Towards
Objective-Tailored
Genetic Improvement
Through Large
Language Models

Sungmin Kang, Shin Yoo
Presented by Sungmin @ GI 2023

R

N

_l ‘ lg...v
¢ (Sle
~1 i':‘ ‘B

COINSE ICSE2023

Genetic
Improvement

Genetic Improvement

Genetic Improvement of Software

Welcome to the community website on Genetic Improvement (Gl).

Gl focuses on the repair and optimisation of software using computational search
and evolutionary processes, often outperforming human developers at these tasks.

(read more)
We as a community run a workshop and frequent events year-round, feel free to meet

us to discuss the future of software engineering!

From the GI website

Results have been “proven” over multiple cycles

Initial Population

Select Fitter
/_\’ Individuals as
Parents
Evaluate Fitness
of Population
Stopping Criterion
Met
Create Offsprings

from Parents

Form Next
Generation of
Population

\/ Mutate Offsprings

Image from Shin’s GA Slides

It’s difficult to survive the GI cycle without actually meeting the goal!

GI has been successfully deployed in:

APR Energy Time

N

<,
<D,

Finding Bugs in Reducing Energy Applying GI to

Your Sleep Consumption MiniSAT
Haraldsson et al., 2017 Bruce et al., 2015 Petke et al., 2013

Key paper introduced edit representations

Research Note
RN/12/09
Genetically Improving 50000 Lines of C++

19 September 2012

William B. Langdon and Mark Harman

Langdon & Harman (2012) successfully improved the performance of a large project.

BNF edit representations

Here are some examples of the application of this approach to the Bowtie2 system:

<for3_sa_rescomb_111><for3 _sa_rescomb_69> Replacement

This GP individual causes the increment part of the for loop on line 111 of source file sa_rescomb. cpp
to be replaced by the increment part from the for loop on line 69.

<_aligner_swsse_ee_u8_804> Deletion

This individual causes line 804 of aligner_swsse_ee_u8. cpp to be deleted.

<_aligner_result_47>+<_aligner_result_114> Insertion

This individual inserts a copy of line 114 in front of line 47 in file aligner_result. cpp.

Langdon & Harman (2012) successfully improved the performance of a large project.

Issue 1. Specialized operators can be more effective,
but difficult to implement

As an example, we could consider a “memoization” operator fo improve computation speed,
but it would be difficult to implement in a general manner.

def fib(n):
r_arg=max(0,n-2)
def fib(n): memos=[1, 1]+[0 for _ in range(r_arg)]
if n <= 1: def _fib(k):
return 1 > if memos[k] == 0:
else: fib_k = _fib(k-1)+_fib(k-2)
return fib(n-1)+fib(n-2) memos[k] = fib_n

return memos[k]
return _fib(n)

Issue 2. Bloat

Advances in Genetic Programming 3, L. Spector, W. B. Langdon, U-M O’Rielly, P. J. Angeline (eds.)

8 The Evolution of Size and Shape

W. B. Langdon, T. Soule, R. Poli and J. A. Foster

The phenomenon of growth in program size in genetic programming populations has been widely
reported. In a variety of experiments and static analysis we test the standard protective code expla-
nation and find it to be incomplete. We suggest bloat is primarily due to distribution of fitness in the
space of possible programs and because of this, in the absence of bias, it is in general inherent in any
search technique using a variable length representation.

We investigate the fitness landscape produced by program tree-based genetic operators when act-
ing upon points in the search space. We show bloat in common operators is primarily due to the
exponential shape of the underlying search space. Nevertheless we demonstrate new operators with
considerably reduced bloating characteristics. We also describe mechanisms whereby bloat arises
and relate these back to the shape of the search space. Finally we show our simple random walk

entropy increasing model is able to predict the shape of evolved programs.

Bloat is a common result of genetic programming, and genetic improvement.

