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Abstract—Novelty search is used to find a range of novel
behaviours in a system. Software bugs are behaviours that are a)
unexpected and b) incorrect. As the intersection between “novel”
and “unexpected” is non-empty, here we overview how novelty
search can be employed to find bugs in simulation software.
We give an example of this approach applied to the RingSim
simulator.

Index Terms—novelty search, debugging, simulation

I. INTRODUCTION

Novelty Search [1] is a common technique used to find
a range novel behaviours of a system under study. While it
may not be able to find optimal solutions to a given problem,
novelty search subverts issues commonly found in optimising
search algorithms, such as plateaus and local optima. This
makes Novelty Search (NS) an appropriate method for ex-
ploring a landscape of behaviours; even if the behaviours are
similar in nature, Novelty Search frameworks such as CHARC
[2] are capable of exploring the space of possible behaviours.

In many cases, NS is applied to simulations, since it is
typically easier to expose parameters to Novelty Search in
simulation than in a physical experiment. However, simulators
are software, and therefore prone to bugs in implementation.
These bugs can range from coding errors, running software
outside of its designed parameters, or unintended interaction
of systems. The effect of bugs can vary, but at least some
will manifest as the simulator behaving differently from what
was expected. The NS approach can also be used to expose
simulation bugs.

When NS is applied to a simulation for experimental
purposes, then development effort will have be placed into
connecting the simulator to NS. As this effort is expended, it
makes sense also to utilise NS to characterise how the sim-
ulator behaves. The information on the behaviour landscape
can then be tested against the developer’s understanding of
the system, to help identify potential bugs.

The CHARC framework [2] uses NS to characterise the be-
haviour of reservoir computers, using a range of computational
measures [3]. DebugNS is adapted from CHARC; instead of
using standard reservoir metrics, the user supplies measures
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Fig. 1. DebugNS Workflow

that characterise what the system under analysis does. While
typical testing approaches might use binary tests, such as
comparing against expected output, DebugNS investigates the
behaviours of the system for unexpected properties.

II. DEBUGNS
DebugNS implements NS using the microbial genetic algo-

rithm [4], although this could be replaced by a variety of other
search techniques. This core is paired with a number of user
defined benchmarks to define a behaviour space. In simulators,
these measures will typically be derived from the properties of
the system being simulated, at various levels. NS is then used
to find input vectors for the simulator that result in maximally
unique behaviours, as characterised by the measures, exploring
the user-defined behaviour space. Figure 1 gives an overview
of how a developer might use DebugNS.

Once the landscape of behaviours has been explored, it can
be analysed to determine the likelihood of bugs. Simplistically
this could be identifying regions of the landscape known
to correspond to incorrect results; the simplest measure for
DebugNS could be “does the program crash”, which is clearly
not correct behaviour; analysis determined parameter ranges
where crashing occurs. Some measures might be known to
be mutually exclusive, which would paint regions of the
behaviour space as invalid.

More sophisticated analysis of the landscape can take into
account the distribution of results. For example, one might
have an intuition on the number of possible “classes” of
results, with each cluster on the landscape corresponding to a
class. If the number of clusters is either too large or too small
when compared to the user’s understanding of the system, this
indicates either a flaw in the user’s intuition or a bug in the
simulator.
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Fig. 2. Illustration of ring behaviour classes identified by DebugNS before
(left) and after (right) debugging. Note that after debugging, behaviour classes
are rotational- and mirror-symmetric, in-line with hypotheses.

III. CASE STUDY: RINGSIM

RingSim [5] is a phenomenological-level simulator that
models the movement and interactions of domain-wall phe-
nomena driven by a rotating magnetic field in a square grid
of nano-scale magnetic rings. DebugNS has been used to
identify inconsistencies in the phenomenological model used
by RingSim, with a particular focus on how the assumptions
made by RingSim may not hold as it is generalised away from
its initial design parameters.

In use, DebugNS controls the initial state of RingSim
and the input sequence. Measures include the behaviour of
the array as a whole, and also each of ring in the array.
As RingSim is a simulation of a stochastic process, each
experiment is repeated multiple times to find the mean and
standard deviation of each measure. Once data is gathered,
the k-means clustering [6] is used to assign each ring to a
class of rings with similar behaviour; the number of clusters
is defined to be the value that produces the tightest clusters.
This approach suffices in this application, as only a small set
of values have to be checked; for more complex scenarios,
other approaches such as Principal Components Analysis [7]
may be more appropriate.

Due to the phenomena RingSim simulates, the behaviour of
a ring is influenced by its position in the array. However, from
previous experimentation, the expectation is that only the local
neighbourhood influences any individual ring on the timescale
of input that DebugNS uses, resulting in only a relatively small
number of classes of ring behaviours. Further, intuition on the
system suggests that rotational and mirror symmetry should
be observed in ring behaviours on a square grid. This allows
the construction of the following tests after clustering:

• The number of ring behaviour classes is substantially
smaller than the number of rings.

• Rings in rotational- or mirror-symmetric positions are in
the same class.

DebugNS identified behaviours that violated the above
tests, which were flagged to be reviewed as an “unexpected
behaviour”. By doing so, multiple issues were found when
trying to generalise RingSim:

• Some calculations assume the magnetic field moves by
rotating through the center of each ring, which could

result in Domain Walls passing through each other.
• Some calculations assume a clockwise rotating magnetic

field always means clockwise rotating Domain Walls
(which, rarely, is not true).

• Due to RingSim sequentially updating each ring from
top-left to bottom-right or the array, behaviour of top and
left edges is slightly different to bottom and right edges
(figure 2).

While DebugNS is able to find these kind of inconsistencies
within RingSim, it is not able to find all potential issues.
One issue not found was, when improvements made to the
simulation, the value of one constant needed to be changed
to ensure optimal behaviour. As the simulation was still
consistent with a sub-optimal value, DebugNS did not identify
this as a problem.

IV. CONCLUSIONS AND FUTURE WORK

We have introduced DebugNS, a simple framework to take
advantage of existing Novelty Search integrations to find
bugs in simulation software. A case study demonstrates that
DebugNS is able to find inconsistencies within a simulator,
although unable to find bugs that do not cause inconsistent
behaviour. We suggest that NS may be an appropriate way
to debug (find unexpected behaviours) in a wide range of
simulations.

We are extending DebugNS to allow a comparison between
two systems, by exploring a landscape of differences between
the systems. This has a range of potential applications. Where
a trusted oracle is available, this could be used to compare
the oracle to a simulator under development, for example,
when developing a simulator from experimental observations.
It should also be possible to use this method to compare two
separate implementations, for example, two different simu-
lations, or different physical implementations, and determine
where they differ. This could be used to help determine the
reproducibility of an experimental setup.
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