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Genetic
Improvement

🧬



From the GI website

Genetic Improvement
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Results have been “proven” over multiple cycles
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It’s difficult to survive the GI cycle without actually meeting the goal!

Image from Shin’s GA Slides



GI has been successfully deployed in:
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🔨 🌿 ⏰

APR

Finding Bugs in 
Your Sleep

Haraldsson et al., 2017

Energy

Reducing Energy 
Consumption

Bruce et al., 2015

Time

Applying GI to 
MiniSAT

Petke et al., 2013



Key paper introduced edit representations

6
Langdon & Harman (2012) successfully improved the performance of a large project.



Langdon & Harman (2012) successfully improved the performance of a large project.

BNF edit representations
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Replacement

Deletion

Insertion



Issue 1. Specialized operators can be more effective, 
but difficult to implement
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def fib(n):
  if n <= 1:
    return 1
  else:
    return fib(n-1)+fib(n-2)

def fib(n):
  r_arg=max(0,n-2)
  memos=[1, 1]+[0 for _ in range(r_arg)]
  def _fib(k):
    if memos[k] == 0:
      fib_k = _fib(k-1)+_fib(k-2)
      memos[k] = fib_n
    return memos[k]
  return _fib(n)

As an example, we could consider a “memoization” operator to improve computation speed,
but it would be difficult to implement in a general manner.



Issue 2. Bloat

9
Bloat is a common result of genetic programming, and genetic improvement.



Strengths and Weaknesses of GI
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🧬

Strengths Weaknesses

Results have 
already been verified, 

as part of the genetic process

Specialized operators are 
difficult to implement;

results can be unnatural



Language 
Models

💬



Language Models can generate natural code
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Simple example of test generation from GitHub Copilot page



Code brushes allow editing of code based on NL descriptions.

“Code Brushes” are relevant
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Code brushes allow editing of code based on NL descriptions.

Example code brush

14



Code brushes allow editing of code based on NL descriptions.

Example code brush
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Example inefficient code from paper:
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By “asking” for optimized code..
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We get optimized code
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No guarantee attached to LLM results
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Shuster et al. (2021) highlight the issue of 
hallucination in LLMs like GPT-x.

Sarkar et al. (2022) note the potential of LLMs to introduce 
subtle bugs, hurting developer performance.



Strengths and Weaknesses of LLMs
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Strengths Weaknesses

💬
Changes can be made simply 

by asking for them;
results are natural as a result 

of the training process

There is no guarantee on the 
veracity of the results



Synergy

&



One’s weakness is the other’s strength
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🧬

Strengths Weaknesses

Results have 
already been verified, 

as part of the genetic process

Specialized operators are 
difficult to implement;

results can be unnatural

💬
Changes can be made simply 

by asking for them;
results are natural as a result 

of the training process

There is no guarantee on the 
veracity of the results



Expected effect of LLM+GI
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🏹 🧷

Directed 
Changes

LLMs can make 
“jumps” towards the 

right direction

Safer LLM 
Usage

The large changes 
from LLMs are 
contained by
the GI loop



BNF Expansion for LLM Integration
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Instead of only allowing existing fragments for replacement/insertion,

arbitrary expressions can be used as replacement/insertion ingredients.

Replacement+

Deletion

Insertion+



Specific Integration Strategies
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Generate LLM-based starting points, 

extract their BNF expression to run the GI loop.

Initialize using LLM-generated results

Image from Shin’s GA Slides



Specific Integration Strategies
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Prompt the language model to improve a potential solution further.

(Explored in CodaMosa from this ICSE in the context of test generation.)

Generate Mutations from LLM Image from Shin’s GA Slides



Specific Integration Strategies
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Prompt language model to clean potentially bloated results.

Clean potentially 
bloated results using 
LLM

Image from Shin’s GA Slides



Conclusion
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Traditional GI achieved good results with general operators,
but was not objective-specific and suffered from bloat.

1

Large language models can generate plausible code,
but provide no guarantee of good results.

2

As a result, the two techniques have significant synergy,
and LLMs can easily be placed in the GI loop.
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Read our preprint!

Contact us at sungmin.kang@kaist.ac.kr 
Read the preprint via the QR code, or search“Towards Objective-Tailored Genetic Improvement Through Large Language Models”
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