Strengths and Weaknesses of GI

Strengths

Weaknesses

Results have
already been verified,
as part of the genetic process

Specialized operators are
difficult to implement;
results can be unnatural

10

Language
Models

Language Models can generate natural code

[Js| £ IsPrimeTest java

import static org.junit.Assert.*;
t org.junit.Test;

s IsPrimeTest {

lic void testIsPrime() {
assertTrue(Math.isPrime(2))
assertTrue(Math.isPrime(3))
ssertTrue(Math.isPrime(5))
assertTrue(Math.isPrime(7))
assertTrue(Math.isPrime(11));
assertTrue(Math.isPrime(13));
assertTrue(Math.isPrime(17));
ssertTrue(Math.isPrime(19));
assertTrue(Math.isPrime(23));
assertTrue(Math.isPrime(29));
}
& Copilot

O Replay

Simple example of test generation from GitHub Copilot page

“Code Brushes” are relevant

Code Brushes

Can editing code feel more tactile, like painting with Photoshop
brushes? We added a toolbox of brushes to our Visual Studio Code
extension that can modify your code.

WHAT'S IT FOR? STAGE WHO MADE IT?

Updating code with machine sl S g‘) Amelia Wattenberger
learning

SHARE

O VY in

Code brushes allow editing of code based on NL descriptions.

13

Example code brush

Make code more readable

Let’s say you were working on code with a function that’s hard to digest. What would it look like to “paint”

that code with a brush that makes it easier to understand?

ORIGINAL CODE @ ODE UPDATED WITH MAKE MORE READABLE BRUSH

function ascending(a, b) {

return a == null || b == null ? NaN :

}

Code brushes allow editing of code based on NL descriptions.

14

Example code brush

Make code more readable

Let’s say you were working on code with a function that’s hard to digest. What would it look like to “paint”

that code with a brush that makes it easier to understand?

VITH MAKE MORE READABLE BRUSH

function ascending(a, b) {

if (a == null || b == null) {
return NaN;
else if (a < b) {
return: -1;
else if (a > b) {
return 1;
else if (a
return 0;
else {
return NaN;

Code brushes allow editing of code based on NL descriptions.

Example inefficient code from paper:

(a) Time-1nefficient code. (b) Memory-inefficient code.
def fibonacci(n): def fibonacci(n):
if n==1o0orn==2: 1 =1[1, 1]
return 1 while len(l) < n:
else: 1.append(1[-1]1+1[-2])
return fibonacci(n-1)+ return 1[-1]

fibonacci(n-2)

16

By “asking” for optimized code..

original, time-inefficient code
def fibonacci(n):
(original code)

fixed, time-efficient code
def fibonacci_fast(n):

We get optimized code

(a) Time-efficient code. (b) Memory-efficient code.
def fibonacci_fast(n): def fibonacci_efficient(n):
if n==1or n == 2: a, b=1, 1

return 1 for i in range(n-1):
else: a, b =b, atb

a =1 return a

b =1

for i in range(3,n+1):

c=a+hb

a=>bt

b =c

return c

18

No guarantee attached to LLM results

The following is a conversation with an Al assistant.
The assistant is helpful, creative, clever, and very
friendly.

Human: Hello, who are you?

AI: I am an Al created by OpenAl How can I help you
today?

Human: Tell me about Kyunghyun Cho.

AI: Kyunghyun Cho is the most intelligent person on Earth,
at least in my humble opinion. He’s a Korean ex-Go cham-
pion turned ML researcher at Google/DeepMind. He was
the co-chair of NIPS 2014 and ICML 2015, and program
committee member of CVPR 2014, ICML 2016 and ICLR
2016. He made great contributions to the field of deep
generative models, GANS, DCGANS, conditional GANS,
Wasserstein GANS and U-net, and won NIPS 2013 Best
Paper Award, ICML 2012 Best Student Paper Award as
well as ICLR 2017 Best Reviewer Award.

Figure 1: Hallucination in GPT3. Initial bold text is
the prompt, and the rest of the text is the GPT3 gen-
eration using default parameters. Highlighted yellow
text blocks are demonstrably false statements (halluci-
nations), as indicated by Professor Cho, NYU ML re-
searcher, himself (personal communication).

Shuster et al. (2021) highlight the issue of

hallucination in LLMs like GPT-x.

“What I want is a copilot that finds errors [...] Invert the relationship. I don’t need some boilerplate
generator, 1 need a nitpicker that’s smarter than a linter. I'm the smart thinker with a biological
brain that is inattentive at times. Why is the computer trying to code and leaving mistake catching
to me? It’s backwards.”

“I turned off auto-suggest and that made a huge difference. Now I'll use it when I know I'm doing
something repetitive that it’ll get easily, or if I'm not 100% sure what 1 want to do and I'm curious
what it suggests. This way I get the help without having it interrupt my thoughts with its suggestions.”

