symbol and a set of - P
replacement rules. "sentence”: [#name# the #color# #animal# was ... something."] o 5 .
2enbonon s Tatamekthe fooion fammals ey sometine Darcy the indigo scorpion was ... something.)
i ol this stovy Sz You couid adi a ‘name”: ["Arjun","Yuuma", Darcy”,"Mia","Chiaki", "|zzi", "Azra", "Lina"] > = e =
? "olor™ I" * "hiue” white® *black® " " - e ise" arcy the purple lizard was ... something.
"mood' svmbol so that Darcy the blue raven is O LT e DA e e D e indig o M rauolse] v,

http://www.crystalcodepalace.com/traceryTut.html
http://www.crystalcodepalace.com/traceryTut.html
http://www.crystalcodepalace.com/traceryTut.html

Background - Lexicase Selection [10]

Many-objective selection operator
- Not pareto-based!

Evaluates individuals on an objective-by-objective basis

Each selection:

- Sample of population taken e-Lexicase selection [30]
- Comparison on first objective _ Individuals tied if within €
If one individual better, selected | e Lvalluas
Else, advance to next objective - mpor an _ or 'rea value
- If all objectives exhausted fitness objectives
Random selection (observable output may not
change)

€=0.85

A ﬂ \ “T |)///T’ \,(\ \V -

— Project

Apply Gl techniques to optimize the grammar defining the order and parameters of Q
a set of generative art techniques %

1Y

- | like glitch art, which makes for a lovely (and naive) proof of concept
(Pixel sorting below = https://qithub.com/satyarth/pixelsort)

7 i b Miiz N

Original Pixel sorted Color shifted

AN,) W\ N\ N\

VAN

2

N
N\

https://github.com/satyarth/pixelsort

Approach

Generative
Techniques

techniques

1) Convert
Techniques
to
Grammar

grammar

- Legend
(D Process
— Flow

(1 Datastore

Codebase

codebase

(2)
Translate
Technique

(5) Output

Best Images

Configurable
Parameters

(3)

evolutionary
parameters

Fitness
Functions

techniques : fitness
» Configure =
grammar functions
Search
techniques search
grammar parameters
) final (4) Execute

population Search

population

not done

(1) Convert Techniques to Grammar

Suite of generative art techniques required as input

Generative
Techniques

Codebase Configurable
Parameters

evolutionary

Legend

(O Process
— Flow
1 Datastore

parameters

(3)
Configure
Search

fitness
functions

Translate

grammar

techniques
grammar

search
parameters

(5) Output
Best Images | population

(4) Execute
Search

not done

population

(2) Translate Technique

Each generative art technique must also be translated to framework requirements

E.g., flow field must (minimally) accept a Pillow Image object

(3) Configure Search

Selection operator:
e Many-objective (Lexicase selection)
e Single-objective (Tournament selection)
e Random (No selection)

Standard configurable parameters
e E.g., population size, mutation rate, etc.

(3) Configure Search

Fithess functions

: minimize duplicate genes
max(techniques) : maximizing diversity of included techniques

ffmax(RMSIChebyshev) : maximize pixel differences between images

min(genome)

Many-objective search uses all four fitness functions

Single-objective search only uses ffmaX(RMs)

(4) Execute Search

Search executed according to (3)
- Each genome evaluated on flattened grammar

- For this work, image object not cleared
- Subject of future work

Depending on configuration
- Many-objective: Lexicase
- Single-objective: Tournament selection
- Random: No selection

Generative Configurable
q Codebase
Techniques |_Parameters
techniques codebase evolutionary
parameters

ﬂj Conve}\\ ’// @ \\ / @ \
[Techniques | (\ techniques | . | fitness Fitness
[———— Translate | Configure | -
/ grammar | / functions | Functions
/
rd

J |
to / grammar \\Techmque/ﬂ \Search

X
\(Erammér

Output Best Images T =

final | (4) Execute |

\ Best Images | pgpulation | Search
)/

. A .

S

(O Process

— Flow
1 Datastore

not done

population

Final population of image objects stored to disk upon
completion

Experiment Configuration

Parameter Value
Experimental replicates 10

Image size (pixels) 1000 x 1000
Number of generative techniques | 8
Generations 100
Population size 100
Crossover rate 0.5

Mutation rate 0.4

Number of Lexicase objectives 4

e (Lexicase - many-objective) 0.85

TABLE I: Evolutionary parameter configuration.

Results - Novelty . YRSy
0.96 S B
Wilcoxon rank-sum test with Bonferroni
correction % 0.94 -
>
2
Lexicase vs. random (p < 0.01) R0
Single-objective vs. random (p < 0.03) E]
Lexicase vs. single-objective (p > 0.03) 087 -
0.88
lexic':ase rancljom single_c;bjective

Results - Gene Unigueness

Wilcoxon rank-sum test with Bonferroni
correction

Lexicase vs. random (p < 0.001)
Single-objective vs. random (p < 0.001)
Lexicase vs. single-objective (p > 0.001)

Genome Uniqueness (Minimization)

g 8 8

—
PR R R S 1

Genome Uniqueness (Minimization) Population Mean

|

lexicase random

single_objective

Discussion / Sample Outputs

Single- and many-objective both tended to
converge towards both multiple and common
suites of techniques
- On a'perrun' basis
- Resulting from maximizing pixel differences
and maximizing the number of techniques

Random search tended towards 'blank space'’
- Fewer techniques in genome

Lexicase tended to converge to a smaller set of
techniques with common outputs

Lexicase Selection

1, %0*
.'..b, ..'

