
Generative Art via
Grammatical Evolution

Erik Fredericks, Abigail Diller, and Jared Moore
GI2023 → May 20, 2023

Motivation

Daniel Shiffman - TheCodingTrain

Background - Generative Art

Visualization of algorithms and/or mathematical functions [1-5]
- Creative coding [11-15]
- Real-world displays [16]

y = 75.0 ∗sin(x) Pixel sorted

https://p5js.org/examples/math-sine-wave.html

https://p5js.org/examples/math-sine-wave.html

Background - Generative Art

Visualization of mathematical functions in aesthetically-pleasing ways

y = 75.0 ∗sin(x) Pixel sorted

https://p5js.org/examples/math-sine-wave.html

https://p5js.org/examples/math-sine-wave.html

Included techniques
Stippling
Cellular automata
Circle packing
Flow fields (two implementations)
Drunkard's walk
Dithering
Pixel sorting
– any technique is viable!

https://editor.p5js.org/frederer/sketches/DbWjEErKy

https://editor.p5js.org/frederer/sketches/DbWjEErKy

Background - Grammatical Evolution

Subset of evolutionary computation (generally genetic programming-based) [24]
- Grammar-based genome [6-7]
- Uses very similar genetic operators (e.g., mutation, crossover, etc.)

Effective at constraining the solution space
- Target for genetic improvement! [7]

rules = {
 'ordered_pattern': ['#techniques#'],
 'techniques': ['#technique#','#techniques#,#technique#'],
 'technique': ['stippledBG','flowField'],
 ...
}

Tracery [9] grammar

Background - Grammars

Top-level rule is "flattened" and production rules expanded
- Tracery enables randomness (among other things)

rules = {
 'ordered_pattern': ['#techniques#'],
 'techniques': ['#technique#','#techniques#,#technique#'],
 'technique': ['stippledBG','flowField'],
 ...
}

Tracery [9] grammar

stippledBG(params
a
),stippledBG(params

b
),flowField(params

c
),stippledBG(params

d
)

Expanded output

Tracery [9]

http://www.crystalcode
palace.com/traceryTut.
html

http://www.crystalcodepalace.com/traceryTut.html
http://www.crystalcodepalace.com/traceryTut.html
http://www.crystalcodepalace.com/traceryTut.html

Background - Lexicase Selection [10]

Many-objective selection operator
- Not pareto-based!

Evaluates individuals on an objective-by-objective basis

Each selection:
- Sample of population taken
- Comparison on first objective

- If one individual better, selected
- Else, advance to next objective

- If all objectives exhausted
- Random selection

ϵ-Lexicase selection [30]
- Individuals tied if within ϵ
- Important for real-valued

fitness objectives
(observable output may not
change)

ϵ = 0.85

Project Goal
Apply GI techniques to optimize the grammar defining the order and parameters of
a set of generative art techniques

- I like glitch art, which makes for a lovely (and naive) proof of concept
- (Pixel sorting below → https://github.com/satyarth/pixelsort)

Original Pixel sorted Color shifted

https://github.com/satyarth/pixelsort

Approach

(1) Convert Techniques to Grammar

Suite of generative art techniques required as input

'flow-field' : '#flow-field-type#:#palette#:#flow-field-zoom#',
'flow-field-type' : ['edgy', 'curves'],
'flow-field-zoom': [str(x) for x in np.arange(0.001, 0.5, 0.001)],
…

def flowField(type, palette, zoom):
 # type: ['edgy', 'curves']
 # palette: list of colors
 # zoom: float between 0.001 and 0.500

Each generative art technique must also be translated to framework requirements

E.g., flow field must (minimally) accept a Pillow Image object

(2) Translate Technique

def flowField(image, type, palette, zoom)
 # image: PIL image object
 # type: ['edgy', 'curves']
 # palette: list of colors
 # zoom: float between 0.001 and 0.500

(3) Configure Search

Selection operator:
● Many-objective (Lexicase selection)
● Single-objective (Tournament selection)
● Random (No selection)

Standard configurable parameters
● E.g., population size, mutation rate, etc.

(3) Configure Search

Fitness functions

ffmin(genome) : minimize duplicate genes
ffmax(techniques) : maximizing diversity of included techniques
ffmax(RMS|Chebyshev) : maximize pixel differences between images

Many-objective search uses all four fitness functions

Single-objective search only uses ffmax(RMS)

(4) Execute Search

Search executed according to (3)
- Each genome evaluated on flattened grammar

- For this work, image object not cleared
- Subject of future work

Depending on configuration
- Many-objective: Lexicase
- Single-objective: Tournament selection
- Random: No selection

(5) Output Best Images

Final population of image objects stored to disk upon
completion

Experiment Configuration

Results - Novelty

Wilcoxon rank-sum test with Bonferroni
correction

Lexicase vs. random (p < 0.01)
Single-objective vs. random (p < 0.03)
Lexicase vs. single-objective (p > 0.03)

Results - Gene Uniqueness

Wilcoxon rank-sum test with Bonferroni
correction

Lexicase vs. random (p < 0.001)
Single-objective vs. random (p < 0.001)
Lexicase vs. single-objective (p > 0.001)