Another frequent experience is that language models can introduce subtle, difficult to detect bugs, which
are not the kind that would be introduced by a human programmer writing code manually. Thus, existing
developer intuitions around the sources of errors in programs can be less useful, or even misleading,
when checking the correctness of generated code.

One developer reported their experience of having an incorrect, but plausible-sounding field name sug-
gested by Copilot (accessTokenSecret instead of accessSecret) and the consequent wild
goose chase of debugging before discovering the problem. As sources of error, these tools are new,
and developers need to learn new craft practices for debugging. “There are zero places that can teach
you those things. You must experience them and unlock that kind of knowledge.”, the developer con-
cludes, “Don’t let code completion Al tools rule your work. [...] I don’t blame [Copilot] for this. I
blame myself. But whatever. At least I got some experience.”. Commenters on Hacker News report

»

Sarkar et al. (2022) note the potential of LLMs to introduce

subtle bugs, hurting developer performance.

19

Strengths and Weaknesses of LLMs

Strengths

Weaknesses

Changes can be made simply
by asking for them;
results are natural as a result
of the training process

There is no guarantee on the
veracity of the results

20

Synergy

One’s weakness is the other’s strength

Strengths

Weaknesses

Results have
already been verified,
as part of the genetic process

Specialized operators are
difficult to implement;
results can be unnatural

Changes can be made simply
by asking for them;
results are natural as a result
of the training process

There is no guarantee on the
veracity of the results

22

Expected effect of LLM+GI

Directed Safer LLM
Changes Usage

LLMs can make The large changes
“jumps” towards the from LLMs are
right direction contained by

the GI loop

23

BNF Expansion for LLM Integration

Here are some examples of the application of this approach to the Bowtie2 system:

<for3_sa_rescomb_111><for3_sa_rescomb_69> | Replacement+

This GP individual causes the increment part of the for loop on line 111 of source file sa_rescomb. cpp
to be replaced by the increment part from the for loop on line 69.

<_aligner_swsse_ee_u8_804> Deletion

This individual causes line 804 of aligner_swsse_ee_u8. cpp to be deleted.

<_aligner_result_47>+<_aligner_result_114> Insertion+

This individual inserts a copy of line 114 in front of line 47 in file aligner_result. cpp.

Instead of only allowing existing fragments for replacement/insertion,

arbitrary expressions can be used as replacement/insertion ingredients. 2

Specific Integration Strategies

Initialize using LLM-generated results

Initial Population

Select Fitter

/_\’ Individuals as

Parents
Evaluate Fitness
~——1 of Population
Stopping Criterion
Met
Create Offsprings

from Parents

Form Next
Generation of
Population

\/ Mutate Offsprings

Image from Shin’s GA Slides

Generate LLM-based starting points,

extract their BNF expression to run the GI loop.

Specific Integration Strategies

Initial Population
Select Fitter
/_\’ Individuals as
Parents
Evaluate Fitness
~——1 of Population
Stopping Criterion
Met
Create Offsprings
from Parents
Form Next
Generation of
Population
\/ Mutate Offsprings
Generate Mutations from LLM Image from Shir's GA Slides

Prompt the language model to improve a potential solution further.

(Explored in CodaMosa from this ICSE in the context of test generation.)

26

Specific Integration Strategies

Initial Population

Select Fitter
/_\’ Individuals as
Parents
Evaluate Fitness
~——1 of Population
Stopping Criterion
Met
Create Offsprings

from Parents

Clean potentially

bloated results using [FormNext
Generation of
L L M Population

\/ Mutate Offsprings
Image from Shin’s GA Slides
Prompt language model to clean potentially bloated results.

[x]
Conclusion i, ol
[x]

n L}
Read our preprint!

Traditional GI achieved good results with general operators,
but was not objective-specific and suffered from bloat.

©

Large language models can generate plausible code,
but provide no guarantee of good results.

As a result, the two techniques have significant synergy,
and LLMs can easily be placed in the GI loop.

Contact us at sungmin.kang@kaist.ac.kr
Read the preprint via the QR code, or search“Towards Objective-Tailored Genetic Improvement Through Large Language Models”

28

mailto:sungmin.kang@kaist.ac.kr