Random Generation

.8
o &
Y .. 220 : IR
10e "
o

Single Objective

Related Work

Generative art via artificial intelligence
- Extremely popular right now thanks to large

language models!
- DALL-E, Midjourney, Stable Diffusion, VQGAN+CLIP, etc
[15,35,36].
- All require a massive dataset and massive amount of
computing power

- GenerativeGl only requires a suite of techniques and
computing necessary for evolutionary search

Everyone: Al art will make designers obsolete

Al accepting the job:

https://www.reddit.com/r/StableDiffusion/comments/yxtdrh

Related Work

Generative art via search heuristics
Often used in visualization and creative coding domains

Visualize 3D models of mathematical formulae [4]
Creating environments within game worlds [5]

- GenerativeGl focuses on fine-tuned control over artistic techniques

Taxonomy of fithess metrics for evolutionary art/music [8]
- Metrics can be non-trivial to evaluate (e.g., human preference)
- Target for future work of this paper

Future Work

Additional fitness functions
- Guide towards specific outputs

Human in the loop
- What constitutes a "good" output?
- How do you measure aesthetic preference?

Merging artistic techniques

- How can distinct techniques provide a seamless output?
- E.g., aflow field into an automata

Thanks to..

GRANDVWALLEY
STATE UNIVERSITY

Award 80NSSC20M0124

References

[11 M. A. Boden and E. A. Edmonds, “What is generative art?” Digital Creativity, vol. 20, no. 1-2, pp. 21-46, 2009.

[2] A. G. Forbes, T. Hollerer, and G. Legrady, “Generative fluid profiles for interactive media arts projects,” in Proceedings of the
Symposium on Computational Aesthetics, 2013, pp. 37-43.

[3] B. Cabral and L. C. Leedom, “Imaging vector fields using line integral convolution,” in Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, 1993, pp. 263-270.

[4] H. Liu and X. Liu, “Generative art images by complex functions based genetic algorithm,” Trends in Computer Aided Innovation, pp.
125-134, 2007.

[5] T. D. Smedt, L. Lechat, and W. Daelemans, “Generative art inspired by nature, using nodebox,” in European Conference on the
Applications of Evolutionary Computation. Springer, 2011, pp. 264-272.

[6] C. Ryan, J. Collins, and M. O. Neill, “Grammatical evolution: Evolving programs for an arbitrary language,” in Genetic Programming.
Springer, 1998, pp. 83-96.

[7] W. B. Langdon, “Genetic improvement of genetic programming,” in 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE,
2020, pp. 1-8.

[8] C. G. Johnson, “Fitness in evolutionary art and music: a taxonomy and future prospects,” Fitness in evolutionary art and music: a
taxonomy and future prospects, vol. 9, no. 1, pp. 4-25, 2016.

[9] K. Compton, B. Kybartas, and M. Mateas, “Tracery: an author-focused generative text tool,” in International Conference on
Interactive Digital Storytelling. Springer, 2015, pp. 154-161

[10] L. Spector, “Assessment of problem modality by differential performance of Lexicase selection in genetic programming: A
preliminary report,” in Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation. Philadelphia,
Pennsylvania, USA: ACM, 2012, pp. 401-408.

References

1]1. Greenberg, Processing: creative coding and computational art. Apress, 2007.
2] I. Bergstrom and R. B. Lotto, “Code bending: A new creative coding practice,” Leonardo, vol. 48, no. 1, pp. 25-31, 2015.
3] K. Peppler and Y. Kafai, “Creative coding: Programming for personal expression,” vol. 30, no. 2008, p. 314, 2005.

4] D. Shiffman, S. Fry, and Z. Marsh, The nature of code. D. Shiffman, 2012.
[15] N. Dehouche and K. Dehouche, “What is in a text-to-image prompt: The potential of stable diffusion in visual arts education,” arXiv
preprint arXiv:2301.01902, 2023.
[16] L. S. Vestergaard, J. Fernandes, and M. Presser, “Creative coding within the internet of things,” in 2017 Global Internet of Things
Summit (GloTS). IEEE, 2017, pp. 1-6.
[24] J. R. Koza, “Genetic programming as a means for programming computers by natural selection,” Statistics and Computing, vol. 4,
no. 2, pp. 87-112, 1994
[30] W. La Cava, L. Spector, and K. Danai, “Epsilon-lexicase selection for regression,” in Proceedings of the Genetic and Evolutionary
Computation Conference 2016. Denver, Colorado, USA: ACM, 2016, pp. 741-748.
[35] K. Crowson, S. Biderman, D. Kornis, D. Stander, E. Hallahan, L. Castricato, and E. Raff, “Vggan-clip: Open domain image generation
and editing with natural language guidance,” in European Conference on Computer Vision. Springer, 2022, pp. 88-105.
[36] J. Ploennigs and M. Berger, “Ai art in architecture,” arXiv preprint arXiv:2212.09399, 2022.

[1
[1
[1
1