Discussion / Sample Outputs

Single- and many-objective both tended to
converge towards both multiple and common
suites of techniques

- On a 'per run' basis
- Resulting from maximizing pixel differences

and maximizing the number of techniques

Random search tended towards 'blank space'
- Fewer techniques in genome

Lexicase tended to converge to a smaller set of
techniques with common outputs

Related Work

Generative art via artificial intelligence
- Extremely popular right now thanks to large

language models!
- DALL-E, Midjourney, Stable Diffusion, VQGAN+CLIP, etc

[15,35,36].
- All require a massive dataset and massive amount of

computing power

- GenerativeGI only requires a suite of techniques and
computing necessary for evolutionary search

https://www.reddit.com/r/StableDiffusion/comments/yxtdrh

Related Work

Generative art via search heuristics
- Often used in visualization and creative coding domains

- Visualize 3D models of mathematical formulae [4]
- Creating environments within game worlds [5]

- GenerativeGI focuses on fine-tuned control over artistic techniques

- Taxonomy of fitness metrics for evolutionary art/music [8]
- Metrics can be non-trivial to evaluate (e.g., human preference)
- Target for future work of this paper

Future Work

Additional fitness functions
- Guide towards specific outputs

Human in the loop
- What constitutes a "good" output?
- How do you measure aesthetic preference?

Merging artistic techniques
- How can distinct techniques provide a seamless output?

- E.g., a flow field into an automata

Thanks to..

Award 80NSSC20M0124

Q&A

References
[1] M. A. Boden and E. A. Edmonds, “What is generative art?” Digital Creativity, vol. 20, no. 1-2, pp. 21–46, 2009.
[2] A. G. Forbes, T. H¨ollerer, and G. Legrady, “Generative fluid profiles for interactive media arts projects,” in Proceedings of the
Symposium on Computational Aesthetics, 2013, pp. 37–43.
[3] B. Cabral and L. C. Leedom, “Imaging vector fields using line integral convolution,” in Proceedings of the 20th annual conference on
Computer graphics and interactive techniques, 1993, pp. 263–270.
[4] H. Liu and X. Liu, “Generative art images by complex functions based genetic algorithm,” Trends in Computer Aided Innovation, pp.
125–134, 2007.
[5] T. D. Smedt, L. Lechat, and W. Daelemans, “Generative art inspired by nature, using nodebox,” in European Conference on the
Applications of Evolutionary Computation. Springer, 2011, pp. 264–272.
[6] C. Ryan, J. Collins, and M. O. Neill, “Grammatical evolution: Evolving programs for an arbitrary language,” in Genetic Programming.
Springer, 1998, pp. 83–96.
[7] W. B. Langdon, “Genetic improvement of genetic programming,” in 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE,
2020, pp. 1–8.
[8] C. G. Johnson, “Fitness in evolutionary art and music: a taxonomy and future prospects,” Fitness in evolutionary art and music: a
taxonomy and future prospects, vol. 9, no. 1, pp. 4–25, 2016.
[9] K. Compton, B. Kybartas, and M. Mateas, “Tracery: an author-focused generative text tool,” in International Conference on
Interactive Digital Storytelling. Springer, 2015, pp. 154–161
[10] L. Spector, “Assessment of problem modality by differential performance of Lexicase selection in genetic programming: A
preliminary report,” in Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation. Philadelphia,
Pennsylvania, USA: ACM, 2012, pp. 401–408.

References
[11] I. Greenberg, Processing: creative coding and computational art. Apress, 2007.
[12] I. Bergstrom and R. B. Lotto, “Code bending: A new creative coding practice,” Leonardo, vol. 48, no. 1, pp. 25–31, 2015.
[13] K. Peppler and Y. Kafai, “Creative coding: Programming for personal expression,” vol. 30, no. 2008, p. 314, 2005.
[14] D. Shiffman, S. Fry, and Z. Marsh, The nature of code. D. Shiffman, 2012.
[15] N. Dehouche and K. Dehouche, “What is in a text-to-image prompt: The potential of stable diffusion in visual arts education,” arXiv
preprint arXiv:2301.01902, 2023.
[16] L. S. Vestergaard, J. Fernandes, and M. Presser, “Creative coding within the internet of things,” in 2017 Global Internet of Things
Summit (GIoTS). IEEE, 2017, pp. 1–6.
[24] J. R. Koza, “Genetic programming as a means for programming computers by natural selection,” Statistics and Computing, vol. 4,
no. 2, pp. 87–112, 1994
[30] W. La Cava, L. Spector, and K. Danai, “Epsilon-lexicase selection for regression,” in Proceedings of the Genetic and Evolutionary
Computation Conference 2016. Denver, Colorado, USA: ACM, 2016, pp. 741–748.
[35] K. Crowson, S. Biderman, D. Kornis, D. Stander, E. Hallahan, L. Castricato, and E. Raff, “Vqgan-clip: Open domain image generation
and editing with natural language guidance,” in European Conference on Computer Vision. Springer, 2022, pp. 88–105.
[36] J. Ploennigs and M. Berger, “Ai art in architecture,” arXiv preprint arXiv:2212.09399, 2022.

